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20th century statistical signal processing
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Karhunen-Loève transform (KLT) is optimal for compression

Hypothesis: Signal = stationary Gaussian process

(Pearl et al., IEEE Trans. Com 1972)

DCT asymptotically equivalent to KLT
(Ahmed-Rao, 1975; U., 1984)



20th century statistical signal processing (cont’d)
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Wiener filter is optimal for restoration/denoising

Hypothesis: Signal = Gaussian process

Signal covariance: Cs = E{s · sT }
y = Hs+ n

sMAP = argmins
1

�2
ky �Hsk22

| {z }
Data Log likelihood

+ kC�1/2
s sk22| {z }

Gaussian prior likelihood

Wiener (LMMSE) solution = Gauss MMSE = Gauss MAP

Noise: i.i.d. Gaussian with variance �2

sLMMSE = CsH
T
�
HCsH

T + �2I
��1

y = FWiener y

, quadratic regularization (Tikhonov)

Then came wavelets ...
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Fact 1: Wavelets can outperform Wiener filter
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�

2

w̃ = T�(w)

w

Fact 2: Wavelet coding can outperform jpeg

6

Wavelet transform

Inverse wavelet transform

Discarding “small coefficients”

f(x) =
X

i,k

�i,k(x)wi,k

(Shapiro, IEEE-IP 1993)



Fact 3: l1 schemes can outperform l2 optimization 
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`1 regularization (Total variation)

R(s) = kLsk`1 with L: gradient

Iterative reweighted least squares (IRLS) or FISTA

s? = argmin ky �Hsk22| {z }
data consistency

+ �R(s)| {z }
regularization

Wavelet-domain regularization

Wavelet expansion: s = Wv (typically, sparse)

Wavelet-domain sparsity-constraint: R(s) = kvk`1 with v = W�1s

Iterated shrinkage-thresholding algorithm (ISTA, FISTA)

(Nowak et al., Daubechies et al. 2004)

(Rudin-Osher, 1992)
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Quest for a unifying framework: the precursor

Gaussian stationary processes as a filtered white noise

s(t) = (h ⇤ w)(t)

Frequency response (shaping filter): H(!) =

Z

R
h(t)e�j!tdt

Whitening operator

Innovation: Ls(t) = w(t) L(!) =
1

H(!)

w is Gaussian stationary and independent at every point

�s(!) = |H(!)|2 �w(!) / |H(!)|2



Continuous-domain innovation model
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w(x)

Generalized white noise Stochastic process

L{·}

Shaping filter

(appropriate boundary conditions)

Whitening operator

L�1{·}

Our work:  the non-gaussian part of this story

Main finding: it is necessarily sparse (infinitely divisible)

s(x),x 2 Rd

Why? ... as explained by our current research ...
(invoking powerful theorems in functional analysis:

Bochner-Minlos, Gelfand, Schoenberg & Lévy-Khinchine)

Impulse response 

Translation invariance 

Linearity 

Innovation-based synthesis of splines
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�(x)

�(x� x0)

L�1{·}

�(x� x0)

L�1{·}

L�1{·}

L = d
dx = D � L�1: integrator

X

k2Z
a[k]�(x� xk)

s(x) =
X

k2Z
a[k]⇢(x� xk)

⇢ = L�1�
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OUTLINE
■ Sparse stochastic processes

■ Generalized innovation model
■ Gelfand’s theory of generalized stochastic processes
■ Statistical characterization of sparse stochastic processes
■ Lévy processes and their generalization
■ Fractal processes: Gaussian vs. sparse

■ Applications
■ Modeling of signals (audio)
■ Algorithms for sparse signal recovery as MAP estimators
■ Optimal denoising (MMSE)
■ Sparse representations, optimal transforms

12

Sparse stochastic
processes
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Road map for theory of sparse processes

White noise

Characterization of continuous-domain white noise

Mixing operator

Whitening operator

L�1

L

s = L�1w

w

Characterization of 
generalized stochastic process

Specification of inverse operator

Characterization of 
transform-domain statistics

Multi-scale 
wavelet 
analysis

 i = L⇤�i

Functional analysis solution of SDE

Very easy ! (after solving 1. & 2.)

