Splines: on scale, differential operators and fast algorithms

Michael Unser
Biomedical Imaging Group
EPFL, Lausanne
Switzerland

Plenary talk, Scale Space 2005, Hofgeismar, April, 2005

Getting ideas across takes time ...

- 1990 submission: "The L_{2} polynomial spline pyramid: a discrete representation of continuous signals in scale space"
- Journal: IEEE Trans. Pattern Analysis and Mach. Intel.

Give in when necessary

Scale Space 2005

.... but persevere

MOTIVATION

At the beginning there was a continuum

Man made it discrete!

Continuous domain: $L_{2}\left(R^{p}\right)$
$f(x), x \in R^{p}$
real world objects

- signals, images
sensor input
- Sampling and signal acquisition
- Continuous/discrete algorithm design
- Edge detection, PDEs, image registration, ...
- Multi-scale approaches
- Scale space
- Image pyramids, wavelets
- Coarse-to-fine and multigrid algorithms

Splines: a unifying framework

Linking the discrete and the continuous .

THE BASIC ATOMS: B-SPLINES

- Polynomial B-splines
- B-spline representation
- Differential properties
- Dilation properties
- Generalization: fractional B-splines
- Gaussian-like windows

Splines: definition

Definition: A function $s(x)$ is a polynomial spline of degree n with knots
$\cdots<x_{k}<x_{k+1}<\cdots$ iff it satisfies the following two properties:
■ Piecewise polynomial:
$s(x)$ is a polynomial of degree n within each interval $\left[x_{k}, x_{k+1}\right)$;

- Higher-order continuity:
$s(x), s^{(1)}(x), \cdots, s^{(n-1)}(x)$ are continuous at the knots x_{k}.
- Effective degrees of freedom per segment:
- Cardinal splines = unit spacing and infinite number of knots
\square The right framework for signal processing

Polynomial B-splines

- B-spline of degree n

- Key properties

- Compact support: shortest polynomial spline of degree n
- Positivity
- Piecewise polynomial
- Smoothness: Hölder continuous of order n
- Symmetric B-splines
$\beta^{n}(x)=\beta_{+}^{n}\left(x+\frac{n+1}{2}\right)$

B-spline representation

Theorem (Schoenberg, 1946)

Every cardinal polynomial spline, $s(x)$, has a unique and stable representation in terms of its B -spline expansion

In modern terminology: $\left\{\beta_{+}^{n}(x-k)\right\}_{k \in \mathbb{Z}}$ forms a Riesz basis.

Spline-related differential operators

- Continuous operators

Derivatives
$\mathrm{D}\{\cdot\}=\frac{\mathrm{d}}{\mathrm{d} x} \quad \underset{\mathcal{F}}{\mathcal{F}} \quad j \omega$
$\mathrm{D}^{m}\{\cdot\} \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad(j \omega)^{m}$

Integrators
$\mathrm{D}^{-(n+1)}\{\delta(x)\}=\frac{x_{+}^{n}}{n!}$

- Discrete operators

Finite differences

$$
\begin{array}{lll}
\Delta_{+}\{\cdot\} & \stackrel{\mathcal{F}}{\longleftrightarrow} & 1-e^{-j \omega} \\
\Delta_{+}^{m}\{\cdot\} & \stackrel{\mathcal{F}}{\longleftrightarrow} & \left(1-e^{-j \omega}\right)^{m}
\end{array}
$$

$$
\begin{aligned}
& \text { One-sided power function: } \\
& x_{+}^{n}= \begin{cases}x^{n}, & x \geq 0 \\
0, & x<0\end{cases}
\end{aligned}
$$

(impulse response of $(n+1)$-fold integrator)

B-splines: differential properties

- Fourier domain formula

$$
\hat{\beta}_{+}^{n}(\omega)=\frac{\left(1-e^{-j \omega}\right)^{n+1}}{(j \omega)^{n+1}} \longleftarrow \text { Discrete derivatives }
$$

■ Link between "discrete" and exact derivatives

$$
\forall f \in S^{\prime}, \quad \Delta_{+}^{m} f(x)=\beta_{+}^{m-1} * \mathrm{D}^{m} f(x)
$$

- B-spline differentiation formula

$$
\mathrm{D}^{m} \beta_{+}^{n}(x)=\Delta_{+}^{m} \beta_{+}^{n-m}(x)
$$

Sketch of proof: $\quad(j \omega)^{m} \hat{\beta}_{+}^{n}(\omega)=\left(1-e^{-j \omega}\right)^{m} \cdot\left(\frac{1-e^{-j \omega}}{j \omega}\right)^{n+1-m}$

B-splines: dilation properties

- Dilation by a factor m

$$
\beta_{+}^{n}(x / m)=\sum_{k \in \mathbb{Z}} h_{m}^{n}[k] \beta^{n}(x-k) \text { with } \quad H_{m}^{n}(z)=\frac{1}{m^{n}}\left(\sum_{k=0}^{m-1} z^{-k}\right)^{n+1}
$$

- Piecewise constant case ($n=0$)

- Applications: fast spline-based algorithms
- Zooming
- Smoothing
- Multi-scale processing
- Wavelet transform

Dyadic case: wavelets

- Dilation by a factor of 2
$\beta_{+}^{n}(x / 2)=\sum_{k \in \mathbb{Z}} h_{2}^{n}[k] \beta_{+}^{n}(x-k)$
- Binomial filter
$H_{2}^{n}(z)=2\left(\frac{1+z^{-1}}{2}\right)^{n+1}=\frac{1}{2^{n}} \sum_{k=0}^{n+1}\binom{n+1}{k} z^{-k}$
- Example: piecewise linear splines

Generalization: fractional B-splines

$$
\begin{array}{ccc}
\beta_{+}^{0}(x)=\Delta_{+} x_{+}^{0} & \stackrel{\mathcal{F}}{\longleftrightarrow} & \frac{1-e^{-j \omega}}{j \omega} \\
\vdots & \vdots \\
\beta_{+}^{\alpha}(x)=\frac{\Delta_{+}^{\alpha+1} x_{+}^{\alpha}}{\Gamma(\alpha+1)} & \stackrel{\mathcal{F}}{\longleftrightarrow} & \left(\frac{1-e^{-j \omega}}{j \omega}\right)^{\alpha+1}
\end{array} \begin{gathered}
\text { One-sided power function: }
\end{gathered} x_{+}^{\alpha}=\left\{\begin{array}{ll}
x^{\alpha}, & x \geq 0 \\
0, & x<0
\end{array}\right]
$$

■ Properties

- $\left\{\beta_{+}^{\alpha}(x-k)\right\}_{k \in \mathbb{Z}}$ is a valid Riesz basis for $\alpha<-\frac{1}{2}$
- Convolution property: $\beta_{+}^{\alpha_{1}} * \beta_{+}^{\alpha_{2}}=\beta_{+}^{\alpha_{1}+\alpha_{2}+1}$

Gaussian-like windows

Theorem: The (fractional) B-splines converge (in L_{p}-norm) to a Gaussian as the degree goes to infinity:

$$
\lim _{\alpha \rightarrow \infty}\left\{\beta_{+}^{\alpha}(x)\right\}=\frac{1}{\sqrt{2 \pi} \cdot \sigma_{\alpha}} \exp \left(\frac{-\left(x-x_{\alpha}\right)^{2}}{2 \sigma_{\alpha}^{2}}\right)
$$

$$
\text { with } \sigma_{\alpha}=\sqrt{\frac{\alpha+1}{12}}
$$

■ Polynomial B-splines: $\alpha=n$ (integer)

- Compact support: [0, $n+1]$
- Fast convolution algorithms: recursive or multi-scale

SPLINE-BASED SIGNAL PROCESSING

- Spline fitting: overview

- B-spline interpolation
- Fast multi-scale algorithms
- Applications

Spline fitting (Cont'd)

- B-spline representation: $s(x)=\sum_{k \in \mathbb{Z}} c[k] \beta^{n}(x-k)$
- Smoothing splines

Theorem: The solution (among all functions) of the smoothing spline problem

$$
\min _{s \in W_{2}^{m}}\left\{\sum_{k \in \mathbb{Z}}|f[k]-s(k)|^{2}+\lambda \int_{-\infty}^{+\infty}\left|\mathrm{D}^{m} s(x)\right|^{2} d x\right\}
$$

is a cardinal spline of degree $2 m-1$. Its coefficients $c[k]=h_{\lambda} * f[k]$ can be obtained by suitable digital filtering of the input samples $f[k]$.

