

Sampling and interpolation for biomedical imaging: Part I

Michael Unser Biomedical Imaging Group EPFL, Lausanne Switzerland

ISBI 2006, Tutorial, Washington DC, April 2006

Image processing task	Specific operation	Imaging modality
Tomographic reconstruction	Filtered backprojection Fourier reconstruction Iterative techniques 3D + time	Commercial CT (X-rays) EM PET, SPECT Dynamic CT, SPECT, PET
Sampling grid conversion	Polar-to-cartesian coordinates Spiral sampling k-space sampling Scan conversion	Ultrasound (endovascular) Spiral CT, MRI MRI
Visualization	alization 2D operations - Zooming, panning, rotation All • Re-sizing, scaling • Fundus camera • Stereo imaging • Range, topography • CUT 3D operations • Re-slicing CT, MRI, MRA • Max. intensity projection • Simulated X-ray projection • CT, MRI, MRA • Surface/volume rendering • Iso-surface ray tracing CT • Gradient-based shading • Stereogram MRI	
		CT, MRI, MRA
Geometrical correction	Wide-angle lenses Projective mapping Aspect ratio, tilt Magnetic field distortions	Endoscopy C-Arm fluoroscopy Dental X-rays MRI
Registration	Motion compensation Image subtraction Mosaicking Correlation-averaging Patient positioning Retrospective comparisons Multi-modality imaging Stereotactic normalization Brain warping	fMRI, fundus camera DSA Endoscopy, fundus camera, EM microscopy Surgery, radiotherapy CT/PET/MRI
Feature detection		All
	Contour extraction • Snakes and active contours	MRI, Microscopy (cytology)

Riesz basis

Definition: Let $V = \operatorname{span}\{\varphi_k\}_{k \in \mathbb{Z}}$ be a subspace of a Hilbert space H. Then, $\{\varphi_k\}_{k \in \mathbb{Z}}$ is a Riesz basis of V iff. there exist two constants A > 0 and $B < +\infty$ s.t.

$$\forall c \in \ell_2, \ A \cdot \|c\|_{\ell_2} \le \underbrace{\left\|\sum_{k \in \mathbb{Z}} c_k \varphi_k\right\|_H}_{\|f\|_H} \le B \cdot \|c\|_{\ell_2}$$

Unique representation of a function $f \in V$: $f = \sum_{k \in \mathbb{Z}} c_k \varphi_k$

Properties

 \blacksquare Linear independence Consequence of lower Riesz bound: $f=0 \Rightarrow c_k=0$

- Stability Perturbation: $c + \Delta c \longrightarrow f + \Delta f$ Consequence of upper Risez bound: $\|\Delta c\|_{c}$ bounds
 - Consequence of upper Riesz bound: $\|\Delta c\|_{\ell_2}$ bounded $\Rightarrow \|\Delta f\|_H$ bounded
- Norm equivalence The basis is orthonormal iff. A = B = 1, in which case, $||c||_{\ell_2} = ||f||_H$

1-11

Shift-invariant spaces

Integer-shift-invariant subspace associated with a generating function φ (e.g. B-spline):

$$V(arphi) = \left\{ f(oldsymbol{x}) = \sum_{oldsymbol{k} \in \mathbb{Z}^p} c[oldsymbol{k}] arphi(oldsymbol{x} - oldsymbol{k}) : c \in \ell_2(\mathbb{Z}^p)
ight\}$$

 $\text{Generating function:} \quad \varphi(\boldsymbol{x}) \qquad \stackrel{\mathcal{F}}{\longleftrightarrow} \qquad \hat{\varphi}(\boldsymbol{\omega}) = \int_{\boldsymbol{x} \in \mathbb{R}^p} \varphi(\boldsymbol{x}) e^{-j \langle \boldsymbol{\omega}, \boldsymbol{x} \rangle} \mathrm{d} x_1 \cdots \mathrm{d} x_p$

Proposition. $V(\varphi)$ is a subspace of $L_2(\mathbb{R}^p)$ with $\{\varphi(\boldsymbol{x} - \boldsymbol{k})\}_{\boldsymbol{k} \in \mathbb{Z}^p}$ as its Riesz basis iff.

$$0 < A^2 \le \sum_{oldsymbol{n} \in \mathbb{Z}^p} |\hat{arphi}(oldsymbol{\omega} + 2\pioldsymbol{n})|^2 \le B^2 < +\infty$$
 (almost everywhere)

Hint for the proof (in 1D):

$$\begin{split} \|c\|_{\ell_{2}}^{2} &= \frac{1}{2\pi} \int_{0}^{2\pi} |C(e^{j\omega})|^{2} \mathrm{d}\omega \quad \text{(Parseval)} \\ \|f\|_{L_{2}}^{2} &= \frac{1}{2\pi} \int_{\omega \in \mathbb{R}} |C(e^{j\omega})|^{2} |\hat{\varphi}(\omega)|^{2} \mathrm{d}\omega \\ &= \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} \int_{0}^{2\pi} |C(e^{j\omega})|^{2} |\hat{\varphi}(\omega + 2\pi n)|^{2} \mathrm{d}\omega = \frac{1}{2\pi} \int_{0}^{2\pi} |C(e^{j\omega})|^{2} \sum_{n \in \mathbb{Z}} |\hat{\varphi}(\omega + 2\pi n)|^{2} \mathrm{d}\omega \\ &= \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} \int_{0}^{2\pi} |C(e^{j\omega})|^{2} |\hat{\varphi}(\omega + 2\pi n)|^{2} \mathrm{d}\omega = \frac{1}{2\pi} \int_{0}^{2\pi} |C(e^{j\omega})|^{2} \sum_{n \in \mathbb{Z}} |\hat{\varphi}(\omega + 2\pi n)|^{2} \mathrm{d}\omega \\ &= \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} |\hat{\varphi}(\omega + 2\pi n)|^{2} \mathrm{d}\omega = \frac{1}{2\pi} \int_{0}^{2\pi} |C(e^{j\omega})|^{2} \sum_{n \in \mathbb{Z}} |\hat{\varphi}(\omega + 2\pi n)|^{2} \mathrm{d}\omega \\ &= \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} |\hat{\varphi}(\omega + 2\pi n)|^{2} \mathrm{d}\omega = \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} |\hat{\varphi}(\omega + 2\pi n)|^{2} \mathrm{d}\omega \\ &= \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} |\hat{\varphi}(\omega + 2\pi n)|^{2} \mathrm{d}\omega = \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} |\hat{\varphi}(\omega + 2\pi n)|^{2} \mathrm{d}\omega \\ &= \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} |\hat{\varphi}(\omega + 2\pi n)|^{2} \mathrm{d}\omega = \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} |\hat{\varphi}(\omega + 2\pi n)|^{2} \mathrm{d}\omega$$

Classical image interpolationDiscrete image data
 $f[k], k = (k_1, \dots, k_p) \in \mathbb{Z}^p$ Continuous image model
 $f(x), x = (x_1, \dots, x_p) \in \mathbb{R}^p$ Interpolation formula: $f(x) = \sum_{k \in \mathbb{Z}^p} f[k] \varphi_{int}(x - k)$
k = f[k]: pixel values at location k
 $k = \varphi_{int}(x)$: continuous-space interpolation function
 $k = \varphi_{int}(x)$: interpolation function translated to location kInterpolation conditionAt the grid points $x = k_0$: $f(k_0) = \sum_{k \in \mathbb{Z}^p} f[k] \varphi_{int}(k_0 - k)$
 $k \in \mathbb{Z}^p$ Only possible for all f iff. $\varphi_{int}(k) = \begin{cases} 1, k = 0\\ 0, \text{ otherwise} \end{cases}$

Generic C-code (splines of any degree *n*) Main recursion void ConvertToInterpolationCoefficients (double c[], long DataLength, double z[], long NbPoles, double Tolerance) {double Lambda = 1.0; long n, k; if (DataLength == 1L) return; for (k = 0L; k < NbPoles; k++) Lambda = Lambda * (1.0 - z[k]) * (1.0 - 1.0 / z[k]); for (n = 0L; n < DataLength; n++) c[n] *= Lambda; for (k = 0L; k < NbPoles; k++) { c[0] = InitialCausalCoefficient(c, DataLength, z[k], Tolerance); for (n = 1L; n < DataLength; n++) c[n] += z[k] * c[n - 1L]; c[DataLength - 1L] = (z[k] / (z[k] * z[k] - 1.0)) * (z[k] * c[DataLength - 2L] + c[DataLength - 1L]); for (n = DataLength - 2L; 0 <= n; n--) c[n] = z[k] * (c[n + 1L]- c[n]); } Initialization double InitialCausalCoefficient (double c[], long DataLength, double z, double Tolerance) { double Sum, zn, z2n, iz; long n, Horizon; Horizon = (long)ceil(log(Tolerance) / log(fabs(z))); if (DataLength < Horizon) Horizon = DataLength; zn = z; Sum = c[0]; for (n = 1L; n < Horizon; n++) {Sum += zn * c[n]; zn *= z;} return(Sum); } 1-20

<section-header><section-header><section-header><section-header><section-header><image><image><image><image>

Multi-modal image registration

Specificities of the approach

- Criterion: mutual-information
- Cubic-spline model
 - high quality
 - sub-pixel accuracy
- Multiresolution strategy
- Marquardt-Levenberg-like optimizer
 - Speed
 - Robustness

Thévenaz and Unser, IEEE Trans. Imag Proc, 2000

CONCLUSION

- Generalized interpolation
 - Same as standard interpolation, except for a **prefiltering** step
 - Offers more flexibility
 - Best cost/performance tradeoff (splines)
 - Infinite-support interpolator at finite cost
- Special case of polynomial splines
 - Simple to manipulate
 - Smooth and well-behaved
 - Excellent approximation properties
 - Multiresolution properties
- Unifying formulation for continuous/discrete image processing
 - Tools: digital filters, convolution operators
 - Efficient recursive filtering solutions
 - Flexibility: piecewise-constant to bandlimited

1-37

Splines: the end of the tunnel Survey article on interpolation, IEEE TMI, 2000 Comparison of 31 interpolation algorithms: "It [the cubic B-spline interpolator] produces one of the best results in terms of similarity to the original images, and of the top methods, it runs fastest." Addendum on spline interpolation, *IEEE TMI*, 2001 "Therefore, high-degree B-splines are preferable interpolators for numerous applications in medical imaging, particularly if high precision is required." (Lehmann et al) Recent evaluation of interpolation, Med. Image Anal., 2001 Comparison of 126 interpolation algorithms: "The results show that spline interpolation is to be preferred over all other methods, both for its accuracy and its relatively low cost." (Meijering et al)

Acknowledgments

Many thanks to

- Dr. Thierry Blu
- Prof. Akram Aldroubi
- Prof. Murray Eden
- Dr. Philippe Thévenaz
- Annette Unser, Artist
- + many other researchers, and graduate students

Bibliography

- Spline tutorial
 - M. Unser, "Splines: A Perfect Fit for Signal and Image Processing," IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22-38, 1999.

Pyramids and resizing

- M. Unser, A. Aldroubi, M. Eden, "The L₂-Polynomial Spline Pyramid," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 4, pp. 364-379, April 1993.
- A. Muñoz Barrutia, T. Blu, M. Unser, "Least-Squares Image Resizing Using Finite Differences," *IEEE Trans. Image Processing*, vol. 10, no. 9, pp. 1365-1378, September 2001.

Generalized interpolation

- P. Thévenaz, T. Blu, M. Unser, "Interpolation Revisited," *IEEE Trans. Medical Imaging*, vol. 19, no. 7, pp. 739-758, July 2000.
- Preprints and demos: http://bigwww.epfl.ch/

Sampling and interpolation for biomedical imaging: Part II

Michael Unser Biomedical Imaging Group EPFL, Lausanne Switzerland

ISBI 2006, Tutorial, Washington DC, April 2006

SAMPLING PRELIMINARIES

- Function and sequence spaces
- Smoothness conditions and sampling
- Shift-invariant subspaces
- Equivalent basis functions

Continuous-domain signals

Mathematical representation: a function of the continuous variable $x \in \mathbb{R}$

Lebesgue's space of finite-energy functions

$$L_2(\mathbb{R}) = \left\{ f(x), x \in \mathbb{R} : \int_{x \in \mathbb{R}} |f(x)|^2 dx < +\infty \right\}$$

$$L_2 \text{-Inflet product. } \langle f, g \rangle = \int_{x \in \mathbb{R}} f(x)g(x) dx$$

