ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Sampling and interpolation for biomedical imaging: Part I

Michael Unser
Biomedical Imaging Group
EPFL, Lausanne
Switzerland

ISBI 2006, Tutorial, Washington DC, April 2006

INTRODUCTION

■ Fundamental issue in biomedical imaging

Acquisition
Linking the discrete and the continuous

- Mismatch between theory and practice
- Theory : Shannon's sampling theorem
- Practice: nearest neighbor, linear interpolation
- Limitations of Shannon sampling theory
- Ideal lowpass filters do not exist
- Incompatible with finite support signals
- Gibbs oscillations
- Slow decay of $\operatorname{sinc}(x)$

Basic problem

Interpolation and biomedical imaging

Image processing task	Specific operation	Imaging modality
Tomographic reconstruction	- Filtered backprojection - Fourier reconstruction - Iterative techniques - 3D + time	Commercial CT (X-rays) EM PET, SPECT Dynamic CT, SPECT, PET
Sampling grid conversion	- Polar-to-cartesian coordinates - Spiral sampling - k-space sampling - Scan conversion	Ultrasound (endovascular) Spiral CT, MRI MRI
Visualization	2D operations - Zooming, panning, rotation - Re-sizing, scaling	All
	- Stereo imaging - Range, topography	Fundus camera OCT
	3D operations - Re-slicing - Max. intensity projection - Simulated X-ray projection	CT, MRI, MRA
	Surface/volume rendering - Iso-surface ray tracing - Gradient-based shading - Stereogram	$\begin{aligned} & \text { CT } \\ & \text { MRI } \end{aligned}$
Geometrical correction	- Wide-angle lenses - Projective mapping - Aspect ratio, tilt - Magnetic field distortions	Endoscopy C-Arm fluoroscopy Dental X-rays MRI
Feature detection	- Motion compensation - Image subtraction - Mosaicking - Correlation-averaging - Patient positioning - Retrospective comparisons - Multi-modality imaging - Stereotactic normalization - Brain warping	fMRI, fundus camera DSA Endoscopy, fundus camera, EM microscopy Surgery, radiotherapy CT/PET/MRI
	- Contours - Ridges - Differential geometry	All
	Contour extraction - Snakes and active contours	MRI, Microscopy (cytology)

Splines: a unifying framework

Linking the discrete and the continuous ..

Splines: bad press phenomenon

- Classical review article on interpolation, IEEE TMI, 1983 Comparison of four interpolators:
"The cubic B-spline provides the most smoothing."
- Classical book on Digital Image Processing, 1991 (2nd ed) About high-order B-splines:
"[out-of-band] interpolation error reduces significantly for higher-order interpolation functions, but at the expense of resolution error [i.e., distortion]"
- Recent book on Volume Rendering, 1998
"The results of scaling the original image using [cubic] B-spline interpolation are shown in Figure 5.20. You can see the blurring effects \qquad .."

CONTINUOUS/DISCRETE REPRESENTATION

- Splines: definition
- Basic atoms: B-splines
- Riesz bases

Splines: definition

Definition: A function $s(x)$ is a polynomial spline of degree n with knots
$\cdots<x_{k}<x_{k+1}<\cdots$ iff. it satisfies the following two properties:

- Piecewise polynomial:
$s(x)$ is a polynomial of degree n within each interval $\left[x_{k}, x_{k+1}\right)$;
- Higher-order continuity:
$s(x), s^{(1)}(x), \cdots, s^{(n-1)}(x)$ are continuous at the knots x_{k}.

- Effective degrees of freedom per segment:

| $(n+1)$ -
 (polynomial coefficients) n
 (constraints) | | |
| :---: | :---: | :---: | :---: |

- Cardinal splines = unit spacing and infinite number of knots

The right framework for signal processing !

Polynomial B-splines

- B-spline of degree n

$$
\begin{gathered}
\beta_{+}^{n}(x)=\underbrace{\beta_{+}^{0} * \beta_{+}^{0} * \cdots * \beta_{+}^{0}}_{(n+1) \text { times }}(x) \\
\square \square \square \square \cdots \square \square
\end{gathered}
$$

$$
\beta_{+}^{0}(x)=\left\{\begin{array}{lc}
1, & x \in[0,1) \\
0, & \text { otherwise } .
\end{array}\right.
$$

- Key properties
- Compact support: shortest polynomial spline of degree n
- Positivity
- Piecewise polynomial
- Smoothness: Hölder-continuous of order n

■ Symmetric B-spline
$\beta^{n}(x)=\beta_{+}^{n}\left(x+\frac{n+1}{2}\right)$

B-spline representation

Theorem (Schoenberg, 1946)

Every cardinal polynomial spline $s(x)$ has a unique and stable representation in terms of its B-spline expansion

In modern terminology: $\left\{\beta_{+}^{n}(x-k)\right\}_{k \in \mathbb{Z}}$ forms a Riesz basis.

B-spline representation of images

- Symmetric, tensor-product B-splines

$$
\beta^{n}\left(x_{1}, \cdots, x_{d}\right)=\beta^{n}\left(x_{1}\right) \times \cdots \times \beta^{n}\left(x_{d}\right)
$$

Multidimensional spline function

$$
\begin{aligned}
& \qquad s\left(x_{1}, \cdots, x_{d}\right)=\sum_{\left(k_{1}, \cdots k_{d}\right) \in \mathbb{Z}^{d}} c\left[k_{1}, \cdots, k_{d}\right] \beta^{n}\left(x_{1}-k_{1}, \cdots, x_{d}-k_{d}\right) \\
& \text { ntinuous-space image } \\
& \text { image array } \\
& \text { (B-spline coefficients) }
\end{aligned}
$$

Riesz basis

Definition: Let $V=\operatorname{span}\left\{\varphi_{k}\right\}_{k \in \mathbb{Z}}$ be a subspace of a Hilbert space H. Then, $\left\{\varphi_{k}\right\}_{k \in \mathbb{Z}}$ is a Riesz basis of V iff. there exist two constants $A>0$ and $B<+\infty$ s.t.

$$
\forall c \in \ell_{2}, \quad A \cdot\|c\|_{\ell_{2}} \leq \underbrace{\left\|\sum_{k \in \mathbb{Z}} c_{k} \varphi_{k}\right\|_{H}}_{\|f\|_{H}} \leq B \cdot\|c\|_{\ell_{2}}
$$

Unique representation of a function $f \in V: \quad f=\sum_{k \in \mathbb{Z}} c_{k} \varphi_{k}$

