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The quest for invariance

2

Invariance to coordinate transformations

Primary transformations (X): translation (T), scaling (S), rotation (R),
affine (similarity) (A=S+R)

A continuous-domain operator L is X-invariant iff. it commutes with X; i.e,

∀f ∈ L2(Rd),XLf = CX · LXf CX: normalization constant

All classical physical laws are TSR-invariant

Classical signal/image processing operators are invariant
(to various extents)

Filters (linear or non-linear): T-invariant

Differentiators, Hilbert transform, wavelet transform: TS-invariant

Contour/ridge detectors (Gradient, Laplacian, Hessian): TSR-invariant

Steerable filters: TR-invariant
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Invariant signals
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Natural signals/images often exhibit some degree of invariance
(at least locally, if not globally)

Stationarity, texture: T-invariance

Isotropy (no preferred orientation): R-invariance

Self-similarity, fractality: S-invariance
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OUTLINE

! Splines and T-invariant operators
! Green functions as elementary building blocks
! Multiresolution revisited

! Imposing scale (resp., affine) invariance
! Fractional derivatives
! Fractional (resp., polyharmonic) B-splines

! Fractional wavelets
! Exact Hilbert-transform pairs of bases
! Isotropic wavelets
! Analysis of fractal processes
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General concept of an L-spline

Cardinality: the knots (or spline singularities) are on the (multi-)integers

Generalization: includes polynomial splines as particular case (L = dN

dxN )

L{·}: differential operator (translation-invariant)
δ(x) =

∏d
i=1 δ(xi): multidimensional Dirac distribution

Definition
The continuous-domain function s(x) is a cardinal L-spline iff.

L{s}(x) =
∑

k∈Zd

a[k]δ(x− k)

1-6

Example: piecewise-constant splines

! Spline-defining operators

! Piecewise-constant or D-spline

! B-spline function

Continuous-domain derivative: D =
d
dx

←→ jω

Discrete derivative: ∆+{·} ←→ 1− e−jω

s(x) =
∑

k∈Z
s[k]β0

+(x− k) D{s}(x) =
∑

k∈Z

∆+s(k)
︷︸︸︷
a[k] δ(x− k)

β0
+(x) = ∆+D−1{δ}(x) ←→ 1− e−jω

jω
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continuous-domain signal
discrete signal

(B-spline coefficients)

Existence of a local, shift-invariant basis?

! Space of cardinal L-splines

! Generalized B-spline representation

VL =




s(x) : L{s}(x) =
∑

k∈Zd

a[k]δ(x− k)




 ∩ L2(Rd)

A “localized” function ϕ(x) ∈ VL is called generalized B-spline if it gen-
erates a Riesz basis of VL; i.e., iff. there exists (A > 0, B < ∞) s.t.

A · ‖c‖!2(Zd) ≤
∥∥∥

∑
k∈Zd c[k]ϕ(x− k)

∥∥∥
L2(Rd)

≤ B · ‖c‖!2(Zd)

⇓

VL =




s(x) =
∑

k∈Zd

c[k]ϕ(x− k) : x ∈ Rd, c ∈ "2(Zd)
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Splines and Green!s functions
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ρ(x) δ(x)L{·} ρ(x)δ(x)
L−1{·}

(+ null-space component?)

L−1{·} s(x) =
∑

k∈Zd

a[k]ρ(x− k)
∑

k∈Zd

a[k]δ(x− k)

Formal integration

Definition
ρ(x) is a Green function of the shift-invariant operator L iff L{ρ} = δ

⇒

⇒ VL = span {ρ(x− k)}k∈Zd

Cardinal L-spline: L{s}(x) =
∑

k∈Zd

a[k]δ(x− k)
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Green function = Impulse response 

Translation invariance 

Linearity 

Example of spline synthesis
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δ(x)

δ(x− x0)

ρ(x)
L−1{·}

L = d
dx ⇒ L−1: integrator

∑

k∈Z
a[k]δ(x− k)

ρ(x− x0)

L−1{·}

L−1{·}

s(x) =
∑

k∈Z
a[k]ρ(x− k)

1-

Series of embedded spaces: V(i)
!= span

{
ρ(x− 2ik)