- L_2 -norm: $||f||_{L_2} = \left(\int_{x \in \mathbb{R}} |f(x)|^2 \mathrm{d}x\right)^{1/2} = \sqrt{\langle f, f \rangle}$
- Fourier transform

Integral definition:
$$\hat{f}(\omega) = \int_{x \in \mathbb{R}} f(x) e^{-j\omega x} \mathrm{d}x$$

Parseval relation: $||f||_{L_2}^2 = \frac{1}{2\pi} \int_{\omega \in \mathbb{R}} |\hat{f}(\omega)|^2 d\omega$

2-5

Discrete-domain signals

Mathematical representation: a sequence indexed by the discrete variable $k \in \mathbb{Z}$

Space of finite-energy sequences

$$\ell_{2}(\mathbb{Z}) = \left\{ a[k], k \in \mathbb{Z} : \sum_{k \in \mathbb{Z}} |a[k]|^{2} < +\infty \right\}$$

$$\ell_{2}\text{-norm:} \|a\|_{\ell_{2}} = \left(\sum_{k \in \mathbb{Z}} |a[k]|^{2}\right)^{1/2}$$

Discrete-time Fourier transform

$$z\text{-transform: } A(z) = \sum_{k \in \mathbb{Z}} a[k] z^{-k}$$

Fourier transform:
$$A(e^{j\omega}) = \sum_{k \in \mathbb{Z}} a[k] e^{-j\omega k}$$

2-7

Smoothness conditions and sampling

Sobolev's space of order $s \in \mathbb{R}^+$

$$W_2^s(\mathbb{R}) = \left\{ f(x), x \in \mathbb{R} : \int_{\omega \in \mathbb{R}} (1 + |\omega|^{2s}) |\hat{f}(\omega)|^2 \mathrm{d}\omega < +\infty \right\}$$

f and all its derivatives up to (fractional) order \boldsymbol{s} are in L_2

- Mathematical requirements for ideal sampling
 - The input signal f(x) should be continuous
 - The samples $f[k] = f(x)|_{x=k}$ should be in ℓ_2

Theorem

Let $f(x) \in W_2^s$ with $s > \frac{1}{2}$. Then, the samples of f at the integers, $f[k] = f(x)|_{x=k}$, are in ℓ_2 and

$$F(e^{j\omega}) = \sum_{k \in \mathbb{Z}} f[k] e^{-j\omega k} = \sum_{n \in \mathbb{Z}} \widehat{f}(\omega + 2\pi n) \qquad \quad \text{a.e.}$$

Generalized (almost everywhere) version of Poisson's formula [Blu-U., 1999]

Shift-invariant spaces

Integer-shift-invariant subspace associated with a generating function φ (e.g., B-spline):

$$V(\varphi) = \left\{ f(x) = \sum_{k \in \mathbb{Z}} c[k]\varphi(x-k) : c \in \ell_2(\mathbb{Z}) \right\}$$

Generating function:
$$\varphi(x) \qquad \stackrel{\mathcal{F}}{\longleftrightarrow} \qquad \hat{\varphi}(\omega) = \int_{x \in \mathbb{R}} \varphi(x) e^{-j\omega x} dx$$

Autocorrelation (or Gram) sequence
 $a_{\varphi}[k] \stackrel{\Delta}{=} \langle \varphi(\cdot), \varphi(\cdot - k) \rangle \qquad \stackrel{\mathcal{F}}{\longleftrightarrow} \qquad A_{\varphi}(e^{j\omega}) = \sum_{n \in \mathbb{Z}} |\hat{\varphi}(\omega + 2\pi n)|^2$
Piezz basis condition

Riesz-basis condition

$$\begin{array}{ll} \text{Positive-definite Gram sequence:} & 0 < A^2 \leq \sum_{n \in \mathbb{Z}} A_{\varphi}(e^{j\omega}) \leq B^2 < +\infty \\ & & \\ & & \\ A \cdot \|c\|_{\ell_2} \leq \underbrace{\left\|\sum_{k \in \mathbb{Z}} c[k]\varphi(x-k)\right\|_{L_2}}_{\|f\|_{L_2}} \leq B \cdot \|c\|_{\ell_2} \end{array}$$

 $\text{Orthonormal basis} \ \Leftrightarrow \ a_{\varphi}[k] = \delta_k \ \Leftrightarrow \ A_{\varphi}(e^{j\omega}) = 1 \ \Leftrightarrow \ \|c\|_{\ell_2} = \|f\|_{L_2} \ \text{(Parseval)}$

2-9

Equivalent and dual basis functions

• Equivalent basis functions: $\varphi_{eq}(x) = \sum_{k \in \mathbb{Z}} p[k]\varphi(x-k)$

Proposition. Let φ be a valid (Riesz) generator of $V(\varphi) = \operatorname{span}\{\varphi(x-k)\}_{k\in\mathbb{Z}}$. Then, φ_{eq} also generates a Riesz basis of $V(\varphi)$ iff.

 $0 < C_1 \le |P(e^{j\omega})|^2 \le C_2 < +\infty$ (almost everywhere)

Dual basis function

Unique function $\overset{\circ}{\varphi} \in V(\varphi)$ such that $\langle \varphi(x), \overset{\circ}{\varphi}(x-k) \rangle = \delta_k$ (biorthogonality)

Together, φ and $\overset{\circ}{\varphi}$ operate as if they were an orthogonal basis; i.e., the orthogonal projector of any function $f \in L_2$ onto $V(\varphi)$ is given by

 $P_{V(\varphi)}f(x) = \sum_{k \in \mathbb{Z}} \underbrace{\langle f, \overset{\circ}{\varphi}(\cdot - k) \rangle}_{c[k]} \varphi(x - k)$

SAMPLING REVISITED

- Generalized sampling system
- Generalized sampling theorem
- Consistent sampling: properties
- Performance analysis
- Applications

Application 2: consistent image display

Problem specification

- Ideal acquisition device: $\varphi_1(x, y) = \operatorname{sinc}(x) \cdot \operatorname{sinc}(y)$
- LCD display: $\varphi_2(x, y) = \operatorname{rect}(x) \cdot \operatorname{rect}(y)$

Separable image-enhancement filter

$$A_{12}(e^{j\omega}) = \sum_{n \in \mathbb{Z}} \hat{\varphi}_1^*(\omega + 2\pi n) \hat{\varphi}_2(\omega + 2\pi n) \quad \Rightarrow \quad Q(e^{j\omega}) = \frac{1}{\operatorname{sinc}\left(\frac{\omega}{2\pi}\right)}$$

QUANTITATIVE APPROXIMATION THEORY

- Order of approximation
- Fourier-domain prediction of the L₂-error
- Strang-Fix conditions
- Spline case
- Asymptotic form of the error
- Optimized basis functions (MOMS)
- Comparison of interpolators

Fourier-domain prediction of the *L*₂-error

Theorem [Blu-U., 1999]

Let $\mathbf{P}_a f$ denote the orthogonal projection of f onto $V_a(\varphi)$ (at scale a). Then,

$$\forall f \in W_2^s, \quad \|f - \mathbf{P}_a f\|_{L_2} = \left(\int_{-\infty}^{+\infty} |\hat{f}(\omega)|^2 E_{\varphi}(a\omega) \frac{d\omega}{2\pi}\right)^{1/2} + o(a^s)$$

where

$$E_{\varphi}(\omega) = 1 - \frac{|\hat{\varphi}(\omega)|^2}{\sum_{k \in \mathbb{Z}} |\hat{\varphi}(\omega + 2\pi k)|^2}$$

Fourier-transform notation:
$$\hat{f}(\omega) = \int_{-\infty}^{+\infty} f(x) e^{-j\omega x} dx$$

2-21

Strang-Fix conditions of order L

Let $\varphi(x)$ satisfy the Riesz-basis condition. Then, the following Strang-Fix conditions of order L are equivalent:

(1)
$$\hat{\varphi}(0) = 1$$
, and $\hat{\varphi}^{(n)}(2\pi k) = 0$ for $\begin{cases} k \neq 0 \\ n = 0 \dots L - 1 \end{cases}$

(2) $\varphi(x)$ reproduces the polynomials of degree L-1; i.e., there exist weights $p_n[k]$ such that

$$x^n = \sum_{k \in \mathbb{Z}} p_n[k] \varphi(x-k)$$
, for $n = 0 \dots L-1$

(3)
$$E_{\varphi}(\omega) = \frac{C_L^2}{(2L)!} \cdot \omega^{2L} + O(\omega^{2L+2})$$

(4)
$$\forall f \in W_2^L$$
, $||f - P_a f||_{L_2} = O(a^L)$

Asymptotic form of the error Theorem [U.-Daubechies, 1997] Let φ be an Lth order function. Then, asymptotically, as $a \to 0$, $\forall f \in W_2^L$, $\|f - P_a f\|_{L_2} = C_L \cdot a^L \cdot \|f^{(L)}\|_{L_2}$ where $C_L = \frac{1}{L!} \sqrt{2 \sum_{n=1}^{+\infty} |\hat{\varphi}^{(L)}(2\pi n)|^2} \qquad (= \sqrt{\frac{E_{\varphi}^{(2L)}(0)}{(2L)!}})$

$$C_{L,\text{splines}} = \frac{\sqrt{2\zeta(2L)}}{(2\pi)^L} = \sqrt{\frac{B_{2L}}{(2L)!}}$$

(Bernoulli number of order 2L)

Optimized basis functions (MOMS)

Motivation

- Cost of prefiltering is negligible (in 2D and 3D)
- \blacksquare Computational cost depends on kernel size W
- Order of approximation is a strong determinant of quality

QUESTION: What are the basis functions with maximum order of approximation and minimum support ?

ANSWER: Shortest functions of order *L* (MOMS)

 $\varphi_{\text{moms}}(x) = \sum_{k=0}^{L-1} a_k \mathbf{D}^k \beta^{L-1}(x)$

Most interesting MOMS

- B-splines: smoothest $(\beta^{L-1} \in \dot{C}^{L-1})$ and only refinable MOMS
- Shaum's piecewise-polynomial interpolants (no prefilter)
- OMOMS: smallest approximation constant C_L

$$\varphi_{\text{opt}}^3(x) = \beta^3(x) + \frac{1}{42} \frac{\mathrm{d}^2 \beta^3(x)}{\mathrm{d}x^2}$$

INTERPOLATION IN THE PRESENCE OF NOISE

- Interpolation and regularization
- Smoothing splines
- General concept of an L-spline
- Optimal Wiener-like estimators

MMSE estimation in the presence of noise

Statistical hypotheses

- Discrete measurements (signal + noise): f[k] = s(k) + n[k]
- Signal autocorrelation: $c_s(x)$ such that $L^*L\{c_s(x)\} = \sigma_0^2 \cdot \delta(x)$
- Discrete white noise with variance $\sigma^2 \Rightarrow c_n[k] = \sigma^2 \cdot \delta[k]$

MMSE continuous-domain signal estimation

Theorem

Under the above assumptions, the linear Minimum-Mean Square Error Estimator of s(x) at position $x = x_0$, given the measurements $\{f[k]\}_{k \in \mathbb{Z}}$, is $s_\lambda(x_0)$ with $\lambda = \frac{\sigma^2}{\sigma_0^2}$, where $s_\lambda(x)$ is the L*L-smoothing-spline fit of $\{f[k]\}_{k \in \mathbb{Z}}$ given by the generalized smoothing-spline algorithm.

Remark: optimal overall estimators if one adds the assumption of Gaussianity

CONCLUSION

- Generalized sampling
 - Unifying Hilbert-space formulation: Riesz basis, etc.
 - Approximation point of view: projection operators (oblique vs. orthogonal)
 - Increased flexibility; closer to real-world systems
 - Generality: nonideal sampling, interpolation, etc...
- Quest for the "optimal" representation space
 - Not bandlimited ! (prohibitive cost, ringing, etc.)
 - Quantitative approximation theory: L₂-estimates, asymptotics
 - Optimized functions: MOMS
 - Signal-adapted design ?
- Interpolation/approximation in the presence of noise
 - Regularization theory: smoothing splines
 - Stochastic formulation: new, hybrid form of Wiener filter