- Properties

- Linear independence

Consequence of lower Riesz bound: $\quad f=0 \Rightarrow c_{k}=0$

- Stability

Perturbation: $c+\Delta c \longrightarrow f+\Delta f$
Consequence of upper Riesz bound: $\quad\|\Delta c\|_{\ell_{2}}$ bounded $\Rightarrow\|\Delta f\|_{H}$ bounded

- Norm equivalence

The basis is orthonormal iff. $A=B=1$, in which case, $\|c\|_{\ell_{2}}=\|f\|_{H}$

Shift-invariant spaces

Integer-shift-invariant subspace associated with a generating function φ (e.g. B-spline):

$$
V(\varphi)=\left\{f(\boldsymbol{x})=\sum_{\boldsymbol{k} \in \mathbb{Z}^{p}} c[\boldsymbol{k}] \varphi(\boldsymbol{x}-\boldsymbol{k}): c \in \ell_{2}\left(\mathbb{Z}^{p}\right)\right\}
$$

Generating function: $\varphi(\boldsymbol{x}) \quad \mathcal{F}$ $\xrightarrow{\mathcal{F}}$ $\hat{\varphi}(\boldsymbol{\omega})=\int_{\boldsymbol{x} \in \mathbb{R}^{p}} \varphi(\boldsymbol{x}) e^{-j\langle\boldsymbol{\omega}, \boldsymbol{x}\rangle} \mathrm{d} x_{1} \cdots \mathrm{~d} x_{p}$

Proposition. $V(\varphi)$ is a subspace of $L_{2}\left(\mathbb{R}^{p}\right)$ with $\{\varphi(\boldsymbol{x}-\boldsymbol{k})\}_{\boldsymbol{k} \in \mathbb{Z}^{p}}$ as its Riesz basis iff.

$$
0<A^{2} \leq \sum_{\boldsymbol{n} \in \mathbb{Z}^{p}}|\hat{\varphi}(\boldsymbol{\omega}+2 \pi \boldsymbol{n})|^{2} \leq B^{2}<+\infty \quad \text { (almost everywhere) }
$$

Hint for the proof (in 1D):

$$
\begin{aligned}
\|c\|_{\ell_{2}}^{2} & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|C\left(e^{j \omega}\right)\right|^{2} \mathrm{~d} \omega \quad \text { (Parseval) } \\
\|f\|_{L_{2}}^{2} & =\frac{1}{2 \pi} \int_{\omega \in \mathbb{R}}\left|C\left(e^{j \omega}\right)\right|^{2}|\hat{\varphi}(\omega)|^{2} \mathrm{~d} \omega \\
& =\frac{1}{2 \pi} \sum_{n \in \mathbb{Z}} \int_{0}^{2 \pi}\left|C\left(e^{j \omega}\right)\right|^{2}|\hat{\varphi}(\omega+2 \pi n)|^{2} \mathrm{~d} \omega=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|C\left(e^{j \omega}\right)\right|^{2} \sum_{n \in \mathbb{Z}}|\hat{\varphi}(\omega+2 \pi n)|^{2} \mathrm{~d} \omega
\end{aligned}
$$

INTERPOLATION REVISITED

- Classical interpolation
- Generalized interpolation
- Interpolation: filtering solution
- Application

Classical image interpolation

Discrete image data
$f[\boldsymbol{k}], \boldsymbol{k}=\left(k_{1}, \cdots, k_{p}\right) \in \mathbb{Z}^{p}$

Continuous image model
$f(\boldsymbol{x}), \quad \boldsymbol{x}=\left(x_{1}, \cdots, x_{p}\right) \in \mathbb{R}^{p}$

■ Interpolation formula: $f(\boldsymbol{x})=\sum_{\boldsymbol{k} \in \mathbb{Z}^{p}} f[\boldsymbol{k}] \varphi_{\mathrm{int}}(\boldsymbol{x}-\boldsymbol{k})$

- $f[\boldsymbol{k}]$: pixel values at location \boldsymbol{k}
- $\varphi_{\text {int }}(\boldsymbol{x})$: continuous-space interpolation function
- $\varphi_{\text {int }}(\boldsymbol{x}-\boldsymbol{k})$: interpolation function translated to location \boldsymbol{k}
- Interpolation condition

At the grid points $\boldsymbol{x}=\boldsymbol{k}_{0}: f\left(\boldsymbol{k}_{0}\right)=\sum_{\boldsymbol{k} \in \mathbb{Z}^{p}} f[\boldsymbol{k}] \varphi_{\text {int }}\left(\boldsymbol{k}_{0}-\boldsymbol{k}\right)$
Only possible for all f iff. $\quad \varphi_{\text {int }}(\boldsymbol{k})= \begin{cases}1, & \boldsymbol{k}=\mathbf{0} \\ 0, & \text { otherwise }\end{cases}$

Examples of popular interpolation functions

■ Bandlimited

- Piecewise linear

$$
\varphi_{\mathrm{int}}(k)=\delta_{k}= \begin{cases}1, & k=0 \\ 0, & \text { otherwise }\end{cases}
$$

Interpolation condition:

■ Cubic convolution

[Keys, 1981; Karup-King 1899]

Generalized image interpolation

■ Desired features for the interpolation kernel

- short (to minimize computations)
- simple expression (e.g., polynomial)
- smooth (to avoid model discontinuities)
- good approximation properties: reproduction of polynomials
- Generalized interpolation formula:

$$
f(\boldsymbol{x})=\sum_{\boldsymbol{k} \in \mathbb{Z}^{p}} c[\boldsymbol{k}] \varphi(\boldsymbol{x}-\boldsymbol{k})
$$

- Simple shift-invariant structure
- simple expression (e.g., polynomial)
- φ selected freely (not interpolating and much shorter)

\square
 Faster interpolation formulas!

but one new difficulty:
How to pre-compute the coefficients $c[\boldsymbol{k}]$?
Separable basis functions: $\quad \varphi(\boldsymbol{x})=\varphi\left(x_{1}\right) \cdot \varphi\left(x_{2}\right) \cdots \varphi\left(x_{p}\right)$

Interpolation: filtering solution

Interpolation problem: Given the samples $\{f[\boldsymbol{k}]\}$, find the (B-spline) expansion coefficients $\{c[\boldsymbol{k}]\}$
■ Interpolation condition: $\left.f(\boldsymbol{x})\right|_{\boldsymbol{x}=\boldsymbol{k}}=f[\boldsymbol{k}]=\sum_{\boldsymbol{k}_{1} \in \mathbb{Z}^{p}} c\left[\boldsymbol{k}_{1}\right] \varphi\left(\boldsymbol{k}-\boldsymbol{k}_{1}\right)$
Discrete convolution equation: $f[\boldsymbol{k}]=(b * c)[\boldsymbol{k}]$

$$
\text { with } b[\boldsymbol{k}] \triangleq \varphi(\boldsymbol{k}) \quad \stackrel{z}{\longleftrightarrow} B(\mathbf{z})=\sum_{\boldsymbol{k} \in \mathbb{Z}^{p}} b[\boldsymbol{k}] \mathbf{z}^{-\boldsymbol{k}}
$$

■ Inverse filtering solution

One-to-one continuous/discrete representation

Continuously defined signal
B-spline coefficients

Riesz-basis property

Sampling: $\left.f(\boldsymbol{x})\right|_{\boldsymbol{x}=\boldsymbol{k}}$
$f[k]$

Discrete signal
In principle, all φ 's are equally acceptable, but. . .

Example: cubic-spline interpolation

- Cubic B-spline
$\varphi(x)=\beta^{3}(x)= \begin{cases}\frac{2}{3}-\frac{1}{2}|x|^{2}(2-|x|), & 0 \leq|x|<1 \\ \frac{1}{6}(2-|x|)^{3}, & 1 \leq|x|<2 \\ 0, & \text { otherwise }\end{cases}$

- Discrete B-spline kernel: $\quad B(z)=\frac{z+4+z^{-1}}{6}$

■ Interpolation filter

$$
\frac{6}{z+4+z^{-1}}=\frac{(1-\alpha)^{2}}{(1-\alpha z)\left(1-\alpha z^{-1}\right)} \quad \stackrel{z}{\longleftrightarrow} \quad h_{\mathrm{int}}[k]=\left(\frac{1-\alpha}{1+\alpha}\right) \alpha^{|k|}
$$

$$
\alpha=-2+\sqrt{3}=-0.171573
$$

(symmetric exponential)

Cascade of first-order recursive filters

causal
anti-causal

Generic C-code (splines of any degree n)

- Main recursion

```
void ConvertToInterpolationCoefficients (
            double c[ ], long DataLength, double z[ ], long NbPoles, double Tolerance)
{double Lambda = 1.0; long n, k;
    if (DataLength == 1L) return;
    for (k = 0L; k < NbPoles; k++) Lambda = Lambda * (1.0-z[k]) * (1.0-1.0 / z[k]);
    for (n = OL; n < DataLength; n++) c[n] *= Lambda;
    for (k = OL; k < NbPoles; k++) {
            c[0] = InitialCausalCoefficient(c, DataLength, z[k], Tolerance);
            for (n = 1L; n < DataLength; n++) c[n] += z[k] * c[n-1L];
            c[DataLength - 1L] = (z[k]/(z[k]* z[k]-1.0))
            * (z[k] * c[DataLength - 2L] + c[DataLength - 1L]);
            for (n = DataLength - 2L; 0 <= n; n--) c[n] = z[k] * (c[n + 1L]- c[n]); }
}
```

- Initialization

```
double InitialCausaICoefficient (
            double c[], long DataLength, double z, double Tolerance)
{ double Sum, zn, z2n, iz; long n, Horizon;
    Horizon = (long)ceil(log(Tolerance) / log(fabs(z)));
    if (DataLength < Horizon) Horizon = DataLength;
    zn = z; Sum = c[0];
    for (n = 1L; n < Horizon; n++) {Sum += zn * c[n]; zn *= z;}
    return(Sum);
}
```


Interpolating basis function

■ Equivalent interpretation of generalized interpolationn

$$
\begin{aligned}
f(x)=\sum_{k \in \mathbb{Z}} c[k] \varphi(x-k) & =\sum_{k \in \mathbb{Z}}\left(f[k] * h_{\text {int }}[k]\right) \varphi(x-k) \\
& =\sum_{k \in \mathbb{Z}} f[k] \varphi_{\text {int }}(x-k)
\end{aligned}
$$

- Interpolation basis function

$$
\varphi_{\mathrm{int}}(x)=\sum_{k \in \mathbb{Z}} h_{\mathrm{int}}[k] \varphi(x-k)
$$

Example: cubic-spline interpolant

Finite-cost implementation of an infinite impulse response interpolator !

Limiting behavior (splines)

- Spline interpolator

Impulse response
Frequency response
$\varphi_{\mathrm{int}}^{n}(x) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad \hat{\varphi}_{\mathrm{int}}^{n}(\omega)=\left(\frac{\sin (\omega / 2)}{\omega / 2}\right)^{n+1} H_{\mathrm{int}}^{n}\left(e^{j \omega}\right)$

- Asymptotic property

The cardinal spline interpolators converge to the sinc-interpolator (ideal filter) as the degree goes to infinity:

$$
\lim _{n \rightarrow \infty} \varphi_{\text {int }}^{n}(x)=\operatorname{sinc}(x), \quad \lim _{n \rightarrow \infty} \hat{\varphi}_{\text {int }}^{n}(\omega)=\operatorname{rect}\left(\frac{\omega}{2 \pi}\right) \quad \text { (in all } L_{p} \text {-norms) }
$$

Geometric transformation of images

- 2D separable model

$$
f\left(x_{0}, y_{0}\right)=\sum_{k=k_{0}\left(x_{0}\right)}^{k_{0}+n+1} \sum_{l=l_{0}\left(y_{0}\right)}^{l_{0}+n+1} c[k, l] \varphi\left(x_{0}-l\right) \varphi\left(y_{0}-l\right)
$$

- Applications

zooming, rotation, re-sizing, re-formatting, warping

Cubic-spline coefficients in 2D

Pixel values $f[k, l]$

B-spline coefficients $c[k, l]$

Interpolation benchmark

Cumulative rotation experiment: the best algorithm wins !