}
k∈Zd

0 4 8

V(2) ⊂ V(1) ⊂ V(0)= VL

2 6

x

Inclusion property: V(j) ⊂ V(i) for j ≥ i

Technical difficulties

{ρ(x− k)}k∈Zd is not always a Riesz basis (e.g., ρ /∈ L2(Rd))

Completeness issue

A fresh (Green!s) view of multiresolution

10

Example: L = D2 with ρ(x) = x+



1- 11

IMPOSING INVARIANCE

! Scale-invariant operators
! Fractional B-splines

! Affine-invariant operators
! Polyharmonic B-splines
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Scale-invariant operators

Definition: An operator L is scale-invariant iff it commutes with
dilation: i.e., ∀s(x),L{s(·)}(x/a) = Ca L{s(·/a)}(x).

(Unser & Blu, IEEE-SP, 2007)

Theorem
The complete family of real scale-invariant 1D convolution operators
is given by the fractional derivatives ∂γ

τ , whose frequency response is

L̂(ω) = (−jω)
γ
2−τ (jω)

γ
2 +τ

γ ∈ R+: order of the derivative (i.e., |L̂(ω)| = |ω|γ )

τ ∈ R: phase (or asymmetry)
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Construction of causal B-splines

Finite difference:

  Fractional finite differences:

! Causal fractional B-splines

Discrete operator: localization filter Q(ejω)

Liouville!s fractional derivative:

Derivative operator: D = ∂1
1
2

F←→ jω

Dγ = ∂γ
γ/2

F←→ (jω)γ

Spline degree: α = γ − 1

Continuous-domain operator: L̂(ω)

(1− e−jω)α+1

(jω)α+1

F−1

−→ βα
+(x)

∆γ
+

F←→ (1− e−jω)γ

∆+
F←→ 1− e−jω

1-14

Causal fractional B-splines

(Unser & Blu, SIAM Rev, 2000)

  M  M

β0
+(x) = ∆+x0

+
F←→ 1− e−jω

jω

βα
+(x) =

∆α+1
+ xα

+

Γ(α + 1)
F←→

(
1− e−jω

jω

)α+1

One-sided power function: xα
+ =

{
xα, x ≥ 0
0, x < 0



1-15

Fractional B-splines properties

Condition: α > − 1
2

Stable representation of fractional splines (Riesz basis)

V∂α+1
τ

=

{
s(x) =

∑

k∈Z
c[k]βα

τ (x− k) : c[k] ∈ "2

}

Degree versus order of approximation

Building blocks (Green function of ∂γ
τ ): power functions of degree α = γ − 1

Order of approximation: γ = α + 1

Reproduction of polynomials

The fractional B-splines {βα
τ (x− k)}k∈Z reproduce the polynomials

of degree n = "α#. In particular,
∑

k∈Z
βα

τ (x− k) = 1 (partition of unity)
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Scale- and rotation-invariant operators

Invariance theorem
The complete family of real, scale- and rotation-invariant
convolution operators is given by the fractional Laplacians

∆
γ
2

F←→ ‖ω‖γ

Invariant Green functions (RBF)

ρ(x) =

{
‖x‖γ−d log ‖x‖, if γ − d is even
‖x‖γ−d, otherwise

(Duchon, 1979)

Definition: An operator L is affine-invariant (or SR-invariant) iff.

∀s(x), L{s(·)}(Rθx/a) = Ca · L{s(Rθ · /a)}(x)

where Rθ is an arbitrary d× d unitary matrix and Ca a constant
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Construction of polyharmonic B-splines

Discrete Laplacian:

! Polyharmonic B-splines        (Rabut, 1992)

Laplacian operator: ∆ F←→ −‖ω‖2

Discrete operator: localization filter Q(ejω)

Continuous-domain operator: L̂(ω)

∆d
F←→ −

d∑

i=1

4 sin2(ωi/2) != −‖2 sin(ω/2)‖2

0 -1 0

-1 4 -1

0 -1 0

‖2 sin(ω/2)‖γ

‖ω‖γ

F−1

−→ ϕγ(x)
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FRACTIONAL WAVELETS

! General scaling relations

! Fractional B-spline wavelets

! Exact Hilbert-transform pairs

! Fractional Mexican-hat wavelets

! Analysis of fractal processes
(multidimensional generalization of pioneering work 

of Flandrin and Abry)
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General scaling relations (m integer)