- Special case: the draftman's spline

The minimum curvature interpolant is obtained by setting $m=2$ and $\lambda \rightarrow 0$.
It is a cubic spline !

Spline fitting: overview

- B-spline representation: $s(x)=\sum_{k \in \mathbb{Z}} c[k] \beta^{n}(x-k)$

Goal: Determine $c[k]$ such that $s(x)$ is a "good" representation of our signal

- Interpolation (exact, reversible)

- Spline approximation (at scale a)

Analog input $f(x)$

B-spline interpolation

- Discrete B-spline kernels

$$
\begin{aligned}
& \text { Discrete B-spline kernels } \\
& \qquad b_{1}^{n}[k]=\left.\beta^{n}(x)\right|_{x=k} \stackrel{z}{\longleftrightarrow} \quad B_{1}^{n}(z)=\sum_{k=-\lfloor n / 2\rfloor}^{\lfloor n / 2\rfloor} \beta^{n}(k) z^{-k}
\end{aligned}
$$

- B-spline interpolation: inverse filter solution

$$
f[k]=\left.\sum_{k \in \mathbb{Z}} c[l] \beta^{n}(x-l)\right|_{x=k}=\left(b_{1}^{n} * c\right)[k] \quad \Rightarrow \quad c[k]=\left(b_{1}^{n}\right)^{-1} * f[k]
$$

- Efficient recursive implementation
$\left(b_{1}^{n}\right)^{-1}[k] \quad \stackrel{z}{\longleftrightarrow} \quad \frac{6}{z+4+z^{-1}}=\frac{(1-\alpha)^{2}}{(1-\alpha z)\left(1-\alpha z^{-1}\right)} \quad$ (symmetric exponential)
\square Cascade of first order recursive filters

Generic C-code (splines of any degree n)

- Main recursion

```
    void ConvertTolnterpolationCoefficients
    double c[], long DataLength, double z[], long NbPoles,double Tolerance)
    {double Lambda = 1.0; long n,
    f(DataLength == 1L) return;
    for (k=OL; k<NbPoles; }k++) Lambda = Lambda * (1.0-z[k]) * (1.0-1.0/z[k])
    for ( }\textrm{n}=0\textrm{OL;};\textrm{n}<\mathrm{ DataLength; n++) C[n] * Lambda
    or (k= OL; k < NbPoles; k++) {
        c[[0]=|nitialCausalCocfficient(c, DataLength, z[k], Tolerance)
        for (n=1L; n<DataLength; n+) c[n] += z[k]* *[n-1
```



```
        for (n= DataLength-2L;0<< n; n-) c[n] = z[k]* *[[n+1L]-c[n];}
}
```


Spline interpolation

- Equivalent forms of spline representation

$$
\begin{aligned}
s(x)=\sum_{k \in \mathbb{Z}} c[k] \beta^{n}(x-k) & =\sum_{k \in \mathbb{Z}}\left(s(k) *\left(b_{1}^{n}\right)^{-1}[k]\right) \beta^{n}(x-k) \\
& =\sum_{k \in \mathbb{Z}} s(k) \varphi_{\text {int }}^{n}(x-k)
\end{aligned}
$$

- Cardinal (or fundamental) spline $\varphi_{\text {int }}^{n}(x)=\sum_{k \in \mathbb{Z}}\left(b_{1}^{n}\right)^{-1}[k] \beta^{n}(x-k)$

double InitialCausalCoefficient
double c[], long DataLength, double z, double Tolerance
(double Sum, zn, z2n, iz; long n, Horizon;
 zn = z; Sum = c[0];
for $(n=1 L ; n<1$
return(Sum);

Limiting behavior

$$
\begin{align*}
& \text { - Spline interpolator } \\
& \text { Impulse response } \\
& \varphi_{\text {int }}^{n}(x) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad H^{n}(\omega)=\left(\frac{\sin (\omega / 2)}{\omega / 2}\right)^{n+1} \frac{1}{B_{1}^{n}\left(e^{j \omega}\right)} \tag{x,y}
\end{align*}
$$

- Asymptotic property

The cardinal spline interpolators converge to the sinc-interpolator (ideal filter) as the degree goes to infinity:

$$
\lim _{n \rightarrow \infty} \varphi_{\text {int }}^{n}(x)=\operatorname{sinc}(x), \quad \lim _{n \rightarrow \infty} H^{n}(\omega)=\operatorname{rect}\left(\frac{\omega}{2 \pi}\right) \quad \text { (in all } L_{\mathrm{p}} \text {-norms) }
$$

(Aldroubi et al., Sig. Proc., 1992)Includes Shannon's theory as a particular case!

Geometric transformation of images

- 2D separable model

$$
f(x, y)=\sum_{k=k_{1}}^{k_{1}+n+1} \sum_{l=l_{1}}^{l_{1}+n+1} c[k, l] \beta^{n}(x-l) \beta^{n}(y-l)
$$

 2D filtering
$c[k, l]$
(separable)
2D re-sampling
Finite cost implementation of an infinite impulse response interpolator !

- Applications

zooming, rotation, re-sizing, re-formatting, warping

Cubic spline coefficients in 2D

Pixel values $f[k, l]$

B -spline coefficients $c[k, l]$

High-quality image interpolation

- Splines: best cost-performance tradeoff

Thévenaz et al., Handbook of Medical Image Processing, 2000

Fast multi-scale filtering

Three alternative methods for the fast evaluation of $f(x) * \beta^{n}(x / a)$

1) Pyramid or tree algorithms

(Unser et al., IEEE Trans. PAMI, 1993)
2) Recursive filtering (iterated moving average)

$$
\begin{aligned}
& a=m \in \mathbb{Z}^{+} \\
& s_{m}[k]=s_{m}[k-1]+f[k]-f[k-m]
\end{aligned}
$$

(Unser et al., IEEE Trans. Sig. Proc, 1994)

Fast multi-scale filtering (Cont'd)

Challenge: $O(N)$ evaluation of $f(x) * \beta^{n}(x / a)$
3) Differential approach $a \in \mathbb{R}^{+}$
$f(x) * \beta_{+}^{0}(x / a)=F(x)-F(x-a)=\Delta_{a}^{1} \mathrm{D}^{-1}\{f(x)\}$
Integral (or primitive): $F(x)=\int_{-\infty}^{x} f(t) d t=\mathrm{D}^{-1}\{f(x)\}$
Finite difference with step a : $\Delta_{a}\{f(x\}=f(x)-f(x-a)$

(Munoz et al., IEEE Trans. Imag. Proc, 2001)
Principle: The integral of a spline of degree n is a spline of degree $n+1$.

SPLINES AND WAVELET THEORY

- Scaling functions
- Order of approximation
- B-spline factorization theorem
- Splines: the key to wavelet theory
- Fractional B-spline wavelets

Splines: more applications

- Sampling and interpolation
- Interpolation, re-sampling, grid conversion
- Image reconstruction
- Geometric correction
- Feature extraction
- Contours, ridges
- Differential geometry
- Image pyramids
- Shape and active contour models
- Image matching
- Stereo
- Image registration (multi-modal, rigid body or elastic)
- Motion analysis
- Optical flow

Scaling function

Definition: $\varphi(x)$ is an admissible scaling function of L_{2} iff:

- Riesz basis condition

$$
\forall c \in \ell_{2}, \quad A \cdot\|c\|_{\ell_{2}} \leq\left\|\sum_{k \in \mathbb{Z}} c[k] \varphi(x-k)\right\|_{L_{2}} \leq B \cdot\|c\|_{\ell_{2}}
$$

- Two-scale relation

$$
\varphi(x / 2)=\sum_{k \in \mathbb{Z}} h[k] \varphi(x-k)
$$

- Partition of unity
$\sum \varphi(x-k)=1$

From scaling functions to wavelets

- Wavelet bases of L_{2} [Mallat-Meyer, 1989]

Theorem: For any given admissible scaling function of $L_{2}, \varphi(x)$, there exists a wavelet $\psi(x / 2)=\sum_{k \in \mathbb{Z}} g[k] \varphi(x-k)$ such that the family of functions

$$
\left\{2^{-i / 2} \psi\left(\frac{x-2^{i} k}{2^{i}}\right)\right\}_{i \in \mathbb{Z}, k \in \mathbb{Z}}
$$

forms a Riesz basis of L_{2}.

- Constructive approach: perfect reconstruction filterbank

Spline reconstruction of a CAT-scan

Order of approximation

- General "shift-invariant" space at scale a
$V_{a}(\varphi)=\left\{s_{a}(x)=\sum_{k \in \mathbb{Z}} c[k] \varphi\left(\frac{x}{a}-k\right): c \in \ell_{2}\right\}$

- Projection operator

$$
\forall f \in L_{2}, \quad P_{a} f=\arg \min _{s_{a} \in V_{a}}\left\|f-s_{a}\right\|_{L_{2}} \quad \in V_{2}
$$

- Order of approximation

Definition
A scaling/generating function φ has order of approximation γ iff

$$
\forall f \in W_{2}^{\gamma}, \quad\left\|f-P_{a} f\right\|_{L_{2}} \leq C \cdot a^{\gamma} \cdot\left\|f^{(\gamma)}\right\|_{L_{2}}
$$

$\|$ B-splines of degree α have order of approximation $\gamma=\alpha+1$

B-spline factorization

- Factorization theorem

A valid scaling function $\varphi(x)$ has order of approximation γ iff

$$
\varphi(x)=\left(\beta_{+}^{\alpha} * \varphi_{0}\right)(x)
$$

where β_{+}^{α} with $\alpha=\gamma-1$: regular, B-spline part
$\varphi_{0} \in S^{\prime}$: irregular. distributional part

- Refinement filter: general case

$$
H(z)=\underbrace{\left(\frac{1+z^{-1}}{2}\right)^{\gamma}}_{\text {spline part }} \cdot \underbrace{Q(z)}_{\text {distributional part }}
$$

Splines: the key to wavelet theory

CONCLUSION

- Distinctive features of splines
- Simple to manipulate
- Smooth and well-behaved
- Excellent approximation properties
- Multiresolution properties
- Fundamental nature (Green functions of derivative operator)
- Splines and image processing
- A story of avoidance and, more recently, love....
- Best cost/performance tradeoff
- Many applications
- Unifying signal processing formulation
- Tools: digital filters, convolution operators
- Efficient recursive filtering solutions
- Flexibility: piecewise constant to bandlimited

Acknowledgments

Many thanks to

- Dr. Thierry Blu
- Prof. Akram Aldroubi
- Prof. Murray Eden
- Dr. Philippe Thévenaz
- Annette Unser, Artist
+ many other researchers, and graduate students

No need to be dogmatic: you can also use splines to improve "scale-space" algorithms

- Hilbert space framework: Think analog, act discrete !
- "Optimal" discretization of differential operators
- Fast multi-scale, multi-grid algorithms
\qquad

The end: Thank you!

- Spline tutorial
- M. Unser, "Splines: A Perfect Fit for Signal and Image Processing," IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22-38, 1999.
- Spline and wavelets
- M. Unser, T. Blu, "Wavelet Theory Demystified," IEEE Trans. on Signal Processing, vol. 51, no. 2, pp. 470-483, 2003.
- Smoothing splines and stochastic formulation
- M. Unser, T. Blu, "Generalized Smoothing Splines and the Optimal Discretization of the Wiener Filter," IEEE Trans. Signal Processing, in press.
- Preprints and demos: http://bigwww.epfl.ch/

