

Splines: on scale, differential operators and fast algorithms

Michael Unser Biomedical Imaging Group EPFL, Lausanne Switzerland

Plenary talk, Scale Space 2005, Hofgeismar, April, 2005

Getting ideas across takes time ...

1990 submission: "The L₂ polynomial spline pyramid: a discrete representation of continuous signals in scale space"

4

Journal: IEEE Trans. Pattern Analysis and Mach. Intel.

OUTLINE

Introduction

- The basic atoms: B-splines
- Spline-based signal processing
 - Interpolation
 - Fast multi-scale algorithms
 - Applications
- Splines and wavelet theory

- Image pyramids, wavelets
- Coarse-to-fine and multigrid algorithms

Splines: definition Definition: A function s(x) is a polynomial spline of degree n with knots $\dots < x_k < x_{k+1} < \dots$ iff it satisfies the following two properties: a Piecewise polynomial: s(x) is a polynomial of degree n within each interval $[x_k, x_{k+1})$; b Higher-order continuity: $s(x), s^{(1)}(x), \dots, s^{(n-1)}(x)$ are continuous at the knots x_k . b Effective degrees of freedom per segment: n+1 (constraints) n = 1 n = 1constraints) n = 1constraints) n = 1cardinal splines = unit spacing and infinite number of knots

6

 \square The right framework for signal processing

Dyadic case: wavelets

Dilation by a factor of 2

$$\beta_+^n(x/2) = \sum_{k \in \mathbb{Z}} h_2^n[k] \beta_+^n(x-k)$$

Binomial filter

$$H_2^n(z) = 2\left(\frac{1+z^{-1}}{2}\right)^{n+1} = \frac{1}{2^n} \sum_{k=0}^{n+1} \binom{n+1}{k} z^{-k}$$

Example: piecewise linear splines

Gaussian-like windows

Theorem: The (fractional) B-splines converge (in L_p -norm) to a Gaussian as the degree goes to infinity:

$$\lim_{\alpha \to \infty} \left\{ \beta^{\alpha}_{+}(x) \right\} = \frac{1}{\sqrt{2\pi} \cdot \sigma_{\alpha}} \exp\left(\frac{-(x - x_{\alpha})^{2}}{2\sigma_{\alpha}^{2}}\right)$$
 with $\sigma_{\alpha} = \sqrt{\frac{\alpha + 1}{12}}$

Polynomial B-splines: $\alpha = n$ (integer)

- Compact support: [0, n+1]
- Fast convolution algorithms: recursive or multi-scale

Spline fitting: overview

B-spline representation: $s(x) = \sum_{k \in \mathbb{Z}} c[k] \beta^n(x-k)$

Goal: Determine c[k] such that s(x) is a "good" representation of our signal

Interpolation (exact, reversible)

Spline interpolation

Equivalent forms of spline representation

$$s(x) = \sum_{k \in \mathbb{Z}} c[k] \beta^n(x-k) = \sum_{k \in \mathbb{Z}} \left(s(k) * (b_1^n)^{-1}[k] \right) \beta^n(x-k)$$
$$= \sum_{k \in \mathbb{Z}} s(k) \varphi_{int}^n(x-k)$$

- Cardinal (or fundamental) spline $\varphi_{int}^{n}(x) = \sum_{k \in \mathbb{Z}} (b_{1}^{n})^{-1}[k] \beta^{n}(x-k)$
- Finite cost implementation of an infinite impulse response interpolator !

<section-header><section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

High-quality image interpolation

Splines: more applications Sampling and interpolation Interpolation, re-sampling, grid conversion Image reconstruction Geometric correction Feature extraction Contours, ridges Differential geometry Image pyramids Shape and active contour models Image matching Stereo Image registration (multi-modal, rigid body or elastic) Motion analysis Optical flow 30

SPLINES AND WAVELET THEORY Scaling functions Order of approximation B-spline factorization theorem Splines: the key to wavelet theory

Fractional B-spline wavelets

Scaling function

Definition: $\varphi(x)$	is an admissible scaling f	iunction of L_2 iff:
--------------------------	----------------------------	------------------------

Riesz basis condition

$$\forall c \in \ell_2, \quad A \cdot \|c\|_{\ell_2} \le \left\| \sum_{k \in \mathbb{Z}} c[k]\varphi(x-k) \right\|_{L_2} \le B \cdot \|c\|_{\ell_2}$$

Two-scale relation

Partition of unity

 $\sum_{k\in\mathbb{Z}}\varphi(x-k)=1$

ļ	N			
l				
l				_
1				
1				
1				
l				
1				

CONCLUSION

- Distinctive features of splines
 - Simple to manipulate
 - Smooth and well-behaved
 - Excellent approximation properties
 - Multiresolution properties
 - Fundamental nature (Green functions of derivative operator)
- Splines and image processing
 - A story of avoidance and, more recently, love....
 - Best cost/performance tradeoff
 - Many applications
- Unifying signal processing formulation
 - Tools: digital filters, convolution operators
 - Efficient recursive filtering solutions
 - Flexibility: piecewise constant to bandlimited

Scale space vs.	splines
 Linear scale space (redundant) 	 Smoothing splines Multi-resolution analysis (non-redundant)
Finite difference methods	 Hilbert space methods
Non-linear diffusion	Non-linear smoothing splinesWavelet denoising
No need to be dogmatic: you improve "scale-space" algori Hilbert space framework: Th "Optimal" discretization of d Fast multi-scale, multi-grid a	ithms hink analog, act discrete ! lifferential operators
•	39

Acknowledgments				
Many thanks to				
Dr. Thierry Blu	The second second second			
Prof. Akram Aldroubi				
Prof. Murray Eden				
Dr. Philippe Thévenaz				
Annette Unser, Artist	121			
+ many other researchers,	14641			
and graduate students	151010151			
	THE ASSAULT AND AND AND			
	(fine			

The end: Thank you!

- Spline tutorial
 - M. Unser, "Splines: A Perfect Fit for Signal and Image Processing," *IEEE Signal Processing Magazine*, vol. 16, no. 6, pp. 22-38, 1999.
- Spline and wavelets
 - M. Unser, T. Blu, "Wavelet Theory Demystified," *IEEE Trans. on Signal Processing*, vol. 51, no. 2, pp. 470-483, 2003.
- Smoothing splines and stochastic formulation
 - M. Unser, T. Blu, "Generalized Smoothing Splines and the Optimal Discretization of the Wiener Filter," *IEEE Trans. Signal Processing*, in press.
- Preprints and demos: http://bigwww.epfl.ch/