Generalized splines of order γ

Scale-invariant operator of order γ ⇔ L̂γ(mω) = mγL̂γ(ω)

A cardinal Lγ -spline dilated by m remains an Lγ -spline:

Lγ{s(x)} =
X

k∈Zd

a[k]δ(x − k)⇒ Lγ{s(x/m)} =
1

mγ−d

X

k∈Zd

a[k]δ(x −mk)

General m-scale relation: ϕγ(x/m) =
∑

k∈Zd

hγ,m[k]ϕγ(x− k)

Refinement filter: Hγ,m(ejω) =
|m|dϕ̂γ(mω)

ϕ̂γ(ω)
=

1
mγ−d

Q(ejmω)
Q(ejω)

Scaling function

Generalized B-spline: ϕγ(x) =
∑

k∈Zd

q[k]ρ(x− k) F←→ Q(ejω)
L̂γ(ω)
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Multiresolution analysis of L2
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s ∈ V(0)

s1 ∈ V(1)

Two-scale relation ⇒ V(i) ⊂ V(j), for i ≥ j

s2 ∈ V(2)

s3 ∈ V(3)

Partition of unity ⇔
⋃

i∈Z V(i) = L2(Rd)

Multiresolution basis functions: ϕi,k(x) = 2−id/2ϕ
(

x−2ik
2i

)

Subspace at resolution i: V(i) = span {ϕi,k}k∈Zd
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Fractional B-spline wavelets

(Unser and Blu, SIAM Review, 2000)Causal B-spline: τ = α+1
2

ψα
τ (x/2) =

∑

k∈Z

∑

n∈Z
(−1)nhα

τ,2[n]β2α+1
0 (n + k − 1)

︸ ︷︷ ︸
gwave[k]

βα
τ (x− k)

1-

Fractional B-spline wavelet properties
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Semi-orthogonal basis of L2(R):
{
2−i/2ψα

τ (x/2i − k)
}

(i,k)∈Z2

Optimal time-frequency localization: convergence to Gabor func-
tions as α increases

Fast filterbank algorithm (using FFT)

Multiscale fractional derivative behavior:

〈ψα
τ

“ · − x
a

”
, f〉 = ∂α+1

τ

n
φ

“ ·
a

”
∗ f

o
(x)

φ (x): smoothing spline kernel of order 2α + 2

Spline family closed under fractional differentiation; in particular,
ψα

τ− 1
2
(x) is the Hilbert transform of ψα

τ (x)
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Multidimensional, nonseparable wavelets 

23

Search for a single wavelet that generates a basis of L2(Rd) and that
is a multi-scale version of the operator L; i.e., ψ = L∗φ where φ is a
suitable smoothing kernel

General operator-based construction

Basic space V0 generated by the integer shifts of the Green function ρ of L:
V0 = span{ρ(x− k)}k∈Zd with Lρ = δ

Orthogonality between V0 and W0 = span{ψ(x− 1
2k)}k∈Zd\2Zd

〈ψ(· − x0), ρ(· − k)〉 = 〈φ, Lρ(· − k + x0)〉

= 〈φ, δ(· − k + x0)〉 = φ(k − x0) = 0

(can be enforced via a judicious choice of φ (interpolator) and x0)

Works in arbitrary dimensions and for any dilation matrix D

1-

New isotropic basis: the Mexican-Hat 
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ψγ(x) = (−∆)
γ
2 φ2γ(x)

Gaussian-like polyharmonic spline kernel:

φ2γ(x) ≈ exp
(
−‖x‖2

2γ/9

)

ψ(i,k)
!= | det(D)|−i/2ψγ

(
D−ix−D−1k

)

The set
{
ψ(i,k)

}
(k∈Zd\DZd,i∈Z)

is a semi-orthogonal basis of L2(Rd) for γ > 1:

∀f ∈ L2(Rd), f =
X

i∈Z

X

k∈Zd\DZd

〈f, ψ(i,k)〉 ψ̃(i,k) =
X

i∈Z

X

k∈Zd\DZd

〈f, ψ̃(i,k)〉 ψ(i,k)

{ψ̃(i,k)}: dual wavelet basis of {ψ(i,k)}

The Mexican-Hat wavelet analysis implements a multiscale version of the Laplace
operator and is perfectly reversible (one-to-one transform)

