Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Student Projects
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Students Projects

Proposals  On-Going  Completed  

Particle tracking microscopy to measure deformation in soft solids

2021
Master Semester Project
Project: 00416

00416
Measuring material deformation yields invaluable insight into the mechanics of materials, providing a means of directly probing material kinematics under a wide variety of testing conditions. While particle-based methods for measuring material displacement using correlation exist, such methods break down when confronted with sharp gradients in the deformation field because they rely on a region consisting of many particles to form a robust correlation. The large number of particles required to establish a robust correlation inherently blurs any sharp displacement gradients; furthermore, the measured displacement becomes increasingly noisy as the spatial resolution increases, thus obscuring relevant kinematic information. Here we aim to address this problem with a hybrid approach of particle tracking and direct evaluation of the deformation gradient with material-marking-particle-pairs. This approach will maintain accuracy of displacement measurement on the scale of inter-particle distance, significantly enhancing spatial resolution and resolution of sharp displacement gradients. This project consists of an application of state-of-the-art deconvolution microscopy to locate particles, and tracking methods that exploit a model for material displacement using the mechanics of the problem of interest. Once implemented, kinematic quantities of interest will be extracted using data collected from experiments with large displacement gradients. The efficacy of the method will be evaluated and directly compared with state-of-the-art correlation approaches on identical experimental data.
  • Supervisors
  • Thanh-An Pham, thanh-an.pham@epfl.ch, BM 4.140
  • Michael Unser, michael.unser@epfl.ch, 021 693 51 75, BM 4.136
  • Laboratory
  • Research
  • Publications
  • Code
  • Teaching
    • Courses
    • Student projects
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved