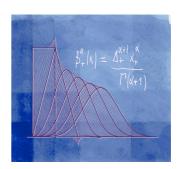
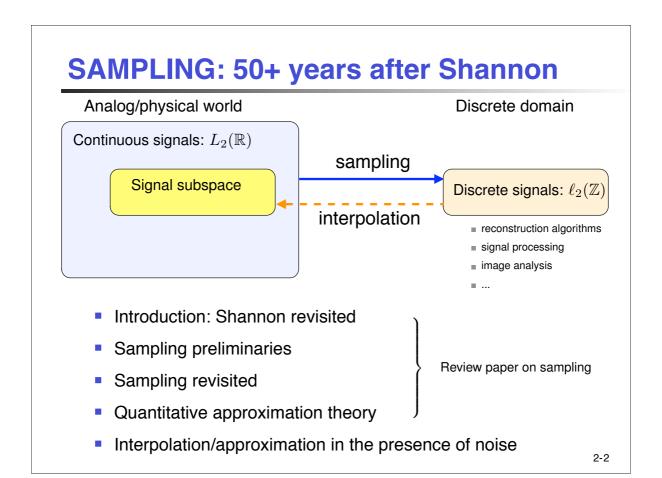


Sampling and interpolation for biomedical imaging: Part II

Michael Unser Biomedical Imaging Group EPFL, Lausanne Switzerland

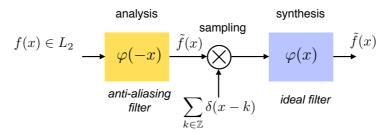


ISBI 2006, Tutorial, Washington DC, April 2006



Shannon's sampling reinterpreted

- Generating function: $\varphi(x) = \operatorname{sinc}(x)$
- Subspace of bandlimited functions: $V(\varphi) = \text{span}\{\varphi(x-k)\}_{k\in\mathbb{Z}}$

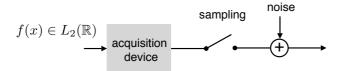


- Analysis: $\tilde{f}(k) = \langle \mathrm{sinc}(x-k), f(x) \rangle$
- Synthesis: $\tilde{f}(x) = \sum_{k \in \mathbb{Z}} \tilde{f}(k) \operatorname{sinc}(x-k)$
- Orthogonal basis: $\langle \operatorname{sinc}(x-k), \operatorname{sinc}(x-l) \rangle = \delta_{k-l}$ [Hardy, 1941]
 - Orthogonal projection operator!

2-3

Generalized sampling: roadmap

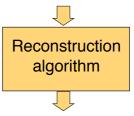
Nonideal acquisition system



Measurements:

$$g[k] = (h * f)(x)|_{x=k} + n[k]$$

Goal: Specify φ and the reconstruction algorithm so that f(x) is a good approximation of f(x)

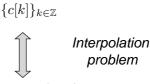


signal coefficients

Continuous-domain model

$$\tilde{f}(x) = \sum_{k \in \mathbb{Z}} c[k] \varphi(x - k)$$

 $\tilde{f}(x) = \sum_{k \in \mathbb{Z}} c[k] \varphi(x-k)$ Riesz-basis property



Discrete signal

 $\{f[k]\}_{k\in\mathbb{Z}}$

SAMPLING PRELIMINARIES

- Function and sequence spaces
- Smoothness conditions and sampling
- Shift-invariant subspaces
- Equivalent basis functions

2-5

Continuous-domain signals

Mathematical representation: a function of the continuous variable $x \in \mathbb{R}$

■ Lebesgue's space of finite-energy functions

$$L_2(\mathbb{R}) = \left\{ f(x), x \in \mathbb{R} : \int_{x \in \mathbb{R}} |f(x)|^2 dx < +\infty \right\}$$

$$L_2$$
-inner product: $\langle f,g \rangle = \int_{x \in \mathbb{R}} f(x)g^*(x)\mathrm{d}x$

$$L_2\text{-norm: } \|f\|_{L_2} = \left(\int_{x\in\mathbb{R}} |f(x)|^2 \mathrm{d}x\right)^{1/2} = \sqrt{\langle f,f\rangle}$$

■ Fourier transform

$$\blacksquare$$
 Integral definition: $\widehat{f}(\omega) = \int_{x \in \mathbb{R}} f(x) e^{-j\omega x} \mathrm{d}x$

■ Parseval relation:
$$||f||_{L_2}^2 = \frac{1}{2\pi} \int_{\omega \in \mathbb{R}} |\hat{f}(\omega)|^2 d\omega$$

Discrete-domain signals

Mathematical representation: a sequence indexed by the discrete variable $k \in \mathbb{Z}$

Space of finite-energy sequences

- Discrete-time Fourier transform
 - $\qquad z\text{-transform: } A(z) = \sum_{k \in \mathbb{Z}} a[k] z^{-k}$
 - ${\color{black}\blacksquare}$ Fourier transform: $A(e^{j\omega}) = \sum_{k\in\mathbb{Z}} a[k]e^{-j\omega k}$

2-7

Smoothness conditions and sampling

■ Sobolev's space of order $s \in \mathbb{R}^+$

$$W_2^s(\mathbb{R}) = \left\{ f(x), x \in \mathbb{R} : \int_{\omega \in \mathbb{R}} (1 + |\omega|^{2s}) |\hat{f}(\omega)|^2 d\omega < +\infty \right\}$$

f and all its derivatives up to (fractional) order s are in L_2

- Mathematical requirements for ideal sampling
 - The input signal f(x) should be continuous
 - lacksquare The samples $f[k]=f(x)|_{x=k}$ should be in ℓ_2

Theorem

Let $f(x)\in W_2^s$ with $s>\frac12.$ Then, the samples of f at the integers, $f[k]=f(x)|_{x=k},$ are in ℓ_2 and

$$F(e^{j\omega}) = \sum_{k \in \mathbb{Z}} f[k] e^{-j\omega k} = \sum_{n \in \mathbb{Z}} \hat{f}(\omega + 2\pi n)$$
 a.e.

Generalized (almost everywhere) version of Poisson's formula [Blu-U., 1999]

Shift-invariant spaces

Integer-shift-invariant subspace associated with a generating function φ (e.g., B-spline):

$$V(\varphi) = \left\{ f(x) = \sum_{k \in \mathbb{Z}} c[k] \varphi(x - k) : c \in \ell_2(\mathbb{Z}) \right\}$$

Generating function: $\varphi(x) \qquad \stackrel{\mathcal{F}}{\longleftrightarrow} \qquad \hat{\varphi}(\omega) = \int_{x \in \mathbb{R}} \varphi(x) e^{-j\omega x} \mathrm{d}x$

Autocorrelation (or Gram) sequence

$$a_{\varphi}[k] \stackrel{\triangle}{=} \langle \varphi(\cdot), \varphi(\cdot - k) \rangle \qquad \stackrel{\mathcal{F}}{\longleftrightarrow} \qquad A_{\varphi}(e^{j\omega}) = \sum_{n \in \mathbb{Z}} |\hat{\varphi}(\omega + 2\pi n)|^2$$

Riesz-basis condition

Positive-definite Gram sequence: $0 < A^2 \leq \sum_{n \in \mathbb{Z}} A_{\varphi}(e^{j\omega}) \leq B^2 < +\infty$ \updownarrow $A \cdot \|c\|_{\ell_2} \leq \underbrace{\left\|\sum_{k \in \mathbb{Z}} c[k] \varphi(x-k)\right\|_{L_2}}_{\|f\|_{L_2}} \leq B \cdot \|c\|_{\ell_2}$

Orthonormal basis $\ \Leftrightarrow \ a_{\varphi}[k] = \delta_k \ \Leftrightarrow \ A_{\varphi}(e^{j\omega}) = 1 \ \Leftrightarrow \ \|c\|_{\ell_2} = \|f\|_{L_2}$ (Parseval)

2-9

Example of sampling spaces

Piecewise-constant functions

$$\varphi(x) = \operatorname{rect}(x) = \beta^0(x)$$

 $a_{\varphi}[k] = \delta_k \quad \Leftrightarrow \quad \text{the basis is orthonormal}$

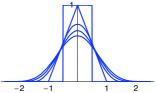
bandlimited functions

$$\varphi(x) = \operatorname{sinc}(x)$$

$$\sum_{n\in\mathbb{Z}}|\hat{\varphi}(\omega+2\pi n)|^2=1\quad\Leftrightarrow\quad \text{the basis is orthonormal}$$

Polynomial splines of degree n

$$\varphi(x) = \beta^{n}(x) = (\underbrace{\beta^{0} * \beta^{0} \cdots * \beta^{0}}_{(n+1) \text{ times}})(x)$$



Autocorrelation sequence: $a_{\beta^n}[k] = (\beta^n * \beta^n)(x)|_{x=k} = \beta^{2n+1}(k)$

Proposition. The B-spline of degree n, $\beta^n(x)$, generates a Riesz basis with lower and upper Riesz bounds $A=\inf_{\omega}\{A_{\beta^n}(e^{j\omega})\}\geq \left(\frac{2}{\pi}\right)^{n+1}$ and $B=\sup_{\omega}\{A_{\beta^n}(e^{j\omega})\}=1$.

Equivalent and dual basis functions

■ Equivalent basis functions: $\varphi_{eq}(x) = \sum_{k \in \mathbb{Z}} p[k] \varphi(x-k)$

Proposition. Let φ be a valid (Riesz) generator of $V(\varphi) = \operatorname{span}\{\varphi(x-k)\}_{k \in \mathbb{Z}}$. Then, $\varphi_{\operatorname{eq}}$ also generates a Riesz basis of $V(\varphi)$ iff.

$$0 < C_1 \le |P(e^{j\omega})|^2 \le C_2 < +\infty$$
 (almost everywhere)

Dual basis function

Unique function $\overset{\circ}{\varphi} \in V(\varphi)$ such that $\langle \varphi(x), \overset{\circ}{\varphi}(x-k) \rangle = \delta_k$ (biorthogonality)

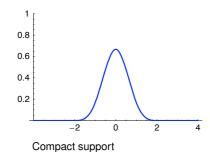
Together, φ and $\overset{\circ}{\varphi}$ operate as if they were an orthogonal basis; i.e., the orthogonal projector of any function $f\in L_2$ onto $V(\varphi)$ is given by

$$P_{V(\varphi)}f(x) = \sum_{k \in \mathbb{Z}} \underbrace{\langle f, \overset{\circ}{\varphi}(\cdot - k) \rangle}_{c[k]} \varphi(x - k)$$

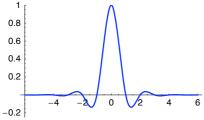
2-11

Example: four equivalent cubic-spline bases

■ Cubic B-spline: $\varphi(x) = \beta^3(x)$

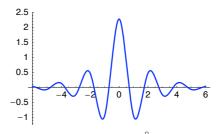


Interpolating spline: $\varphi_{\mathrm{int}}(x)$



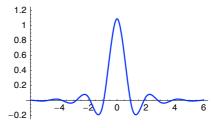
Interpolation: $\langle \varphi_{\rm int}(x), \delta(x-k) \rangle = \delta_k$

■ Dual spline: $\overset{\circ}{\varphi}(x)$



Biorthogonality: $\langle \varphi(x), \overset{\circ}{\varphi}(x-k) \rangle = \delta_k$

 \blacksquare Orthogonal spline: $\varphi_{\text{ortho}}(x)$



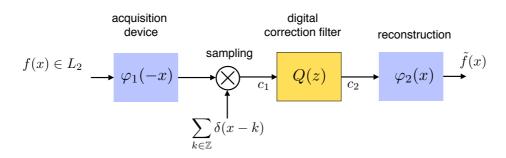
Orthogonality: $\langle \varphi_{\text{ortho}}(x), \varphi_{\text{ortho}}(x-k) \rangle = \delta_k$

SAMPLING REVISITED

- Generalized sampling system
- Generalized sampling theorem
- Consistent sampling: properties
- Performance analysis
- Applications

2-13

Generalized sampling system



- $\ \ \ \varphi_1(-x)$: prefilter (acquisition system)
- $\varphi_2(x)$: generating function (reconstruction subspace)
- Constraints
 - Consistent measurements: $\langle \tilde{f}, \varphi_1(\cdot k) \rangle = c_1[k] = \langle f, \varphi_1(\cdot k) \rangle, \ \forall k \in \mathbb{Z}$
 - Linearity and integer-shift invariance
 - Digital filtering solution: $\tilde{f}(x) = \sum_{n \in \mathbb{Z}} \underbrace{(q*c_1)[k]}_{c_2[k]} \varphi_2(x-k)$

Generalized sampling theorem

Cross-correlation sequence: $a_{12}[k] = \langle \varphi_1(\cdot - k), \varphi_2(\cdot) \rangle \longleftrightarrow A_{12}(e^{j\omega})$

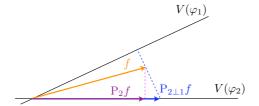
Consistent sampling theorem

Let $A_{12}(e^{j\omega}) \geq m > 0$. Then, there exists a unique solution $\tilde{f} \in V(\varphi_2)$ that is consistent with f in the sense that $c_1[k] = \langle f, \varphi_1(\cdot - k) \rangle = \langle \tilde{f}, \varphi_1(\cdot - k) \rangle$

$$\tilde{f}(x) = \mathbf{P}_{2 \perp 1} f(x) = \sum_{n \in \mathbb{Z}} (q * c_1)[k] \varphi_2(x-k) \qquad \text{with} \quad Q(z) = \frac{1}{\sum_{k \in \mathbb{Z}} a_{12}[k] z^{-k}}$$

Geometric interpretation

 $\tilde{f} = P_{2 \perp 1} f$ is the projection of f onto $V(\varphi_2)$ perpendicular to $V(\varphi_1)$.



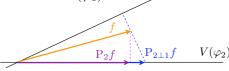
Orthogonality of error:

$$\langle f - \tilde{f}, \varphi_1(\cdot - k) \rangle = \underbrace{\langle f, \varphi_1(\cdot - k) \rangle}_{c_1[k]} - \underbrace{\langle \tilde{f}, \varphi_1(\cdot - k) \rangle}_{c_1[k]} = 0$$
 (consistency)

2-15

Consistent sampling: properties

 $\tilde{f}=\mathrm{P}_{2\perp 1}f$: oblique projection onto $V(\varphi_2)$ perpendicular to $V(\varphi_1)$



 $V(\varphi_1)$

Generalization of Shannon's theorem

Every signal $f \in V(\varphi_2)$ can be reconstructed exactly

- Flexibility and realism
 - φ_1 and φ_2 can be selected freely
 - They need not be biorthogonal (unlike wavelet pairs)

Special case: least-squares approximation

$$\varphi_1 \in V(\varphi_2) \Rightarrow V(\varphi_1) = V(\varphi_2) \Rightarrow P_{2\perp 1} = P_2$$
 (orthogonal projection)

$$\text{Minimun-error approximation: } \tilde{f}(x) = \mathrm{P}_2 f(x) = \sum_{k \in \mathbb{Z}} \underbrace{\langle f, \overset{\circ}{\varphi_2}(\cdot - k) \rangle}_{(c_1 * q)[k]} \ \varphi_2(x - k)$$

Application 1: interpolation revisited

Interpolation constraint

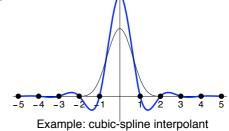
$$c_1[k] = f(x)|_{x=k} = \langle \delta(\cdot - k), f \rangle$$

- Interpolator = consistent ideal sampling system
 - Ideal sampler: $\varphi_1(x) = \delta(x)$
 - Reconstruction function: $\varphi_2(x) = \varphi(x)$
 - Cross-correlation: $a_{12}[k] = \langle \delta(\cdot k), \varphi(\cdot) \rangle = \varphi(k)$
- Reconstruction/interpolation formula

$$Q_{\text{int}}(z) = \frac{1}{\sum_{k \in \mathbb{Z}} \varphi(k) z^{-k}}$$

$$f(x) = \sum_{k \in \mathbb{Z}} \underbrace{(f * q_{\text{int}})[k]}_{c[k]} \varphi(x - k)$$

$$= \sum_{k \in \mathbb{Z}} f[k] \varphi_{\text{int}}(x - k)$$



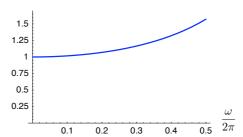
$$\varphi_{\rm int}(x) = \sum_{k \in \mathbb{Z}} q_{\rm int}[k] \ \varphi(x - k)$$

2-17

Application 2: consistent image display

- Problem specification
 - Ideal acquisition device: $\varphi_1(x,y) = \operatorname{sinc}(x) \cdot \operatorname{sinc}(y)$
 - LCD display: $\varphi_2(x,y) = \text{rect}(x) \cdot \text{rect}(y)$
- Separable image-enhancement filter

$$A_{12}(e^{j\omega}) = \sum_{n \in \mathbb{Z}} \hat{\varphi}_1^*(\omega + 2\pi n)\hat{\varphi}_2(\omega + 2\pi n) \quad \Rightarrow \quad Q(e^{j\omega}) = \frac{1}{\operatorname{sinc}\left(\frac{\omega}{2\pi}\right)}$$



QUANTITATIVE APPROXIMATION THEORY

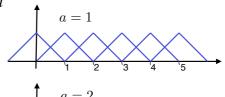
- Order of approximation
- Fourier-domain prediction of the L₂-error
- Strang-Fix conditions
- Spline case
- Asymptotic form of the error
- Optimized basis functions (MOMS)
- Comparison of interpolators

2-19

Order of approximation

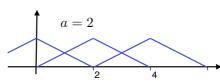
■ General "shift-invariant" space at scale *a*

$$V_a(\varphi) = \left\{ s_a(x) = \sum_{k \in \mathbb{Z}} c[k] \varphi\left(\frac{x}{a} - k\right) : c \in \ell_2 \right\}$$



Projection operator

$$\forall f \in L_2, \quad P_a f = \arg\min_{s_a \in V_a} ||f - s_a||_{L_2}$$



Order of approximation

Definition

A scaling/generating function φ has order of approximation L iff.

$$\forall f \in W_2^L, \quad \|f - P_a f\|_{L_2} \le C \cdot a^L \cdot \|f^{(L)}\|_{L_2}$$

Fourier-domain prediction of the L_2 -error

Theorem [Blu-U., 1999]

Let $P_a f$ denote the orthogonal projection of f onto $V_a(\varphi)$ (at scale a). Then,

$$\forall f \in W_2^s, \quad \|f - P_a f\|_{L_2} = \left(\int_{-\infty}^{+\infty} |\hat{f}(\omega)|^2 E_{\varphi}(a\omega) \frac{d\omega}{2\pi} \right)^{1/2} + o(a^s)$$

where

$$E_{\varphi}(\omega) = 1 - \frac{|\hat{\varphi}(\omega)|^2}{\sum_{k \in \mathbb{Z}} |\hat{\varphi}(\omega + 2\pi k)|^2}$$

Fourier-transform notation: $\hat{f}(\omega) = \int_{-\infty}^{+\infty} f(x)e^{-j\omega x} dx$

2-21

Strang-Fix conditions of order L

Let $\varphi(x)$ satisfy the Riesz-basis condition. Then, the following Strang-Fix conditions of order L are equivalent:

(1)
$$\hat{\varphi}(0)=1$$
, and $\hat{\varphi}^{(n)}(2\pi k)=0$ for $\left\{ egin{array}{l} k
eq 0 \\ n=0\dots L-1 \end{array}
ight.$

(2) $\varphi(x)$ reproduces the polynomials of degree L-1; i.e., there exist weights $p_n[k]$ such that

$$x^n = \sum_{k \in \mathbb{Z}} p_n[k] \varphi(x-k)$$
, for $n = 0 \dots L-1$

(3)
$$E_{\varphi}(\omega) = \frac{C_L^2}{(2L)!} \cdot \omega^{2L} + O(\omega^{2L+2})$$

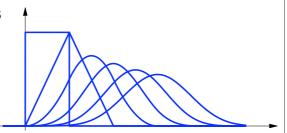
(4)
$$\forall f \in W_2^L$$
, $||f - P_a f||_{L_2} = O(a^L)$

Polynomial splines

Basis functions: causal B-splines

$$\beta_{+}^{n}(x) = (\beta_{+}^{n-1} * \beta_{+}^{0})(x)$$

$$\beta_+^0(x) = \begin{cases} 1, & \text{for } 0 \le x < 1 \\ 0, & \text{otherwise.} \end{cases}$$



■ Fourier-domain formula

$$\hat{\beta}_{+}^{n}(\omega) = \left(\frac{1 - e^{-j\omega}}{j\omega}\right)^{n+1}$$

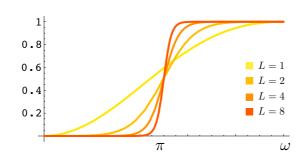
Order of approximation

$$\hat{\beta}^n_+(2\pi k + \Delta\omega) = O(|\Delta\omega|^{n+1}) \text{ for } k \neq 0 \\ \Longrightarrow \qquad \beta^n_+ \text{ has order of approximation } L = n+1$$

2-23

Spline approximation

Fourier approximation kernel



$$E_{\beta^n}(\omega) = \frac{\sum_{k \neq 0} |\hat{\beta}^n(\omega + 2\pi k)|^2}{\sum_{k \in \mathbb{Z}} |\hat{\beta}^n(\omega + 2\pi k)|^2}$$

Order: L = n + 1

Link with Riemann's zeta function

$$E_{\beta^n}(\omega) = |2\sin(\omega/2)|^{2n+2} \frac{\sum_{k \neq 0} \frac{1}{|\omega + 2\pi k|^{2n+2}}}{\sum_{k \in \mathbb{Z}} |\hat{\beta}^n(\omega + 2\pi k)|^2}$$
$$= \frac{2\zeta(2n+2)}{(2\pi)^{2n+2}} \cdot \omega^{2n+2} + O(|\omega|^{2n+4})$$

$$\zeta(z) = \sum_{n=1}^{+\infty} n^{-z}$$

Spline reconstruction of a PET-scan

Piecewise constant

L = 1

Cubic spline L = 4

2-25

Asymptotic form of the error

Theorem [U.-Daubechies, 1997]

Let φ be an Lth order function. Then, asymptotically, as $a \to 0$,

$$\forall f \in W_2^L, \quad \|f - P_a f\|_{L_2} = C_L \cdot a^L \cdot \|f^{(L)}\|_{L_2}$$

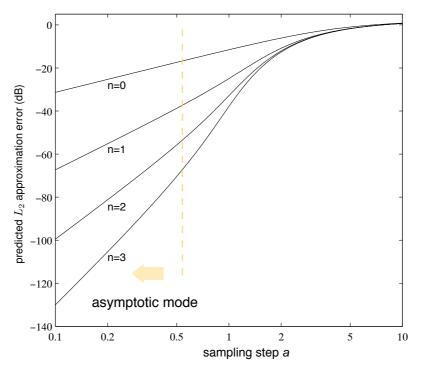
where

$$C_L = \frac{1}{L!} \sqrt{2 \sum_{n=1}^{+\infty} |\hat{\varphi}^{(L)}(2\pi n)|^2} \qquad (= \sqrt{\frac{E_{\varphi}^{(2L)}(0)}{(2L)!}})$$

■ Special case: splines of order L = n + 1

$$C_{L, {\rm splines}} = \frac{\sqrt{2\zeta(2L)}}{(2\pi)^L} = \sqrt{\frac{B_{2L}}{(2L)!}} \qquad \text{(Bernoulli number of order } 2L\text{)}$$

Characteristic decay of the error for splines



Least squares approximation of the function $f(x)=e^{-x^2/2}$

2-27

Optimized basis functions (MOMS)

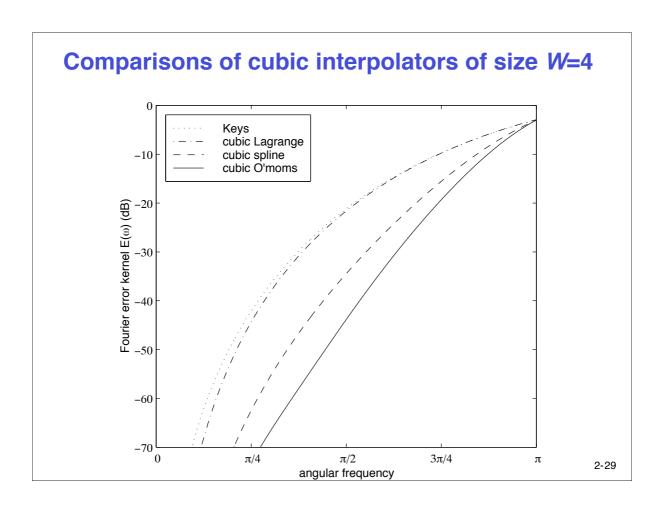
- Motivation
 - Cost of prefiltering is negligible (in 2D and 3D)
 - lacktriangle Computational cost depends on kernel size W
 - Order of approximation is a strong determinant of quality

QUESTION: What are the basis functions with maximum order of approximation and minimum support?

 $\varphi_{\text{moms}}(x) = \sum_{k=0}^{L-1} a_k D^k \beta^{L-1}(x)$ ANSWER: Shortest functions of order L (MOMS)

- Most interesting MOMS
 - lacksquare B-splines: smoothest $(eta^{L-1} \in \dot{C}^{L-1})$ and only refinable MOMS
 - Shaum's piecewise-polynomial interpolants (no prefilter)
 - lacktriangleright OMOMS: smallest approximation constant C_L

$$\varphi_{\text{opt}}^{3}(x) = \beta^{3}(x) + \frac{1}{42} \frac{d^{2}\beta^{3}(x)}{dx^{2}}$$



INTERPOLATION IN THE PRESENCE OF NOISE

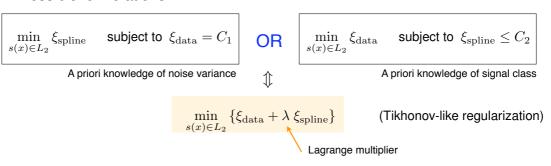
- Interpolation and regularization
- Smoothing splines
- General concept of an L-spline
- Optimal Wiener-like estimators

Spline-fitting with noisy data

Context

- Input data $\{f[k]\}_{k\in\mathbb{Z}}$ corrupted by noise
- lacktriangle Model: continuously defined function s(x)
- \blacksquare Data term: $\xi_{\mathrm{data}} = \sum_{k \in \mathbb{Z}} \left| f[k] s(k) \right|^2$ (discrete domain)
- lacksquare Spline energy: $\xi_{
 m spline} = \| {
 m D}^m s \|_{L_2}^2$ (continuous domain)

Possible formulations



2-31

Regularized fit: smoothing splines

- B-spline representation: $s(x) = \sum_{k \in \mathbb{Z}} c[k]\beta^n(x-k)$
- Smoothing splines

Discrete, noisy input:
$$f[k] = s(k) + n[k]$$
 Smoothing algorithm
$$c[k]$$

Theorem: The solution (among all functions) of the smoothing spline problem

$$\min_{s(x)} \left\{ \sum_{k \in \mathbb{Z}} |f[k] - s(k)|^2 + \lambda \int_{-\infty}^{+\infty} |D^m s(x)|^2 dx \right\}$$

is a cardinal spline of degree 2m-1. Its coefficients $c[k] = h_{\lambda} * f[k]$ can be obtained by suitable recursive digital filtering of the input samples f[k].

Special case: the draftman's spline

The minimum-curvature interpolant is obtained by setting m=2 and $\lambda\to 0$. It is a cubic spline !

General concept of an L-spline

 $L\{\cdot\}$: differential operator (shift-invariant)

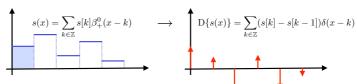
 $\delta(x)$: Dirac distribution

Definition

The function s(x) is a *cardinal* **L-spline** (with knots at the integers) iff.

$$L\{s(x)\} = \sum_{k \in \mathbb{Z}} a[k]\delta(x-k)$$

- Special cases
 - Piecewise-constant = D-splines



• Polynomial splines = D^{n+1} -splines

Justification:

$$D^{n+1}\{\beta_+^n(x)\} = \Delta_+^{n+1}\{\delta(x)\} = \sum_{k \in \mathbb{Z}} d[k]\delta(x-k) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad D(e^{j\omega}) = (1-e^{-j\omega})^{n+1}\{\beta_+^n(x)\} = \Delta_+^{n+1}\{\delta(x)\} = \sum_{k \in \mathbb{Z}} d[k]\delta(x-k)$$

2-33

Existence of B-spline-like bases

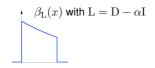
 $\mathrm{L}\{\cdot\}$: generalized differential operator of order $s>\frac{1}{2}$

■ Riesz-basis representation

Cardinal L-splines generally admit a B-spline-like representation

$$s(x) = \sum_{k \in \mathbb{Z}} c[k] \beta_{\mathcal{L}}(x-k)$$

Example: first-order exponential B-spline



- Composition properties
 - Higher-order B-splines: $L_1=D$ $L_2=D-\alpha I$ $L=D^2-\beta_{L_1}(x)$ and $\beta_{L_2}(x)$ are B-spline generators for the cardinal L_1 and L_2 -splines. Then, $\beta_{L_1}(x)*\beta_{L_2}(x)$ is a generator for the (L_1L_2) -splines.
 - Positive-definite operators: If $\beta_{\rm L}(x)$ generates a Riesz basis for the L-splines, then $\varphi(x)=\beta_{\rm L}(x)*\beta_{\rm L}(-x)$ generates a Riesz basis for the $({\rm L^*L})$ -splines and the interpolation problem in $V(\varphi)$ is well posed.

Generalized smoothing splines

- Generalized spline energy: $\xi_{\text{spline}} = \|\mathbf{L}s\|_{L_2}^2$
- Generalized smoothing-spline fit

Discrete, noisy input:
$$f[k] = s(k) + n[k]$$
 Estimation algorithm
$$s_{\lambda}(x)$$

Theorem: The solution (among all functions) of the generalized smoothing problem

$$\min_{s(x)} \left\{ \sum_{k \in \mathbb{Z}} |f[k] - s(k)|^2 + \lambda \int_{-\infty}^{+\infty} |Ls(x)|^2 dx \right\}$$

is a cardinal L^*L -spline.

The solution has a B-spline representation $s_{\lambda}(x) = \sum_{k \in \mathbb{Z}} c[k] \varphi(x-k)$, the coefficients of which are obtained by suitable filtering of the input data (generalized smoothing-spline algorithm).

2-35

Stochastic signal models

- Wide-sense stationary process
 - \blacksquare Realization of the stochastic process: s(x)
 - Zero-mean: $E\{s(x)\}=0$
 - Autocorrelation function: $E\{s(y) \cdot s(y-x)\} = c_s(x) \in L_2$
 - \blacksquare Spectral density function: $C_s(\omega) = \int_{x \in \mathbb{R}} c_s(x) e^{-j\omega x} \mathrm{d}x \in L_2$
- Stochastic differential equation

$$L\{s(x)\} = w(x)$$
 (driven by white Gaussian noise)

$$w(x)$$
 L^{-1}
 $s(x)$
 L
 $w(x)$

Spectral shaping Whitening filter

$$C_w(\omega) = \sigma_0^2$$

$$C_s(\omega) = \frac{\sigma_0^2}{|\hat{L}(\omega)|^2}$$

2-36

 $c_w(x) = \sigma_0^2 \delta(x)$

MMSE estimation in the presence of noise

Statistical hypotheses

- Discrete measurements (signal + noise): f[k] = s(k) + n[k]
- Signal autocorrelation: $c_s(x)$ such that $L^*L\{c_s(x)\} = \sigma_0^2 \cdot \delta(x)$
- Discrete white noise with variance $\sigma^2 \Rightarrow c_n[k] = \sigma^2 \cdot \delta[k]$
- MMSE continuous-domain signal estimation

Theorem

Under the above assumptions, the linear Minimum-Mean Square Error Estimator of s(x) at position $x=x_0$, given the measurements $\{f[k]\}_{k\in\mathbb{Z}}$, is $s_\lambda(x_0)$ with $\lambda=\frac{\sigma^2}{\sigma_0^2}$, where $s_\lambda(x)$ is the L*L-smoothing-spline fit of $\{f[k]\}_{k\in\mathbb{Z}}$ given by the generalized smoothing-spline algorithm.

Remark: optimal overall estimators if one adds the assumption of Gaussianity

2-37

CONCLUSION

- Generalized sampling
 - Unifying Hilbert-space formulation: Riesz basis, etc.
 - Approximation point of view: projection operators (oblique vs. orthogonal)
 - Increased flexibility; closer to real-world systems
 - Generality: nonideal sampling, interpolation, etc...
- Quest for the "optimal" representation space
 - Not bandlimited! (prohibitive cost, ringing, etc.)
 - Quantitative approximation theory: L₂-estimates, asymptotics
 - Optimized functions: MOMS
 - Signal-adapted design ?
- Interpolation/approximation in the presence of noise
 - Regularization theory: smoothing splines
 - Stochastic formulation: new, hybrid form of Wiener filter

Acknowledgments

Many thanks to

- Dr. Thierry Blu
- Prof. Akram Aldroubi
- Prof. Ingrid Daubechies
- Annette Unser, Artist
- + many other researchers, and graduate students

Software and demos at:

http://bigwww.epfl.ch/

2- 39

Bibliography

- Sampling review
 - M. Unser, "Sampling—50 Years After Shannon," Proceedings of the IEEE, vol. 88, no. 4, pp. 569-587, April 2000.
- Quantitative approximation theory
 - T. Blu, M. Unser, "Quantitative Fourier Analysis of Approximation Techniques: Part I—Interpolators and Projectors," *IEEE Trans. Signal Processing*, vol. 47, no. 10, pp. 2783-2795, October 1999.
 - T. Blu, P. Thévenaz, M. Unser, "MOMS: Maximal-Order Interpolation of Minimal Support," *IEEE Trans. Image Processing*, vol. 10, no. 7, pp. 1069-1080, July 2001.
- Smoothing splines and stochastic formulation
 - M. Unser, T. Blu, "Generalized Smoothing Splines and the Optimal Discretization of the Wiener Filter," *IEEE Trans. Signal Processing*, vol. 53, no. 6, pp. 2146-2159, June 2005.
- Preprints and demos: http://bigwww.epfl.ch/