High-quality image interpolation

MINIMUM-ERROR SIGNAL APPROXIMATION

- Least-squares approximation
- Orthogonal projection
- Image pyramids

Least-squares fit: multi-scale approximation

■ Shift-invariant space at scale a

$$
V_{a}(\varphi)=\left\{s(x)=\sum_{k \in \mathbb{Z}} c[k] \varphi_{a}(x-a k): c[k] \in \ell_{2}\right\}
$$

- Rescaled basis function: $\varphi_{a}(x) \triangleq a^{-1 / 2} \varphi\left(\frac{x}{a}\right)$

■ Minimum-error approximation at scale a

Image pyramids

■ Successive approximations at dyadic scales
$V_{2^{i}}(\varphi)=\left\{s(x)=\sum_{k \in \mathbb{Z}} c_{i}[k] \varphi_{2^{i}}\left(x-2^{i} k\right): c_{i}[k] \in \ell_{2}\right\}$
Rescaled basis function: $\varphi_{2^{i}}(x) \triangleq 2^{-i / 2} \varphi\left(\frac{x}{2^{i}}\right)$

■ Repeated application of REDUCE operator

■ Optimal prefilter

$c_{1}[k]=\left\langle\sum_{l \in \mathbb{Z}} c_{0}[l] \varphi(\cdot-l), \tilde{\varphi}_{2}(\cdot-2 k)\right\rangle=\left(c_{0} * \tilde{h}\right)[2 k]$
$\Rightarrow \quad \tilde{h}[k]=\left\langle\varphi(\cdot), \tilde{\varphi}_{2}(\cdot+k)\right\rangle$

SPLINES: IMAGING APPLICATIONS

- Sampling and interpolation
- Interpolation, re-sampling, grid conversion
- Image reconstruction
- Geometric correction
- Feature extraction
- Contours, ridges
- Differential geometry
- Shape and active contour models
- Image matching
- Stereo
- Image registration (multimodal, rigid-body or elastic)
- Optical flow

Spline approximation: LS resizing

Approximation at arbitrary scales: differential approach using splines

Orthogonal projection onto V_{a} (cubic spline)

$$
a=1 \rightarrow 10
$$

Application: image resizing

- Resizing algorithm
- Interpolation
- Linear splines
- scaling= 70\%

SNR=22.94 dB

Application: image resizing (LS)

- Resizing algorithm
- Orthogonal projector
- Linear splines
- scaling= 70%

(Munoz et al., IEEE Trans. Imag. Proc, 2001)

B-spline derivatives

- Derivative operator
$\mathrm{D} f(x)=\frac{d f(x)}{d x}$
$\stackrel{\mathcal{F}}{\stackrel{I}{4}}$
$(j \omega) \times \hat{f}(\omega)$

■ Finite-difference operator (centered)
$\Delta f(x) \triangleq f\left(x+\frac{1}{2}\right)-f\left(x-\frac{1}{2}\right) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad\left(e^{j \omega / 2}-e^{-j \omega / 2}\right) \times \hat{f}(\omega)$

- Derivative of a B-spline (exact)

Sketch of proof:
$\hat{\beta}^{n}(\omega)=\operatorname{sinc}\left(\frac{\omega}{2 \pi}\right)^{n+1}=\left(\frac{e^{j \omega / 2}-e^{-j \omega / 2}}{j \omega}\right)^{n+1}$
$\Rightarrow(j \omega)^{m} \times \hat{\beta}^{n}(\omega)=\left(e^{j \omega / 2}-e^{-j \omega / 2}\right)^{m} \times\left(\frac{e^{j \omega / 2}-e^{-j \omega / 2}}{j \omega}\right)^{n+1-m}$

Cubic-spline image differentials

■ Convolution-based implementation
$f(k, l)$

$c[k, l]$
(separable)

$\left.\frac{\partial^{p+q}}{\partial x^{p} \partial y^{q}} \varphi(x, y)\right|_{x=k, y=l}$
JAVA code available:
http://bigwww.epfl.ch/

- Hessian masks

$$
\begin{array}{r}
\frac{\partial^{2}}{\partial x^{2}}: \frac{1}{6}\left[\begin{array}{ccc}
1 & -2 & 1 \\
4 & -8 & 4 \\
1 & -2 & 1
\end{array}\right]
\end{array} \frac{\partial^{2}}{\partial x \partial y}: \frac{1}{2 \cdot 2}\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 0 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

$\frac{\partial^{p+q}}{\partial x^{p} \partial y^{q}} f(k, l)$

- Laplacian
$\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}: \frac{1}{3}\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1\end{array}\right]$
- Gradient masks
$\frac{\partial}{\partial x}: \quad \frac{1}{6 \cdot 2}\left[\begin{array}{ccc}-1 & 0 & 1 \\ -4 & 0 & 4 \\ -1 & 0 & 1\end{array}\right]$
$\frac{\partial}{\partial y}: \frac{1}{6 \cdot 2}\left[\begin{array}{rrr}-1 & -4 & -1 \\ 0 & 0 & 0 \\ 1 & 4 & 1\end{array}\right]$

Multi-modal image registration

Specificities of the approach

- Criterion: mutual-information
- Cubic-spline model
- high quality
- sub-pixel accuracy
- Multiresolution strategy
- Marquardt-Levenberg-like optimizer
- Speed
- Robustness

Thévenaz and Unser, IEEE Trans. Imag Proc, 2000

CONCLUSION

- Generalized interpolation
- Same as standard interpolation, except for a prefiltering step
- Offers more flexibility
- Best cost/performance tradeoff (splines)
- Infinite-support interpolator at finite cost
- Special case of polynomial splines
- Simple to manipulate
- Smooth and well-behaved
- Excellent approximation properties
- Multiresolution properties
- Unifying formulation for continuous/discrete image processing
- Tools: digital filters, convolution operators
- Efficient recursive filtering solutions
- Flexibility: piecewise-constant to bandlimited

Splines: the end of the tunnel

- Survey article on interpolation, IEEE TMI, 2000 Comparison of 31 interpolation algorithms:
"It [the cubic B-spline interpolator] produces one of the best results in terms of similarity to the original images, and of the top methods, it runs fastest."
- Addendum on spline interpolation, IEEE TMI, 2001 "Therefore, high-degree B-splines are preferable interpolators for numerous applications in medical imaging, particularly if high precision is required."
- Recent evaluation of interpolation, Med. Image Anal., 2001 Comparison of 126 interpolation algorithms:
" The results show that spline interpolation is to be preferred over all other methods, both for its accuracy and its relatively low cost."

