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SAMPLING: 50+ years after Shannon

Analog/physical world Discrete domain
4 2\
Continuous signals: L (R)

sampling

[ Signal subspace } Discrete signals: EQ(Z)}
4— __________

interpolation

= reconstruction algorithms
= signal processing

= image analysis

Introduction: Shannon revisited

Sampling preliminaries
Review paper on sampling

Sampling revisited

Quantitative approximation theory )

Interpolation/approximation in the presence of noise -




Shannon’s sampling reinterpreted

Generating function: ¢(x) = sinc(x)

Subspace of bandlimited functions: V' (y) = span{y(z — k) }rez

analysis synthesis
_ sampling

— w(x)ﬁ?— o) —
anti-aliasing . '

filter Z 5z — k) ideal filter

kEZ

f(z) € Lo

Analysis:  f(k) = (sinc(x — k), f(x))

Synthesis: f(z Z f(k) sinc(z — k)

keZ
m Orthogonal basis: (sinc(x — k), sinc(z — 1)) = 0y [Hardy, 1941]
Orthogonal projection operator ! o
Generalized sampling: roadmap
m Nonideal acquisition system
£(2) € Ly(R) sampling ~ "*\>° Measurements:
X
", acquision _~ ok = (s )@)lemic -+ nlK
device
Goal: Specify ¢ and the reconstruction algorithm Reconstruction
so that f(z) is a good approximation of f(z) algorithm
Continuous-domain model signal coefficients
f(@) = clklp(z - k) <> {clk]} ez
her Riesz-basis property Interpolation
H problem

Discrete signal

{f[E}hez
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SAMPLING PRELIMINARIES

= Function and sequence spaces

Smoothness conditions and sampling

Shift-invariant subspaces

Equivalent basis functions

2-5

Continuous-domain signals

Mathematical representation: a function of the continuous variable x € R

m Lebesgue’s space of finite-energy functions

= Ly(R) = {f(x),x eR: /xeR |f(2)|2dz < —I—oo}

m Lo-inner product: (f, g) :/ IR{f(ac)g*(ac)dgc
EAS

1/2
« Lynorm: [|f]1z, = ( / |f<x>2dx) =TT
rz€eR
m Fourier transform
= Integral definition: f(w) :/ f(z)e “"dx
xER
1

= Parseval relation: || f||7, = 7 |f(w)2dw
weR
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Discrete-domain signals

Mathematical representation: a sequence indexed by the discrete variable k € Z

m Space of finite-energy sequences

w 0y(Z) = {a[k],k €Z:Y lalk]]® < +oo}

kEZ

1/2
u ly-norm: ||alle, = <Z |a[k”2>

kEZ

m Discrete-time Fourier transform
= z-transform: A(z) = Z alk]z=*
kEZ

= Fourier transform: A(e’*) = " a[kle 7"
keZ
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Smoothness conditions and sampling

m Sobolev’s space of order s € R*
Wi®) = { ) e ks [ (4P de < +oo)
weR
f and all its derivatives up to (fractional) order s are in Ly

m Mathematical requirements for ideal sampling
= The input signal f(z) should be continuous

= The samples f[k] = f(z)|.=x should be in /5

Theorem

Let f(x) € W5 with s > 5. Then, the samples of f at the integers, f[k] = f(z)|s=,
are in {5 and

F(e?*) = Zf[k‘]e*j”k = Z f(w + 27n) a.e.

keZ nez

Generalized (almost everywhere) version of Poisson’s formula [Blu-U., 1999]
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Shift-invariant spaces

Integer-shift-invariant subspace associated with a generating function ¢ (e.g., B-spline):

Vie) = {f(x) =) clkp(z—k):ce 82(2)}

kEZ

Generating function: ¢ (z) — @(w)—/ o(z)e 1 da
z€R

m Autocorrelation (or Gram) sequence
aolk] £ (p(), (- = R)) o AL(E®) = [p(w + 2mn)
neZ
m Riesz-basis condition
Positive-definite Gram sequence: 0 < A* < Y A,(¢/*) < B? < +o0
nez 1]:
A-lelle, < [ Epez clklo(z = k)|, < B llclle,

1711,

Orthonormal basis < ay[k] =6, & A () =1 & || = | fllz, (Parseval)
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Example of sampling spaces

m Piecewise-constant functions

p(z) = rect(z) = f°(x) aylk] =96, <  the basis is orthonormal

m bandlimited functions

Z |p(w+27n)|> =1 < the basis is orthonormal
neZ

o(x) = sinc(x)
m Polynomial splines of degree n

p(z) = "(x) = (8°* 87 3%)(2)
—_———

(n+1) times

-2 -1 1 2

Autocorrelation sequence:  agn [k] = (8" * 7)(x)|z=r = B2 TL(k)

Proposition. The B-spline of degree n, 5" (z), generates a Riesz basis with lower and
upper Riesz bounds A = inf,{Agn (e7¥)} > (%>n+1 and B = sup,, {Agn (e7¥)} = 1.
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Equivalent and dual basis functions

m Equivalent basis functions:

Peq(®) = > plklp(x — k)

kEZ

Proposition. Let ¢ be a valid (Riesz) generator of V() = span{p(z — k)}rez.
Then, ¢4 also generates a Riesz basis of V() iff.

0<Cy <|PEw)|? <Cy < +00

m Dual basis function

Unique function pe V() such that (¢(x),

(almost everywhere)

(z —k)) =0 (biorthogonality)

Together, ¢ and <Op operate as if they were an orthogonal basis; i.e., the orthogonal
projector of any function f € L, onto V(i) is given by

Py f(@) = D (£, (- — k) (e — k)

kEZ c[k]

Example: four equivalent cubic-spline bases

m Cubic B-spline: ¢(z) = 3%(x)
1

0.8

0.6

0.4

0.2

-2 0 2 4

Compact support

m Interpolating spline: ;. (x)
1

0.8

0.6

0.4

0.2

T/ o \A

-0.2

Interpolation: (pint(z),0(z — k)) = d5

4

6

m Dual spline: &(m)

25
2
15
;
05
-05
-1

o

Biorthogonality: (¢ (z), ¢(x — k)) = dx

m Orthogonal spline: Yorno ()

1.2

1
0.8
0.6
0.4
0.2

A\ ~
on -4 A/ o \ 2 4 6

Orthogonality: (Portho (), Portho(® — k)) = %




SAMPLING REVISITED

= Generalized sampling system

= Generalized sampling theorem
= Consistent sampling: properties
= Performance analysis

= Applications

Generalized sampling system

acquisition digital
device correction filter reconstruction

sampling f(:c)

x Lo
flo e Q) — ale) —

— p1(—x)

C1

> 6z —k)

keZ

= p1(—a): prefilter (acquisition system)
= p2(x): generating function (reconstruction subspace)

m Constraints

= Consistent measurements: (f, o1 (- — k)) = c1[k] = (f, o1(- — k), Vk € Z

= Linearity and integer-shift invariance

Digital filtering solution: f(z) = Z (q*c1)[k] p2(z — k)

nez calk]




Generalized sampling theorem

Cross-correlation sequence: a12[k] = (p1(- — k), ¢2(+)) RN Aqa(ed@)

m Consistent sampling theorem

Let Aj5(e7¥) > m > 0. Then, there exists a unique solution f € V(i) that is
consistent with f in the sense that ¢; [k] = (f,¢1(- — k)) = (f, o1(- — k))

F@) = Parif@) = S (axe)klpa(z— k) with Q(2) !

=  Yrez oaz[k]z7F

m Geometric interpretation

f =Pa.1f is the projection of f onto V' (2) perpendicular to V (p1).

V(e1)

Orthogonality of error:

<f7f¢991('7k)> :(fv@l('fk»i(fv@l(‘*k)):0

ci[k] c1[k]
Pof o Paiif  Vie2) (consistency)

Consistent sampling: properties

V(1)

f =Py, f: oblique projection onto V(¢5) perpendicular to V(¢;)

Pof ‘\“\quf V(p2)

m Generalization of Shannon’s theorem
Every signal f € V(2) can be reconstructed exactly

= Flexibility and realism
- o1 and 5 can be selected freely

- They need not be biorthogonal (unlike wavelet pairs)

m Special case: least-squares approximation
w1 € Vips) = V(1) =V(p2) = Pai1 =Py (orthogonal projection)

Minimun-error approximation: f(z) = Py f(z) = Z (f, <opz(~ —k)) w2z — k)

kEZ
(crra)k] 216




Application 1: interpolation revisited

m Interpolation constraint
clk] = f(@)]e=r = (O(- = k), f)

m Interpolator = consistent ideal sampling system

= |deal sampler: ¢ (z) = d(x)
= Reconstruction function: o (z) = ¢(x)

= Cross-correlation: ai2[k] = (6(- — k), ¢(+)) =

m Reconstruction/interpolation formula

1
Qint(2) = W
c[k] 2 3 4 5
—_—~

flz) = Z (f *qnt)[k] p(z — k) Example: cubic-spline interpolant

keZ

= ) fIE] e — k) Gint (1) =D qint[k] p(z — k)
keZ keZ
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Application 2: consistent image display

m Problem specification

= Ideal acquisition device: @1 (z,y) = sinc(x) - sinc(y)

» LCD display: w2 (x,y) = rect(x) - rect(y)

m Separable image-enhancement filter

) . 1
Aqa(e?¥) = Z SJ(w+2mn)po(w+ 2mn) =  Q(¥) = — =
NneZ simce (ﬂ)
15
125 /
1

01 02 03 04 05 27
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QUANTITATIVE APPROXIMATION THEORY

Order of approximation
= Fourier-domain prediction of the Lo-error

Strang-Fix conditions

= Spline case

= Asymptotic form of the error
Optimized basis functions (MOMS)
= Comparison of interpolators

Order of approximation

m General “shift-invariant” space at scale a

Valp) = {sa(x)—Zc[k]Qp (g—k) :CEEQ} /

keZ

m Projection operator /><><\
Vf €Ly, Pof=arg min |f = s, - : —

m Order of approximation
Definition
A scaling/generating function ¢ has order of approximation L iff.

vf€W2L7 Hf_PafHLz SC'aL'Hf(L)HLz

2-20




Fourier-domain prediction of the L,-error

Theorem [Blu-U., 1999]
Let P, f denote the orthogonal projection of f onto V,, () (at scale a).
Then,

too 1/2
Vf € Wy, ||f—Paf||L2=(/ If(w)lew(aw)d—w> to(a®)

o 2
where )1 5(w)|?
v Zkez |o(w + 27k) |2
A +w .
Fourier-transform notation: f(w) :/ f(x)e™7¥*dx
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Strang-Fix conditions of order L

Let ¢(x) satisfy the Riesz-basis condition. Then, the following Strang-
Fix conditions of order L are equivalent:

k0

1) ¢(0) =1, and (™ (27k) = 0 for
(1) #(0) o\ (21k) {n:O...L—l

(2) ¢(x) reproduces the polynomials of degree L—1; i.e., there exist
weights p,, [k] such that

:U”:an[k]go(:c—k),fornzo...L—1
kez

(8) Bylw) = gy " + 0w +)

@) VfeWs, |f —Pafllr, = O(a")
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Polynomial splines

m Basis functions: causal B-splines 4

Bi(z) = (67" % B8Y) (x)

1, for0<z <1
/8_0’_(.7/') B { 0, otherwise /
I . / X

m Fourier-domain formula

B (w) = (1_;‘3—;&)”+1

m Order of approximation

B (2mk + Aw) = O(|Aw|™ 1) for k # 0
— B has order of approximation L = n + 1
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Spline approximation

m Fourier approximation kernel
D kst0 8™ (w + 2k)|?

E n(u)) = ~
! 3
0.8 > okez |0 (w + 27k) 2
0.6 -1 Order: L=n+1
L=2
0.4 L.
0.2 mL=38
™ w
o0
= Link with Riemann’s zeta function ((2) =) n*
n=1
2n+4-2 stféo |w+27rllc)|2"+_2
Egn(w) = |2sin(w/2)]

Ykez 18w + 27k) 2
2¢(2n + 2))

_ 2n-+2 2n+4
= Tenme Y + O(jw[™™)
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Spline reconstruction of a PET-scan

Piecewise constant
L=1

Cubic spline
L=4

2-25

Asymptotic form of the error

Theorem [U.-Daubechies, 1997]
Let ¢ be an Lth order function. Then, asymptotically, as a — 0,

VieWs, |If —Pufllr, =Cr-a* || fP| 1,

where

+oo
1 R 2 (2L)
Cr= ﬁ\l ’ Z () (2mn))| (= Esz)(!O))
n=1

m Special case: splines of order L =n + 1

\/2 2L | B
CL,spIines < QL! (Bernoulli number of order 2L)
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Characteristic decay of the error for splines

0

predicted Lo approximation error (dB)

asymptotic mode

_140 L L L L L
0.1 0.2 0.5 1 2 5 10

sampling step a

Least squares approximation of the function f(z) = e~ /2 007

Optimized basis functions (MOMS)

m Motivation

= Cost of prefiltering is negligible (in 2D and 3D)
= Computational cost depends on kernel size W

= Order of approximation is a strong determinant of quality

QUESTION: What are the basis functions with maximum order of approximation and
minimum support ?

-1
ANSWER: Shortest functions of order L (MOMS)  moms () = Z apDF B ()
k=0

m Most interesting MOMS

= B-splines: smoothest (3%~ € C'“~1) and only refinable MOMS
= Shaum’s piecewise-polynomial interpolants (no prefilter)

= OMOMS: smallest approximation constant C7,

1 d2 3
i) = B(r) + 3 )
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Comparisons of cubic interpolators of size W=4

0
Keys s
——  cubic Lagrange 2
-10F [ — — - cubic spline e
——  cubic O'moms o e

m 20
o
2
w
5 —30
S
(0]
X
S
£ _40f
(O]
3
5
o
L -50

-60

/
_70 ~ / 1 1 1
0 /4 /2 3m/4 T
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INTERPOLATION IN THE PRESENCE OF NOISE

= |nterpolation and regularization
= Smoothing splines
= General concept of an L-spline

= Optimal Wiener-like estimators
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Spline-fitting with noisy data

m Context

= Input data { f[k] }rez corrupted by noise
= Model: continuously defined function s(x)
= Data term: {qata = ) sz | (K] — s(k)|2 (discrete domain)

= Spline energy: &pline = ||[D™s||7, (continuous domain)

m Possible formulations

min &g subject to = min subject to &spline < Co
s(z)ELs gbphne ) gdata OR s(z)€Ls gdata ] §sp ine >
A priori knowledge of noise variance II A priori knowledge of signal class
(rr;lenL {€data + A Eapline } (Tikhonov-like regularization)
s(x 2

Lagrange multiplier
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Regularized fit: smoothing splines

B-spline representation: s(z) = Z clk] 8" (x — k)

keZ

m Smoothing splines

Discrete, noisy input: clk]

Smoothing
flk] = s(k) + n[k] algorithm

Theorem: The solution (among all functions) of the smoothing spline problem
“+oo
min ¢ Y | f[k] — s(k)|* + )\/ ID™s(z)|?da
s(@) kez -

is a cardinal spline of degree 2m — 1. Its coefficients c[k] = h, * f[k] can be
obtained by suitable recursive digital filtering of the input samples f[k].

m Special case: the draftman’s spline

The minimum-curvature interpolant is obtained by setting m = 2 and A — 0.

It is a cubic spline !
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General concept of an L-spline

L{-}: differential operator (shift-invariant) d(z): Dirac distribution

Definition
The function s(x) is a cardinal L-spline (with knots at the integers) iff.

L{s(2)} = ) _ alkld(z — k)

keZ
s) = sk —k)  — | D{s@)} =Y (s[k] sk — 1])6(z — k)
keZ keZ
m Special cases — 4 t R

| R

» Piecewise-constant = D-splines

= Polynomial splines = D" !-splines

Justification:

DGR (2)} = ATHO(x)} = Yy dkld(z — k) T D(el?) = (1 — eIy

2-33

Existence of B-spline-like bases

L{-}: generalized differential operator of order s > 3

m Riesz-basis representation

Cardinal L-splines generally admit a B-spline-like representation

s(x) = clk]fL(z — k)

kez v fr(z)withL =D — ol

Example: first-order exponential B-spline \L

\ ' A ﬁL(J;)

m Composition properties ﬂ * \L - /\

= Higher-order B-splines: Li=D Ly=D-adl L=D?-aD
B, (x) and B, (x) are B-spline generators for the cardinal L; - and Ly-splines.
Then, 0L, (x) * O, (x) is a generator for the (L;L2)-splines.

= Positive-definite operators: If O, (x) generates a Riesz basis for the L-splines,
then o(z) = i (z) * BL(—z) generates a Riesz basis for the (L*L)-splines
and the interpolation problem in V() is well posed.
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Generalized smoothing splines

Generalized spline energy: &piine = ||Ls||7,

m Generalized smoothing-spline fit

Discrete, noisy input: sx(z)

Estimation
flk] = s(k) + n[k] algorithm

Theorem: The solution (among all functions) of the generalized smoothing

problem
“+o0

rsr(lg;{Zv[k] —s(B)F+ [ |Ls<x>|2dx}

keZ —o°
is a cardinal L*L-spline.
The solution has a B-spline representation sx(z) =, ., c[k]o(z — k),
the coefficients of which are obtained by suitable filtering of the input data
(generalized smoothing-spline algorithm).
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Stochastic signal models

m Wide-sense stationary process
= Realization of the stochastic process: s(z)
= Zero-mean: E{s(z)} =0
= Autocorrelation function: E{s(y) - s(y — z)} = ¢s(x) € Lo

= Spectral density function: C(w) = [, p cs(x)e™/“*dz € Ly

m Stochastic differential equation

L{s(z)} = w(x) (driven by white Gaussian noise)

w(x) s(x) w(x)
— L' — L —
Spectral shaping Whitening filter
2
Cu(w) = a3 Cs(w) = 90
| L(w)]?
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MMSE estimation in the presence of noise

m Statistical hypotheses
Discrete measurements (signal + noise): f[k] = s(k) + n[k]
Signal autocorrelation: ¢4 (z) such that L*L{cs(z)} = o2 - §(x)

Discrete white noise with variance 02 = ¢, [k] = o2 - §[K]

m MMSE continuous-domain signal estimation

Theorem

Under the above assumptions, the linear Minimum-Mean Square Error Estimator of
s(x) at position z = x¢, given the measurements { f[k]}kez, is sx(xo) with A = %
where s (x) is the L*L-smoothing-spline fit of { f[k]}rcz given by the generalized

smoothing-spline algorithm.

Remark: optimal overall estimators if one adds the assumption of Gaussianity
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CONCLUSION

= Generalized sampling
Unifying Hilbert-space formulation: Riesz basis, etc.

Approximation point of view:
projection operators (oblique vs. orthogonal)

Increased flexibility; closer to real-world systems
Generality: nonideal sampling, interpolation, etc...

= Quest for the “optimal” representation space
Not bandlimited ! (prohibitive cost, ringing, etc.)
Quantitative approximation theory: Lo-estimates, asymptotics
Optimized functions: MOMS
Signal-adapted design ?

= Interpolation/approximation in the presence of noise

Regularization theory: smoothing splines
Stochastic formulation: new, hybrid form of Wiener filter
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