Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Student Projects
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Students Projects

Proposals  On-Going  Completed  

Continuous-domain multicomponent image reconstruction with mixed regularization

Spring 2021
Master Semester Project
Project: 00405

00405
The problem of reconstructing biomedical images based on measurements from our acquisition system (microscopy, X-ray tomography, etc) is known as an inverse problem, which is typically formulated and solved as an optimization task. When one has some prior knowledge on the form of image (eg, sparsity in a transform domain or smoothness), one can enforce that the reconstructed image follow this prior by adding a suitable regularization term to the cost function. In this project, we consider a multicomponent image model, where each component follows different priors. More specifically, the first component is assumed to be piecewise-constant and is treated with total-variation regularization; the second is assumed to be smooth and is treated with a Laplacian-based regularizer. The reconstruction is done in the continuous domain by using a spline basis. The reconstruction algorithm will be implemented in Matlab using the GlobalBioIm library [1]. The student should be interested in biomedical imaging, optimization and functional analysis.
References:
[1] Soubies, E., Soulez, F., McCann, M. T., Pham, T. A., Donati, L., Debarre, T., ... & Unser, M. (2019). Pocket guide to solve inverse problems with GlobalBioIm. Inverse Problems, 35(10), 104006.
  • Supervisors
  • Thomas Debarre, thomas.debarre@epfl.ch, BM 4.138
  • Michael Unser, michael.unser@epfl.ch, 021 693 51 75, BM 4.136
  • Shayan Aziznejad
  • Laboratory
  • Research
  • Publications
  • Code
  • Teaching
    • Courses
    • Student projects
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved