Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Student Projects
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Students Projects

Proposals  On-Going  Completed  

Analysis of tree rings patterns in dendrochronological and forest ecosystem studies

Autumn 2020
Master Semester Project
Project: 00387

00387
The analysis of tree rings leads to multiple information on trees and on their environment. In particular, one can determine the age of the tree, the climatic conditions during the growth of the tree, the mechanical stresses that were exerted on the tree as well as the impact of natural or human induced stresses. This project aims at testing the micro-CT method to identify and analyze the distributional patterns of rings for different tree species in relation to climatic changes. This goal of this project is to design and to implement an image-analysis pilot with the major aims to: 1) design a methodology to analyze the tree rings from micro-CT images 2) test this methodology on the tree rings of selected tree specimens and 3) report on the pros and cons of this methodology in comparison with present practices. This project is interdisciplinary and will be supervised by a team composed of scientists from the UNIGE and EPFL: Charlotte Grossiord (EPFL ENAC IIE PERL), Markus Stoffel (UNIGE, DESTE), Daniel SAGE (EPFL STI IMT LIB) and Pascal Turberg (EPFL ENAC IIC PIXE).
  • Supervisors
  • Philippe Thévenaz, philippe.thevenaz@epfl.ch, 021 693 51 61, BM 4.137
  • Michael Unser, michael.unser@epfl.ch, 021 693 51 75, BM 4.136
  • Pascal Turberg (EPFL ENAC IIC PIXE)
  • Laboratory
  • Research
  • Publications
  • Code
  • Teaching
    • Courses
    • Student projects
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved