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INTRODUCTION

m Fundamental issue in biomedical imaging

Acquisition
Linking the discrete and the continuous

Algorithm design

m Mismatch between theory and practice

Theory : Shannon’s sampling theorem
Practice: nearest neighbor, linear interpolation

m Limitations of Shannon sampling theory

Ideal lowpass filters do not exist
Incompatible with finite support signals
Gibbs oscillations

Slow decay of sinc(x)

m Basic problem

How do you interpolate a signal ?
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Image processing task

Tomographic
reconstruction

Specific operation

* Filtered backprojection
« Fourier reconstruction
* lterative techniques

Interpolation and biomedical imaging

Imaging modality

Commercial CT (X-rays)
EM

PET, SPECT
Dynamic CT, SPECT, PET

3D + time
Sampling grid « Polar-to-cartesian coordinates Ultrasound (endovascular)
conversion * Spiral sampling Spiral CT, MRI

* k-space sampling MRI

* Scan conversion
Visualization 2D operations

* Zooming, panning, rotation Al

* Re-sizing, scaling

* Stereo imaging

Fundus camera

* Range, topography ocT
3D operations
* Re-slicing CT, MRI, MRA
* Max. intensity projection
* Simulated X-ray projection
Surface/volume rendering
* Iso-surface ray tracing CT
« Gradient-based shading MRI
* Stereogram
Geometrical correction * Wide-angle lenses Endoscopy

* Projective mapping
* Aspect ratio, tilt
» Magnetic field distortions

C-Arm fluoroscopy
Dental X-rays
MRI

Registration

* Motion compensation

* Image subtraction

* Mosaicking

« Correlation-averaging

« Patient positioning

* Retrospective comparisons
* Multi-modality imaging

« Stereotactic normalization
* Brain warping

fMRI, fundus camera

DSA

Endoscopy, fundus camera,
EM microscopy

Surgery, radiotherapy

CT/PET/MRI

Feature detection

* Contours
* Ridges
- Differential geometry

All

Contour extraction
* Snakes and active contours

MRI, Microscopy (cytology)
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Splines: a unifying framework

Linking the discrete and the continuous .....

Multiresolution
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Splines: bad press phenomenon

= (Classical review article on interpolation, IEEE TMI, 1983
Comparison of four interpolators:
“The cubic B-spline provides the most smoothing.”

= Classical book on Digital Image Processing, 1991 (2nd ed)
About high-order B-splines:
“lout-of-band] interpolation error reduces significantly for higher-order
interpolation functions, but at the expense of resolution error [i.e.,
distortion]”

= Recent book on Volume Rendering, 1998
“The results of scaling the original image using [cubic] B-spline
interpolation are shown in Figure 5.20. You can see the blurring
effects .....”
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CONTINUOUS/DISCRETE REPRESENTATION

= Splines: definition

= Basic atoms: B-splines
= Riesz bases n
l-.:-l
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Splines: definition

Definition: A function s(z) is a polynomial spline of degree n with knots
<z < xRy < - dff. it satisfies the following two properties:

= Piecewise polynomial: .
s(x) is a polynomial of degree n within each interval [z, Tx+1); s

= Higher-order continuity:
s(x),sM (x),---, s~ (z) are continuous at the knots .

m Effective degrees of freedom per segment:
(n+1) — n = 1
(polynomial coefficients) (constraints) 1

m Cardinal splines = unit spacing and infinite number of knots

The right framework for signal processing !
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Polynomial B-splines
m B-spline of degree n '
BL(w) = B 5 B2 -+ B ()
(n+ ﬁtimes
% S 1 2 3 5

52@):{ 1, z€][0,1)

) 0, otherwise.
m Key properties

= Compact support: shortest polynomial spline of degree n
= Positivity

= Piecewise polynomial

= Smoothness: Holder-continuous of order n

m Symmetric B-spline
5@) = 9 (4 15)
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B-spline representation

Theorem (Schoenberg, 1946)

Every cardinal polynomial spline s(x) has a unique and stable representation in terms
of its B-spline expansion

s(z) = Z clk]\5Y (xz — k) ! Basis functions

kEZ 0.8
\ 06l /T

discrete signal

analog signal (B-spline coefficients)

4 Cubic spline (n=3)

In modern terminology: {37 (z — k) }rez forms a Riesz basis.
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B-spline representation of images

m Symmetric, tensor-product B-splines
B (w1, xq) = B"(x1) X - x B (xq) ™

02

[

02

04

05

= Multidimensional spline function T
S(xla"'7xd): Z C[kl,"‘,kd] /Bn(xl_kla"')xd_kd)
(k1 ,-kq)€Zd \
continuous-space image image array Compactly supported
(B-spline coefficients) basis functions

1-10




Riesz basis

Definition: Let V' = span{yy}rez be a subspace of a Hilbert space H. Then,
{¢k }rez is a Riesz basis of V iff. there exist two constants A > 0 and B < +o0 s.t.

Veels, A- HCHZz < HZkEZ CkgpkHH <B-: HCHZ2
N———
1l
Unique representation of a function f € V: f = chgok
kez

m Properties

= Linear independence
Consequence of lower Rieszbound: f=0=¢; =0

= Stability
Perturbation: ¢+ Ac — f+ Af
Consequence of upper Riesz bound:  ||Ac||,, bounded = ||Af||z bounded

= Norm equivalence
The basis is orthonormal iff. A = B = 1, in which case, ||c||¢, = || fll#

-1

Shift-invariant spaces

Integer-shift-invariant subspace associated with a generating function ¢ (e.g. B-spline):

V(p) = {f(ac) =) clklp(m—k):ce fz(ZP)}

kezr

Generating function:  ¢(x) s P(w) :/ SO(w)e*ﬂw,vwdxl...dg[;p
xERP

Proposition. V (¢) is a subspace of Ly (R?) with {¢(x — k) }xez» as its Riesz basis iff.

0<A*< > |¢(w+2mn)|> < B* < +oo  (almost everywhere)
nezp

Hint for the proof (in 1D):

1 [? )
lel7, = =— |C(e')|?dw  (Parseval)
21 Jo
2 1 Jwy\ |24 2
1Az, = 5- |C(e”™)]7]p(w)[*dw
T Jwer

2 . 1 2m )
= % Z/ ‘C(eﬂw)m@(w—i-%rn)‘?dw = %/ ‘C(eJWNQ Z |p(w +27rn)|2dw
nez’0 0

nez
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INTERPOLATION REVISITED

Classical interpolation

= Generalized interpolation

Interpolation: filtering solution
= Application

Classical image interpolation

Discrete image data Continuous image model

flk], k= (ki,--- k) €Z? : : f(x), = (21, ,2p) €ERP

m Interpolation formula: f(z) = Y f[k] i (x — k)
keZpr

= f[k]: pixel values at location k
= pint(x): continuous-space interpolation function

® i (x — k): interpolation function translated to location k

m Interpolation condition

At the grid points « = ko : f(ko) = Z FIK] ot (ko — k)
kezp
1, k=0

Only possible for all f iff. @it (k) = )
0, otherwise




Examples of popular interpolation functions

m Bandlimited

1

m Piecewise linear

1

. 1
0.8 0.8 tri(z) = 5 (x)
0.6 0.6
0.4 0.4
0.2 0.2

oz oz 2 -1 0 1 2 3

Interpolation condition: m Cubic convolution

1, k=0
e k = 6 = ’ 1
Pint (k) ¥ { 0, otherwise 08

0.6
0.4
0.2

02 ~~21 o N~—"2 3

[Keys, 1981; Karup-King 1899]

Generalized image interpolation

m Desired features for the interpolation kernel

= short (to minimize computations)

= simple expression (e.g., polynomial)
= smooth (to avoid model discontinuities)

= good approximation properties: reproduction of polynomials

m Generalized interpolation formula: ~ f(x) = Z ck] p(x — k)
keZp
= Simple shift-invariant structure
= simple expression (e.g., polynomial)

= selected freely (not interpolating and much shorter)

[C=> Faster interpolation formulas!
but one new difficulty:

How to pre-compute the coefficients c[k] ?
m Separable basis functions:  p(x) = ¢(z1) - @(x2) - - - ()

|:> Further acceleration
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Interpolation: filtering solution

Interpolation problem: Given the samples { f[k]}, find the (B-spline) expansion coefficients {c[k]}
m Interpolation condition: f(x)|z—r = f[k] = Z clki]p(k — k)
k1 €ZP
I:> Discrete convolution equation: f[k] = (b * ¢)[k]
with blk] = o(k) < B(z)= Y _ blk]z "
kezp
m Inverse filtering solution

1 1

f[k] C[k] - (hint * f)[k] With Hint(z) - B(Z) - Zk 7 W(k)zik

— Digital filter ——

Note: ¢(x) separable =  hi,[k] separable

One-to-one continuous/discrete representation

£

Continuously defined signal B-spline coefficients

[f(w) = Z clklp(x — k)] <:> clk]
keZr

Riesz-basis property
Digital filtering

« b (FIR) % hing (IIR)

Sampling: f(@)]a—s

Discrete signal

In principle, all ¢’s are equally acceptable, but. ..
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Example: cubic-spline interpolation

m Cubic B-spline

4/6
F-sleP@—lal), 0<2f<1 6 6
p(z) = F(x) = ¢ 52— |2])?, 1<z <2
0, otherwise ° | | ) S
. : z+4+z71
m Discrete B-spline kernel: B(z) = —
m Interpolation filter
6 (1-a)? 2 1-a
= hint k] = ||
z+4+2z71 (1—-az)(l—azl) - tlA] <1+o¢>a
symmetric exponential
a=—-2++3=-0.171573 (sy P )

Cascade of first-order recursive filters

1 1
1—az! 1—az
causal anti-causal

Generic C-code (splines of any degree n)

= Main recursion
void ConvertTolnterpolationCoefficients (
double c[ ], long DataLength, double z[], long NbPoles, double Tolerance)
{double Lambda = 1.0; long n, k;
if (DataLength == 1L) return;
for (k = OL; k < NbPoles; k++) Lambda = Lambda * (1.0 - z[k]) * (1.0 - 1.0 / z[K]);
for (n = OL; n < DataLength; n++) c[n] *= Lambda;
for (k = OL; k < NbPoles; k++) {
c[0] = InitialCausalCoefficient(c, DatalLength, z[k], Tolerance);
for (n = 1L; n < DatalLength; n++) c[n] += z[k] * c[n - 1L];
c[DatalLength - 1L] = (z[k] / (z[K] * z[Kk] - 1.0))
* (z[k] * c[DataLength - 2L] + c[DataLength - 1L]);
for (n = DataLength - 2L; 0 <= n; n--) c[n] = z[k] * (c[n + 1L]- c[n]); }
}

= |nitialization

double InitialCausalCoefficient (

double c[], long DatalLength, double z, double Tolerance)
{ double Sum, zn, z2n, iz; long n, Horizon;
Horizon = (long)ceil(log(Tolerance) / log(fabs(z)));
if (DataLength < Horizon) Horizon = DatalLength;
zn = z; Sum = ¢[0];
for (n = 1L; n < Horizon; n++) {Sum += zn * ¢c[n]; zn *= z;}
return(Sum);
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Interpolating basis function

m Equivalent interpretation of generalized interpolationn

fx) =Y clklp(@—k) = Y (k] * huelk]) p(z — k)

keZ kEZ

= DSk pine(z — k)

kEZ

m Interpolation basis function

Pint(z) = Z hins[k] p(z — k)

keZ

Example: cubic-spline interpolant

Finite-cost implementation of an infinite impulse response interpolator !
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Limiting behavior (splines)
= Spline interpolator 1 o
Impulse response Frequency response 1 2
. n+1
@) D et = (U e
T 27 37 4T

= Asymptotic property

The cardinal spline interpolators converge to the sinc-interpolator (ideal filter) as the
degree goes to infinity:
lim " (z) = sinc(z), lim @7, (w) = rect (ﬁ) (in all L,-norms)
n—00 n— 00 21

(Aldroubi et al., Sig. Proc., 1992)

Includes Shannon’s theory as a particular case !
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Geometric transformation of images

= 2D separable model

k() +TL+1 l() —|—n—‘,—1

fowo)= > D ekl o(eo—1) plyo 1)
k=ko(zo) l=lo(yo)
(z0,yo)
1k, kg |

R} 2D filtering 2D re-sampling
- (separable)

= Applications

zooming, rotation, re-sizing, re-formatting, warping
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Cubic-spline coefficients in 2D

| A ' = X I’,
) Digital filter
o (recursive, —
separable)
Pixel values f[k, ] B-spline coefficients c|k, ]
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Interpolation benchmark

Cumulative rotation experiment: the best algorithm wins !

Bilinear ' Windowed-sinc

Cubic spline 7
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High-quality image interpolation

35

b Bspline(3)

T Bspline(2)

Schaum(2) [1993]

4 Keys [1981]
Schaum(3) [1993]

Dodgson [1997]

Linear

Lena 256 x 256, rotation 15 x 24°, central 128 x 128 SNR (dB)
(]
W
|

Nearest-neighbor

Bspline(6)

Bspline(5)

Bspline(4)

Meijering(7) [1999]

Meijering(5) [1999]

Sinc Hamming(4)

German [1997]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Execution time (s rot ")

Thévenaz et al., Handbook of Medical Image Processing, 2000
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MINIMUM-ERROR SIGNAL APPROXIMATION

= | east-squares approximation
Orthogonal projection

= |mage pyramids
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Least-squares fit: multi-scale approximation

m Shift-invariant space at scale a

T a=1
Va(p) = {s(x) = Zc[k]apa(x —ak) : c[k] € 62} /
k€eZ X >
1 2 3 4 5
= Rescaled basis function: ¢, (z) = a=/2p (2) =2
/
2 4 >
= Minimum-error approximation at scale a
Continuous-space input f(x clkl = (f, ¢a(- — ak
pace input f(z) Orthogonal [k] = (f, Gal )L,
—_—
projector

h h . _ 2
suc tat;lelgi If—sllz,

Biorthogonality condition: ¢, € V,,(¢) such that (p,(-), @u(- — ak))r, = Ok




Image pyramids

m Successive approximations at dyadic scales

Vai(p) = {s(x) = ZCi[k]gOQi (x — 2'k) : ¢i[k] € 62}

keZ

Rescaled basis function: pyi () = 2742 ()

m Repeated application of REDUCE operator

ci—1lk - cilk
L. hk] 4,@_.[ |

m Optimal prefilter B
arlk] = (O colllp(- = 1), @al- = 2k)) = (co * h)[2K]
IEZ

= hlk] = {e(), @2(- +K))
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SPLINES: IMAGING APPLICATIONS

= Sampling and interpolation
Interpolation, re-sampling, grid conversion
Image reconstruction
Geometric correction

= Feature extraction

Contours, ridges
Differential geometry
Shape and active contour models

= [mage matching
Stereo
Image registration (multimodal, rigid-body or elastic)
Optical flow




Spline approximation: LS resizing

Approximation at arbitrary scales: differential approach using splines

Orthogonal projection onto V,, (cubic spline)

a=1—10
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Application: image resizing

m Resizing algorithm
Interpolation
Linear splines

scaling= 70%

SNR=22.94 dB




Application: image resizing (LS)

m Resizing algorithm
Orthogonal projector
Linear splines

scaling= 70%

RJ@L &

SNR=28.359 dB

+5.419 dB

(Munoz et al., IEEE Trans. Imag. Proc, 2001)

B-spline derivatives

m Derivative operator

Df(z) = L) T (o) % flw)

m Finite-difference operator (centered)

Af(@) 2 fla+ ) —fla—1) o (@7 —e%?) x f(v)

m Derivative of a B-spline (exact)

D™ g™ (x) = A™ GEE(x)

. Reduction of degree
Discrete operator

Sketch of proof:

) . w \n+l eiw/2 _ p—jw/2\ "L
8™ (w) = sinc (E) = (T)

eiw/2 _ g—jw/2 ) nl=m

R O R L
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Cubic-spline image differentials

m Convolution-based implementation

e tar 3

f(k,1) clk, 1]
2D filtering Differential
—
(separable) mask
orta (z.1) = Laplacian
JAVA code available: Aopa o P Y
http://oigwww.epfl.ch/ zr oy e=ky=l 9 9 1 1 ,; i]
1 1 1

» Hessian masks

= Gradient masks

1 -2 1 1 0 1 -1 0 1
0r2 6 Oxdy " 2-2 Or 6-2
1 -2 1 -1 0 1 -1 0 1
-1 -4 -1
Y I N
A i o 53
Y 1 4 1 Y 1 4 1
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Multi-modal image registration

Specificities of the approach

Criterion: mutual-information

Cubic-spline model
high quality
sub-pixel accuracy

Multiresolution strategy

Marquardt-Levenberg-like
optimizer

Speed

Robustness

Thévenaz and Unser, IEEE Trans. Imag Proc, 2000
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CONCLUSION

= Generalized interpolation
Same as standard interpolation, except for a prefiltering step
Offers more flexibility
Best cost/performance tradeoff (splines)
Infinite-support interpolator at finite cost

= Special case of polynomial splines
Simple to manipulate
Smooth and well-behaved
Excellent approximation properties
Multiresolution properties

= Unifying formulation for continuous/discrete image processing

Tools: digital filters, convolution operators
Efficient recursive filtering solutions

Flexibility: piecewise-constant to bandlimited
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Splines: the end of the tunnel

= Survey article on interpolation, IEEE TMI, 2000
Comparison of 31 interpolation algorithms:
“It [the cubic B-spline interpolator] produces one of the best results in
terms of similarity to the original images, and of the top methods, it
runs fastest.”

= Addendum on spline interpolation, IEEE TMI, 2001
“Therefore, high-degree B-splines are preferable interpolators for
numerous applications in medical imaging, particularly if high

precision is required. (Lehmann et al)

= Recent evaluation of interpolation, Med. Image Anal., 2001
Comparison of 126 interpolation algorithms:
“The results show that spline interpolation is to be preferred over all
other methods, both for its accuracy and its relatively low cost.”

(Meijering et al)
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