Acknowledgments

Many thanks to

- Dr. Thierry Blu
- Prof. Akram Aldroubi
- Prof. Murray Eden
- Dr. Philippe Thévenaz
- Annette Unser, Artist
+ many other researchers, and graduate students

Bibliography

- Spline tutorial
- M. Unser, "Splines: A Perfect Fit for Signal and Image Processing," IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22-38, 1999.
- Pyramids and resizing
- M. Unser, A. Aldroubi, M. Eden, "The L2-Polynomial Spline Pyramid," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 4, pp. 364-379, April 1993.
A. Muñoz Barrutia, T. Blu, M. Unser, "Least-Squares Image Resizing Using Finite Differences," IEEE Trans. Image Processing, vol. 10, no. 9, pp. 1365-1378, September 2001.
- Generalized interpolation
- P. Thévenaz, T. Blu, M. Unser, "Interpolation Revisited," IEEE Trans. Medical Imaging, vol. 19, no. 7, pp. 739-758, July 2000.
- Preprints and demos: http://bigwww.epfl.ch/

Sampling and interpolation for biomedical imaging: Part II

Michael Unser
Biomedical Imaging Group
EPFL, Lausanne
Switzerland

ISBI 2006, Tutorial, Washington DC, April 2006

SAMPLING: 50+ years after Shannon

Shannon's sampling reinterpreted

- Generating function: $\varphi(x)=\operatorname{sinc}(x)$
- Subspace of bandlimited functions: $V(\varphi)=\operatorname{span}\{\varphi(x-k)\}_{k \in \mathbb{Z}}$

- Analysis: $\quad \tilde{f}(k)=\langle\operatorname{sinc}(x-k), f(x)\rangle$
- Synthesis: $\tilde{f}(x)=\sum_{k \in Z} \tilde{f}(k) \operatorname{sinc}(x-k)$

■ Orthogonal basis: $\langle\operatorname{sinc}(x-k), \operatorname{sinc}(x-l)\rangle=\delta_{k-l}$

Generalized sampling: roadmap

■ Nonideal acquisition system

Goal: Specify φ and the reconstruction algorithm so that $\tilde{f}(x)$ is a good approximation of $f(x)$

Continuous-domain model

$$
\tilde{f}(x)=\sum_{k \in \mathbb{Z}} c[k] \varphi(x-k)
$$

Measurements:
$g[k]=\left.(h * f)(x)\right|_{x=k} \quad+n[k]$

signal coefficients
$\{c[k]\}_{k \in \mathbb{Z}}$
 Interpolation problem

Discrete signal $\{f[k]\}_{k \in \mathbb{Z}}$

SAMPLING PRELIMINARIES

- Function and sequence spaces
- Smoothness conditions and sampling
- Shift-invariant subspaces
- Equivalent basis functions

Continuous-domain signals

Mathematical representation: a function of the continuous variable $x \in \mathbb{R}$
■ Lebesgue's space of finite-energy functions

- $L_{2}(\mathbb{R})=\left\{f(x), x \in \mathbb{R}: \int_{x \in \mathbb{R}}|f(x)|^{2} \mathrm{~d} x<+\infty\right\}$
- L_{2}-inner product: $\langle f, g\rangle=\int_{x \in \mathbb{R}} f(x) g^{*}(x) \mathrm{d} x$
- L_{2}-norm: $\|f\|_{L_{2}}=\left(\int_{x \in \mathbb{R}}|f(x)|^{2} \mathrm{~d} x\right)^{1 / 2}=\sqrt{\langle f, f\rangle}$
- Fourier transform
- Integral definition: $\hat{f}(\omega)=\int_{x \in \mathbb{R}} f(x) e^{-j \omega x} \mathrm{~d} x$
- Parseval relation: $\|f\|_{L_{2}}^{2}=\frac{1}{2 \pi} \int_{\omega \in \mathbb{R}}|\hat{f}(\omega)|^{2} \mathrm{~d} \omega$

Discrete-domain signals

Mathematical representation: a sequence indexed by the discrete variable $k \in \mathbb{Z}$
■ Space of finite-energy sequences

- $\ell_{2}(\mathbb{Z})=\left\{a[k], k \in \mathbb{Z}: \sum_{k \in \mathbb{Z}}|a[k]|^{2}<+\infty\right\}$
- ℓ_{2}-norm: $\|a\|_{\ell_{2}}=\left(\sum_{k \in \mathbb{Z}}|a[k]|^{2}\right)^{1 / 2}$

■ Discrete-time Fourier transform

- z-transform: $A(z)=\sum_{k \in \mathbb{Z}} a[k] z^{-k}$
- Fourier transform: $A\left(e^{j \omega}\right)=\sum_{k \in \mathbb{Z}} a[k] e^{-j \omega k}$

Smoothness conditions and sampling

■ Sobolev's space of order $s \in \mathbb{R}^{+}$
$W_{2}^{s}(\mathbb{R})=\left\{f(x), x \in \mathbb{R}: \int_{\omega \in \mathbb{R}}\left(1+|\omega|^{2 s}\right)|\hat{f}(\omega)|^{2} \mathrm{~d} \omega<+\infty\right\}$
f and all its derivatives up to (fractional) order s are in L_{2}
■ Mathematical requirements for ideal sampling

- The input signal $f(x)$ should be continuous
- The samples $f[k]=\left.f(x)\right|_{x=k}$ should be in ℓ_{2}

Theorem

Let $f(x) \in W_{2}^{s}$ with $s>\frac{1}{2}$. Then, the samples of f at the integers, $f[k]=\left.f(x)\right|_{x=k}$, are in ℓ_{2} and

$$
F\left(e^{j \omega}\right)=\sum_{k \in \mathbb{Z}} f[k] e^{-j \omega k}=\sum_{n \in \mathbb{Z}} \hat{f}(\omega+2 \pi n) \quad \text { a.e. }
$$

Generalized (almost everywhere) version of Poisson's formula [Blu-U., 1999]

Shift-invariant spaces

Integer-shift-invariant subspace associated with a generating function φ (e.g., B-spline):

$$
V(\varphi)=\left\{f(x)=\sum_{k \in \mathbb{Z}} c[k] \varphi(x-k): c \in \ell_{2}(\mathbb{Z})\right\}
$$

Generating function: $\varphi(x) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \hat{\varphi}(\omega)=\int_{x \in \mathbb{R}} \varphi(x) e^{-j \omega x} \mathrm{~d} x$

- Autocorrelation (or Gram) sequence

$$
a_{\varphi}[k] \triangleq\langle\varphi(\cdot), \varphi(\cdot-k)\rangle \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad A_{\varphi}\left(e^{j \omega}\right)=\sum_{n \in \mathbb{Z}}|\hat{\varphi}(\omega+2 \pi n)|^{2}
$$

■ Riesz-basis condition

Orthonormal basis $\Leftrightarrow a_{\varphi}[k]=\delta_{k} \Leftrightarrow A_{\varphi}\left(e^{j \omega}\right)=1 \Leftrightarrow\|c\|_{\ell_{2}}=\|f\|_{L_{2}}$ (Parseval)