Easy when:

Higher mathematics: generalized functions (Schwartz)
measures on topological vector spaces

Gelfand’s theory of generalized stochastic processes
Infinite divisibility (Lévy-Khintchine formula)

1

2

4

3

Generalized innovation process
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X1 = h , i

X2 = h , i

Difficulty 1: w 6= w(x) is too rough to have a pointwise interpretation

Difficulty 2: w is an infinite-dimensional random entity;

its “pdf” can be formally specified by a measure Pw(E) where E ✓ S 0(Rd)

Characteristic functional

dPw(') = E{ejhw,'i} =

Z

S0
ejhs,'iPw(ds)

1. Observability : X = hw,'i is a well-defined random variable for any test

function ' 2 S(Rd).

2. Stationarity : X
x0 = hw,'(·� x0)i is identically distributed for all x0 2 Rd

.

3. Independent atoms : X1 = hw,'1i and X2 = hw,'2i are independent

whenever '1 and '2 have non-intersecting support.

Axiomatic definition

w is a generalized innovation process (or continuous-domain white noise) over S 0(Rd) if

(Gelfand-Vilenkin 1964)

( ! ! ' )



2020

Defining Gaussian noise: discrete vs. continuous
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Discrete white Gaussian noise

X = (X1, . . . , XN ) with Xn i.i.d standardized Gaussian

Ê Ê
Ê Ê

Ê
Ê

Ê

Ê
Ê
Ê

Ê
Ê Ê

Ê

Ê

Ê

Ê

Ê

Ê Ê

Ê

0 5 10 15 20

Characteristic function: p̂X(!) = g(!) = exp

�PN
n=1 f(!n)

�
= e�

1
2k!k2

Lévy exponent: log p̂X(!) = f(!) = � 1
2!

2

Continuous-domain white Gaussian noise

Infinite-dimensional entity w with generic observations Xn = hw,'ni

Characteristic functional:

dPw(') = G(') = e

� 1
2k'k2

L2
= exp

✓Z

R
f

�
'(x)

�
dx

◆

p̂Xn(!) = E{ej!hw,'ni} = E{ejhw,!'ni} = cPw(!'n) = e�
1
2!

2k'nk2
L2

Characterization of generalized innovation
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X' = hw,'i = h , i , lim
n!1

h , i

= lim
n!1

h , i+ · · ·+ h , i

(Gelfand-Vilenkin 1964; Amini-U. under review)

Theorem

Let w be a generalized stochastic process such that Xid = hw, recti is well-defined.

Then, w is a generalized innovation (white noise) over S 0
(Rd

) if and only if its char-

acteristic form is given by

dPw(') = E{ejhw,'i} = exp

✓Z

Rd

f
�
'(x)

�
dx

◆

where f(!) is a valid L

´

evy exponent (in fact, the L

´

evy exponent of Xid).

Moreover, the random variables X' = hw,'i are all infinitely divisible with modi-

fied L

´

evy exponent

f'(!) =

Z

Rd

f
�
!'(x)

�
dx



Examples of id noise distributions
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Sparser f(⇥) = �
R
R(e

jx� � 1)p(x)dx

f(�) = log

⇣
1

1+!2

⌘

pid(x)

Complete mathematical characterization:

dPw(�) = exp

✓Z

Rd

f
�
�(x)

�
dx

◆

f(!) = � 1
2�2

0
|!|2

f(!) = �s|!|

Observations: Xn = hw, rect(·� n)i
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Steps 2 + 3: Characterization of sparse process

White noise

Whitening operator

L�1

L

s = L�1w

w

Abstract formulation of innovation model

s = L�1w � ⇤� ⇥ S, ⌅�, s⇧ = ⌅�,L�1w⇧ = ⌅L�1⇤�| {z }, w⇧

) cPs(') = E{ejhs,'i} =

dPw(L
�1⇤') = exp

✓Z

Rd

f
�
L

�1⇤'(x)
�
dx

◆

Sufficient condition for existence:

L�1⇤
continuous operator: S(Rd) ! Lp(Rd)

(U.-Tafti-Sun, preprint ArXiv 2011)



Example 1: Lévy processes
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Ds = w

s = D�1
0 w � ⇤� ⇥ S, ⌅�, s⇧ = ⌅D�1⇤

0 �, w⇧

(unstable SDE !)