The wavelet transform has a fast filterbank algorithm (Van De Ville, IEEE-IP, 2005)
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Mexican-Hat wavelet basis
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Quincunx sampling pattern

Nonredundant transform

First decomposition level (one-to-one):

ϕ(D−1x− k)
Scaling functions
(dilated by

√
2)

ψ(D−1x− k)
Wavelets

(dilated by
√

2)

D =

[
1 1
1 −1

]

1-

Mexican-Hat wavelet analysis
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Quincunx sampling pattern

First decomposition level:

ψ(D−1(x− k))
Wavelets

(redundant by 2)

Pyramid decomposition: redundancy 2

ϕ(D−1x− k)

Scaling functions
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Self-similar image models
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Stochastic fractals: fractional Brownian fields

d-dimensional version of Mandelbrot’s fractional Brownian motion:
self-similar analogs of stationary processes—loosely referred to as “1/ω-processes”

Distributional solution of the stochastic partial differential equation:

∆H
2 + d

4 BH = W , where W is white Gaussian noise

Key finding: Polyharmonic splines are the optimal function spaces for the MMSE esti-
mation of such processes from their noisy samples (Blu, 2007; Tirosh, 2006)

(Penland, 1984; Mumford 2001)

Motivation: most images exhibit some level of self-similarity

2D projection of a 3D scene: objects appear with
various degrees of magnification (depth-dependent scaling)

Step edges and singularities give rise to 1/ω spectral decay

Natural/biological growth processes often generate fractal structures

1-

fBm: innovation model
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fractional integrator

(appropriate boundary conditions)

White noise fractional Brownian field

Deterministic counterpart

Train of Dirac impulses:
∑

k∈Zd

a[k]δ(x− k)

Whitening

(fractional Laplacian)

Polyharmonic spline

s(x) =
∑

k∈Zd

a[k]ργ(x− k)

Formalism: Gelfand!s theory of generalized stochastic processes

∆−
γ
2

∆
γ
2

∆
γ
2

Hurst exponent: H = γ − d
2
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Wavelet analysis of fBm: whitening revisited
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Operator-like behavior of wavelet

Analysis wavelet: ψγ = ∆
γ
2 φ(x) = ∆H

2 + d
4 ψ′

γ′(x)

Reduced-order wavelet: ψ′
γ′(x) = ∆

γ′
2 φ(x) with γ′ = γ − (H + d

2 ) > 0

Stationarizing effect of wavelet analysis

Analysis of fractional Brownian field with exponent H :

〈BH ,ψγ

( ·−x0
a

)
〉 ∝ 〈∆H

2 + d
4 BH ,ψ′

γ′

( ·−x0
a

)
〉 = 〈W,ψ′

γ′

( ·−x0
a

)
〉

Equivalent spectral noise shaping: Swave(ejω) =
∑

n∈Zd |ψ̂′
γ(ω + 2πn)|2

⇒ Extent of wavelet-domain whitening depends on flatness of Swave(ejω)

“Whitening” effect is the same at all scales up to a proportionality factor

⇒ fractal exponent can be deduced from the log-log plot of the variance

1-

Wavelet analysis of fractional Brownian fields
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Theoretical scaling law : Var{wa[k]} = σ2
0 · a(2H+d)
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Fractals in bioimaging: fibrous tissue 

DDSM: University of Florida

(Digital Database for Screening Mammography)

(Laine, 1993; Li et al., 1997)
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Wavelet analysis of mammograms
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Fractal dimension: D = 1 + d−H = 2.56 with d = 2 (topological dimension)
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Wavelet analysis of fMRI data
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Brain: courtesy of Jan Kybic

Fractal dimension: D = 1 + d−H = 2.65 with d = 2 (topological dimension)
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...and some non-biomedical images...
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CONCLUSION

! Affine invariance is universal
! Natural and biomedical images

! Operators: fractional derivatives

! Optimal functions spaces: splines (universal interpolators)

! Fractal processes

! Invariant operators yield “matched” wavelet bases
! Existence of “localized” B-spline bases

! Enforcement of multiresolution property ⇒ wavelets

! Wavelet = multiscale version of operator

! “Invariant” wavelets: more operator-like (e.g., better isotropy)

! Extended family of fractional wavelets: tunable, closed under 

fractional differentiation

! Promising tool for (multi-D) signal processing and fractal analyses
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The end: Thank you!
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