Example of sampling spaces

■ Piecewise-constant functions
$\varphi(x)=\operatorname{rect}(x)=\beta^{0}(x)$
$a_{\varphi}[k]=\delta_{k} \quad \Leftrightarrow \quad$ the basis is orthonormal

■ bandlimited functions

$$
\varphi(x)=\operatorname{sinc}(x) \quad \sum_{n \in \mathbb{Z}}|\hat{\varphi}(\omega+2 \pi n)|^{2}=1 \quad \Leftrightarrow \quad \text { the basis is orthonormal }
$$

■ Polynomial splines of degree n

$$
\varphi(x)=\beta^{n}(x)=(\underbrace{\beta^{0} * \beta^{0} \cdots * \beta^{0}}_{(n+1) \text { times }})(x)
$$

Autocorrelation sequence: $\quad a_{\beta^{n}}[k]=\left.\left(\beta^{n} * \beta^{n}\right)(x)\right|_{x=k}=\beta^{2 n+1}(k)$

Proposition. The B -spline of degree n, $\beta^{n}(x)$, generates a Riesz basis with lower and upper Riesz bounds $A=\inf _{\omega}\left\{A_{\beta^{n}}\left(e^{j \omega}\right)\right\} \geq\left(\frac{2}{\pi}\right)^{n+1}$ and $B=\sup _{\omega}\left\{A_{\beta^{n}}\left(e^{j \omega}\right)\right\}=1$.

Equivalent and dual basis functions

- Equivalent basis functions: $\quad \varphi_{\mathrm{eq}}(x)=\sum_{k \in \mathbb{Z}} p[k] \varphi(x-k)$

Proposition. Let φ be a valid (Riesz) generator of $V(\varphi)=\operatorname{span}\{\varphi(x-k)\}_{k \in \mathbb{Z}}$. Then, $\varphi_{\text {eq }}$ also generates a Riesz basis of $V(\varphi)$ iff.

$$
0<C_{1} \leq\left|P\left(e^{j \omega}\right)\right|^{2} \leq C_{2}<+\infty \quad \text { (almost everywhere) }
$$

Dual basis function

Unique function $\stackrel{\circ}{\varphi} \in V(\varphi)$ such that $\langle\varphi(x), \stackrel{\circ}{\varphi}(x-k)\rangle=\delta_{k} \quad$ (biorthogonality)

Together, φ and $\stackrel{\circ}{\varphi}$ operate as if they were an orthogonal basis; i.e., the orthogonal projector of any function $f \in L_{2}$ onto $V(\varphi)$ is given by

$$
\mathrm{P}_{V(\varphi)} f(x)=\sum_{k \in \mathbb{Z}} \underbrace{\langle f, \stackrel{\circ}{\varphi}(\cdot-k)\rangle}_{c[k]} \varphi(x-k)
$$

Example: four equivalent cubic-spline bases

- Cubic B-spline: $\varphi(x)=\beta^{3}(x)$

Compact support

- Interpolating spline: $\varphi_{\text {int }}(x)$

- Dual spline: ${ }^{\circ}(x)$

Biorthogonality: $\langle\varphi(x), \stackrel{\circ}{\varphi}(x-k)\rangle=\delta_{k}$

- Orthogonal spline: $\varphi_{\text {ortho }}(x)$

Orthogonality: $\left\langle\varphi_{\text {ortho }}(x), \varphi_{\text {ortho }}(x-k)\right\rangle=\delta_{k}$

SAMPLING REVISITED

- Generalized sampling system
- Generalized sampling theorem
- Consistent sampling: properties
- Performance analysis
- Applications

Generalized sampling system

- $\varphi_{1}(-x)$: prefilter (acquisition system)
- $\varphi_{2}(x)$: generating function (reconstruction subspace)
- Constraints
- Consistent measurements: $\left\langle\tilde{f}, \varphi_{1}(\cdot-k)\right\rangle=c_{1}[k]=\left\langle f, \varphi_{1}(\cdot-k)\right\rangle, \forall k \in \mathbb{Z}$
- Linearity and integer-shift invariance
\square Digital filtering solution: $\tilde{f}(x)=\sum_{n \in \mathbb{Z}} \underbrace{\left(q * c_{1}\right)[k]}_{c_{2}[k]} \varphi_{2}(x-k)$

Generalized sampling theorem

Cross-correlation sequence: $a_{12}[k]=\left\langle\varphi_{1}(\cdot-k), \varphi_{2}(\cdot)\right\rangle \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad A_{12}\left(e^{j \omega}\right)$

■ Consistent sampling theorem

Let $A_{12}\left(e^{j \omega}\right) \geq m>0$. Then, there exists a unique solution $\tilde{f} \in V\left(\varphi_{2}\right)$ that is consistent with f in the sense that $c_{1}[k]=\left\langle f, \varphi_{1}(\cdot-k)\right\rangle=\left\langle\tilde{f}, \varphi_{1}(\cdot-k)\right\rangle$

$$
\tilde{f}(x)=\mathrm{P}_{2 \perp 1} f(x)=\sum_{n \in \mathbb{Z}}\left(q * c_{1}\right)[k] \varphi_{2}(x-k) \quad \text { with } \quad Q(z)=\frac{1}{\sum_{k \in \mathbb{Z}} a_{12}[k] z^{-k}}
$$

- Geometric interpretation

$\tilde{f}=\mathrm{P}_{2 \perp 1} f$ is the projection of f onto $V\left(\varphi_{2}\right)$ perpendicular to $V\left(\varphi_{1}\right)$.

Consistent sampling: properties

$\tilde{f}=\mathrm{P}_{2 \perp 1} f$: oblique projection onto $V\left(\varphi_{2}\right)$ perpendicular to $V\left(\varphi_{1}\right)$

■ Generalization of Shannon's theorem
Every signal $f \in V\left(\varphi_{2}\right)$ can be reconstructed exactly

- Flexibility and realism
- φ_{1} and φ_{2} can be selected freely
- They need not be biorthogonal (unlike wavelet pairs)

Special case: least-squares approximation

$\varphi_{1} \in V\left(\varphi_{2}\right) \Rightarrow V\left(\varphi_{1}\right)=V\left(\varphi_{2}\right) \Rightarrow \mathrm{P}_{2 \perp 1}=\mathrm{P}_{2}$ (orthogonal projection)
Minimun-error approximation: $\tilde{f}(x)=\mathrm{P}_{2} f(x)=\sum_{k \in \mathbb{Z}} \underbrace{\left\langle f, \stackrel{\circ}{\varphi}_{2}(\cdot-k)\right\rangle}_{\left(c_{1} * q\right)[k]} \varphi_{2}(x-k)$

Application 1: interpolation revisited

- Interpolation constraint
$c_{1}[k]=\left.f(x)\right|_{x=k}=\langle\delta(\cdot-k), f\rangle$
- Interpolator = consistent ideal sampling system
- Ideal sampler: $\varphi_{1}(x)=\delta(x)$
- Reconstruction function: $\varphi_{2}(x)=\varphi(x)$
- Cross-correlation: $a_{12}[k]=\langle\delta(\cdot-k), \varphi(\cdot)\rangle=\varphi(k)$

Reconstruction/interpolation formula

$$
\begin{aligned}
Q_{\mathrm{int}}(z) & =\frac{1}{\sum_{k \in \mathbb{Z}} \varphi(k) z^{-k}} \\
f(x) & =\sum_{k \in \mathbb{Z}} \overbrace{\left(f * q_{\mathrm{int}}\right)[k]}^{c[k]} \varphi(x-k) \\
& =\sum_{k \in \mathbb{Z}} f[k] \varphi_{\mathrm{int}}(x-k)
\end{aligned}
$$

$\varphi_{\text {int }}(x)=\sum_{k \in \mathbb{Z}} q_{\text {int }}[k] \varphi(x-k)$

Application 2: consistent image display

■ Problem specification

- Ideal acquisition device: $\varphi_{1}(x, y)=\operatorname{sinc}(x) \cdot \operatorname{sinc}(y)$
- LCD display: $\varphi_{2}(x, y)=\operatorname{rect}(x) \cdot \operatorname{rect}(y)$

Separable image-enhancement filter
$A_{12}\left(e^{j \omega}\right)=\sum_{n \in \mathbb{Z}} \hat{\varphi}_{1}^{*}(\omega+2 \pi n) \hat{\varphi}_{2}(\omega+2 \pi n) \quad \Rightarrow \quad Q\left(e^{j \omega}\right)=\frac{1}{\operatorname{sinc}\left(\frac{\omega}{2 \pi}\right)}$

QUANTITATIVE APPROXIMATION THEORY

- Order of approximation
- Fourier-domain prediction of the L_{2}-error
- Strang-Fix conditions
- Spline case
- Asymptotic form of the error
- Optimized basis functions (MOMS)
- Comparison of interpolators

Order of approximation

- General "shift-invariant" space at scale a
$V_{a}(\varphi)=\left\{s_{a}(x)=\sum_{k \in \mathbb{Z}} c[k] \varphi\left(\frac{x}{a}-k\right): c \in \ell_{2}\right\}$

- Projection operator
$\forall f \in L_{2}, \quad \mathrm{P}_{a} f=\arg \min _{s_{a} \in V_{a}}\left\|f-s_{a}\right\|_{L_{2}}$

- Order of approximation

Definition

A scaling/generating function φ has order of approximation L iff.

$$
\forall f \in W_{2}^{L}, \quad\left\|f-\mathrm{P}_{a} f\right\|_{L_{2}} \leq C \cdot a^{L} \cdot\left\|f^{(L)}\right\|_{L_{2}}
$$

Fourier-domain prediction of the L_{2}-error

Theorem [Blu-U., 1999]
Let $\mathrm{P}_{a} f$ denote the orthogonal projection of f onto $V_{a}(\varphi)$ (at scale a). Then,

$$
\forall f \in W_{2}^{s}, \quad\left\|f-\mathrm{P}_{a} f\right\|_{L_{2}}=\left(\int_{-\infty}^{+\infty}|\hat{f}(\omega)|^{2} E_{\varphi}(a \omega) \frac{d \omega}{2 \pi}\right)^{1 / 2}+o\left(a^{s}\right)
$$

where

$$
E_{\varphi}(\omega)=1-\frac{|\hat{\varphi}(\omega)|^{2}}{\sum_{k \in \mathbb{Z}}|\hat{\varphi}(\omega+2 \pi k)|^{2}}
$$

Fourier-transform notation: $\hat{f}(\omega)=\int_{-\infty}^{+\infty} f(x) e^{-j \omega x} \mathrm{~d} x$

Strang-Fix conditions of order L

Let $\varphi(x)$ satisfy the Riesz-basis condition. Then, the following Strang-
Fix conditions of order L are equivalent:
(1) $\hat{\varphi}(0)=1$, and $\hat{\varphi}^{(n)}(2 \pi k)=0$ for $\left\{\begin{array}{l}k \neq 0 \\ n=0 \ldots L-1\end{array}\right.$
(2) $\varphi(x)$ reproduces the polynomials of degree $L-1$; i.e., there exist weights $p_{n}[k]$ such that
$x^{n}=\sum_{k \in \mathbb{Z}} p_{n}[k] \varphi(x-k)$, for $n=0 \ldots L-1$
(3) $E_{\varphi}(\omega)=\frac{C_{L}^{2}}{(2 L)!} \cdot \omega^{2 L}+O\left(\omega^{2 L+2}\right)$
(4) $\forall f \in W_{2}^{L}, \quad\left\|f-\mathrm{P}_{a} f\right\|_{L_{2}}=O\left(a^{L}\right)$

Polynomial splines

- Basis functions: causal B-splines

$$
\begin{aligned}
& \beta_{+}^{n}(x)=\left(\beta_{+}^{n-1} * \beta_{+}^{0}\right)(x) \\
& \beta_{+}^{0}(x)= \begin{cases}1, & \text { for } 0 \leq x<1 \\
0, & \text { otherwise } .\end{cases}
\end{aligned}
$$

Fourier-domain formula

$$
\hat{\beta}_{+}^{n}(\omega)=\left(\frac{1-e^{-j \omega}}{j \omega}\right)^{n+1}
$$

■ Order of approximation

$$
\begin{aligned}
\hat{\beta}_{+}^{n}(2 \pi k+\Delta \omega) & =O\left(|\Delta \omega|^{n+1}\right) \text { for } k \neq 0 \\
& \Longrightarrow \quad \beta_{+}^{n} \text { has order of approximation } L=n+1
\end{aligned}
$$

Spline approximation

- Fourier approximation kernel

- Link with Riemann's zeta function

$$
\zeta(z)=\sum_{n=1}^{+\infty} n^{-z}
$$

$$
\begin{aligned}
E_{\beta^{n}}(\omega) & =|2 \sin (\omega / 2)|^{2 n+2} \frac{\sum_{k \neq 0} \frac{1}{\mid \omega+2 \pi k)\left.\right|^{2 n+2}}}{\sum_{k \in \mathbb{Z}}\left|\hat{\beta}^{n}(\omega+2 \pi k)\right|^{2}} \\
& =\frac{2 \zeta(2 n+2))}{(2 \pi)^{2 n+2}} \cdot \omega^{2 n+2}+O\left(|\omega|^{2 n+4}\right)
\end{aligned}
$$