D�1
0 '(t) =

Z t

0
'(⌧)d⌧

0.0 0.2 0.4 0.6 0.8 1.0

0 0

0.0 0.2 0.4 0.6 0.8 1.0
0 0

0.0 0.2 0.4 0.6 0.8 1.0

0 0

Compound Poisson

Brownian motion

Integrator

Gaussian 

Impulsive Z t

0
d⌧

Lévy flight

s(t)w(t)

White noise (innovation) Lévy process

S↵S (Cauchy)

(Paul Lévy circa 1930)

(Wiener 1923)

Example 2: Self-similar processes

20

fBm; H = 0.50

fBm; H = 0.75

fBm; H = 1.25

fBm; H = 1.50

Poisson; H = 0.50

Poisson; H = 0.75

Poisson; H = 1.25

Poisson; H = 1.50

H=.5
H=.75

H=1.25
H=1.5

L F ! (j!)H+ 1
2 ) L�1

: fractional integrator

Sparse (generalized Poisson)Gaussian
Fractional Brownian motion (Mandelbrot, 1968) (U.-Tafti, IEEE-SP 2010)



Scale- and rotation-invariant processes
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H=.5 H=.75 H=1.25 H=1.75

Stochastic partial differential equation : (��)
H+1

2 s(x) = w(x)

Gaussian

Sparse (generalized Poisson)

(U.-Tafti, IEEE-SP 2010)

A brief panorama of applications



A1. Signal modeling (Audio)
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Sparse, bandpass processes

cPs
mix

(') =
MY

m=1

cPsm(') = exp

 Z

R

MX

m=1

fm
�
L

�1⇤
m '(t)

�
dt

!

Mixed sparse processes: s
mix

= s
1

+ · · ·+ sM

L =
dn

dtn
+ an�1

dn�1

dtn�1
+ · · ·+ a1

d

dt
+ a0I

(a) Gaussian (b) Alpha stable !=1.2

Gaussian (Am) generalized Lévy (Am, S!S)

A2. Biomedical imaging: MAP reconstruction
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Ls = w

s = L�1w
Innovation model of the signal

Signal decoupling: discrete version of operator

u(x) = Lds(x) , u = Ls (matrix notation)

s� = argmin
⇣

1
2 kg �Hsk22 + �2

P
n �X([Ls]n)

⌘
Maximum a posteriori (MAP) estimator for AWN

(Bostan et al., IEEE-IP 2013)

Statistical characterization

- X = [u]n identically distributed (approx. independent)

- Probability density function: pX(x) = F�1{dPw(!�L)}(x)

- Potential function: �X(x) = � log pX(x)

Generalized B-spline
�L = LdL�1�



MAP estimator: special cases
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Student potentials: r = 2, 4, 8, 32 (fixed variance)

Sparser

s� = argmin
⇣

1
2 kg �Hsk22 + �2

P
n �X([Ls]n)

⌘

Gaussian: pX(x) = 1⇥
2⇥⇤0

e�x2/(2⇤2
0) � �X(x) = 1

2⇤2
0
x2

Laplace: pX(x) = �
2 e

��|x| � �X(x) = �|x|

Student: pX(x) =
1

B
�
r, 1

2

�
✓

1

x2 + 1

◆r+ 1
2

� �X(x) =
�
r +

1

2

�
log(1 + x2)

Original SL Phantom Fourier Sampling Pattern
12 Angles

Student prior (log)

L : gradient

Optimized parameters

Laplace prior (TV)

MRI: Shepp-Logan phantom



Real T2 Brain Image MR Angiography Image k-space sampling pattern

40 radial lines

Gaussian Estimator Laplace Estimator Student’s Estimator

T2 brain Image 8.71 16.08 15.79

MR Angiography Image 6.31 14.48 14.97

Reconstruction results in dB

L : gradient

Optimized parameters
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MRI reconstruction

Astrocytes cells bovine pulmonary artery cells human embryonic stem cells

Gaussian Estimator Laplace Estimator Student’s Estimator
Astrocytes cells 12.18 10.48 10.52
Pulmonary cells 16.90 19.04 18.34

Stem cells 15.81 20.19 20.50

Deconvolution results in dB
L : gradient

Optimized parameters

Disk shaped PSF (7x7)

2D deconvolution experiment

(Bostan et al., IEEE-IP 2013)



A3. Optimal denoising: MMSE formulation
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Measurement model: y = x+ n

n: additive white Gaussian noise

x: sparse first-order process (e.g., L

´

evy flight)

u = Ls: discrete innovation (i.i.d. and infinite divisible)

p(x|y) = 1

Z

NY

n=1

pY |X
�
yn|xn

� NY

n=1

pU

�
xn � xn�1| {z }

un

�

Optimal estimator: xMMSE = E{x|y}

Gaussian

Cauchy

20 points calc. on the curves

Nsignal = 100, Navg = 500

10−1 100 1010

1

2

3

4

AWGN mn
2

6
 S

N
R

 [d
B]

 

 

MMSE
Log = MAP
TV
LMMSE

10−1 100 1010

2

4

6

8

10

AWGN mn
2

6
 S

N
R

 [d
B]

 

 

MMSE = LMMSE = MAP
Log
TV

AWGN �2

AWGN �2

Lévy process with Cauchy increments

(Kamilov et al., IEEE-SP 2013)

X1 X2 X3

pY |X(y1|x1) pY |X(y2|x2) pY |X(y3|x3)

µ

�
X2

(x) µ

+
X2

(x)

1 3 5

2 64

pU (x1) pU (x2 � x1) pU (x3 � x2)

Belief propagation algorithm

A4. Sparse representations, optimal transforms
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Innovation model (SDE) Ls = w

s = L�1w

Y = h i,k, si = hL⇤�i,k,L
�1wi = h�i,k, wi

Statistical implications

Transform-domain pdfs are infinitely divisible

Quality of decoupling depends upon support of wavelet/smoothing kernel �i,k

Admissible basis function:  i,k = L⇤�i,k with �i,k 2 Lp(Rd)

=) p̂Y (!) = dPw(!�i,k)

Signal expansion = equivalent white-noise analysis



Operator-like wavelets for sparse AR(1) processes
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(Khalidov-U., 2006)
Operator-like wavelet:  i = L⇤�i with �i: smoothing kernel

Innovation model: Ls = w , s = L�1w with L = (D� ↵1I)

Wavelet analysis: hs, i(·� t0)i = hL�1w,L⇤�i(·� t0)i = hw,�i(·� t0)i

�(x)

 0 = L⇤�0

 1 = L⇤�1

 Haar

1
1

(a) (b)

↵1 ! 0

� � � � � � 	 � � 
 � � � � � � � � � 	 � � 
 � � �

� � −�

� � �

� � �
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M
u
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a
l
In
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Orthogonal expansion of a SαS Lévy process

sparser Gaussian

(Pad-U. ICASSP’13, SPARS’13)



Orthogonal expansion of a SαS AR(1) process
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sparser Gaussian

e↵1 = 0.9, M = 64(Pad-U. ICASSP’13, SPARS’13)
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CONCLUSION
! Unifying continuous-domain innovation model

! Backward compatibility with classical Gaussian theory
! Operator-based formulation: Lévy-driven SDEs
! Gaussian vs. sparse (generalized Poisson, student, SαS)
! Focus on unstable SDEs ⇒ non-stationary, self-similar processes

! Wavelet analysis vs. regularization
! Central role of B-spline (see papers)
! Sparsification/decoupling via “operator-like” behavior

! Theoretical framework for sparse signal recovery
! Analytical determination of PDF in any transformed domain
! Predictive power: transform coding/denoising (facts 1, 2, 3)
! New statistically-founded sparsity priors
! Derivation of estimators (MAP vs. MMSE): link with LASSO and
l1 methods for sparse signal recovery (Compressed sensing)
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