Spline reconstruction of a PET-scan

Asymptotic form of the error

Theorem [U.-Daubechies, 1997]
Let φ be an L th order function. Then, asymptotically, as $a \rightarrow 0$,

$$
\forall f \in W_{2}^{L}, \quad\left\|f-\mathrm{P}_{a} f\right\|_{L_{2}}=C_{L} \cdot a^{L} \cdot\left\|f^{(L)}\right\|_{L_{2}}
$$

where

$$
C_{L}=\frac{1}{L!} \sqrt{2 \sum_{n=1}^{+\infty}\left|\hat{\varphi}^{(L)}(2 \pi n)\right|^{2}} \quad\left(=\sqrt{\frac{E_{\varphi}^{(2 L)}(0)}{(2 L)!}}\right)
$$

Special case: splines of order $L=n+1$

$$
\left.C_{L, \mathrm{splines}}=\frac{\sqrt{2 \zeta(2 L)}}{(2 \pi)^{L}}=\sqrt{\frac{B_{2 L}}{(2 L)!}} \quad \text { (Bernoulli number of order } 2 L\right)
$$

Characteristic decay of the error for splines

Least squares approximation of the function $f(x)=e^{-x^{2} / 2}$

Optimized basis functions (MOMS)

- Motivation
- Cost of prefiltering is negligible (in 2D and 3D)
- Computational cost depends on kernel size W
- Order of approximation is a strong determinant of quality

QUESTION: What are the basis functions with maximum order of approximation and minimum support?

ANSWER: Shortest functions of order L (MOMS)

$$
\varphi_{\mathrm{moms}}(x)=\sum_{k=0}^{L-1} a_{k} \mathrm{D}^{k} \beta^{L-1}(x)
$$

■ Most interesting MOMS

- B-splines: smoothest ($\beta^{L-1} \in \dot{C}^{L-1}$) and only refinable MOMS
- Shaum's piecewise-polynomial interpolants (no prefilter)
- OMOMS: smallest approximation constant C_{L}

$$
\varphi_{\mathrm{opt}}^{3}(x)=\beta^{3}(x)+\frac{1}{42} \frac{\mathrm{~d}^{2} \beta^{3}(x)}{\mathrm{d} x^{2}}
$$

Comparisons of cubic interpolators of size $W=4$

INTERPOLATION IN THE PRESENCE OF NOISE

- Interpolation and regularization
- Smoothing splines
- General concept of an L-spline
- Optimal Wiener-like estimators

Spline-fitting with noisy data

■ Context

- Input data $\{f[k]\}_{k \in \mathbb{Z}}$ corrupted by noise
- Model: continuously defined function $s(x)$
- Data term: $\xi_{\text {data }}=\sum_{k \in \mathbb{Z}}|f[k]-s(k)|^{2} \quad$ (discrete domain)
- Spline energy: $\xi_{\text {spline }}=\left\|\mathrm{D}^{m} s\right\|_{L_{2}}^{2} \quad$ (continuous domain)

■ Possible formulations

Regularized fit: smoothing splines

B-spline representation: $s(x)=\sum_{k \in \mathbb{Z}} c[k] \beta^{n}(x-k)$

Smoothing splines

$$
\begin{gathered}
\text { Discrete, noisy input: } \\
f[k]=s(k)+n[k]
\end{gathered} \begin{gathered}
\text { Smoothing } \\
\text { algorithm }
\end{gathered} \longrightarrow
$$

Theorem: The solution (among all functions) of the smoothing spline problem

$$
\min _{s(x)}\left\{\sum_{k \in \mathbb{Z}}|f[k]-s(k)|^{2}+\lambda \int_{-\infty}^{+\infty}\left|\mathrm{D}^{m} s(x)\right|^{2} d x\right\}
$$

is a cardinal spline of degree $2 m-1$. Its coefficients $c[k]=h_{\lambda} * f[k]$ can be obtained by suitable recursive digital filtering of the input samples $f[k]$.

- Special case: the draftman's spline

The minimum-curvature interpolant is obtained by setting $m=2$ and $\lambda \rightarrow 0$.
It is a cubic spline !

General concept of an L-spline

$\mathrm{L}\{\cdot\}:$ differential operator (shift-invariant) $\quad \delta(x):$ Dirac distribution

Definition

The function $s(x)$ is a cardinal L-spline (with knots at the integers) iff.
$\mathrm{L}\{s(x)\}=\sum_{k \in \mathbb{Z}} a[k] \delta(x-k)$

- Special cases

- Piecewise-constant = D-splines
- Polynomial splines $=\mathrm{D}^{n+1}$-splines

Justification:
$D^{n+1}\left\{\beta_{+}^{n}(x)\right\}=\Delta_{+}^{n+1}\{\delta(x)\}=\sum_{k \in \mathbb{Z}} d[k] \delta(x-k) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad D\left(e^{j \omega}\right)=\left(1-e^{-j \omega}\right)^{n+1}$

Existence of B-spline-like bases

$\mathrm{L}\{\cdot\}$: generalized differential operator of order $s>\frac{1}{2}$

- Riesz-basis representation

Cardinal L-splines generally admit a B-spline-like representation

$$
s(x)=\sum_{k \in \mathbb{Z}} c[k] \beta_{\mathrm{L}}(x-k)
$$

Example: first-order exponential B-spline

- Composition properties

- Higher-order B-splines:

$\beta_{\mathrm{L}_{1}}(x)$ and $\beta_{\mathrm{L}_{2}}(x)$ are B -spline generators for the cardinal L_{1} - and L_{2}-splines. Then, $\beta_{\mathrm{L}_{1}}(x) * \beta_{\mathrm{L}_{2}}(x)$ is a generator for the $\left(\mathrm{L}_{1} \mathrm{~L}_{2}\right)$-splines.
- Positive-definite operators: If $\beta_{\mathrm{L}}(x)$ generates a Riesz basis for the L-splines, then $\varphi(x)=\beta_{\mathrm{L}}(x) * \beta_{\mathrm{L}}(-x)$ generates a Riesz basis for the $\left(\mathrm{L}^{*} \mathrm{~L}\right)$-splines and the interpolation problem in $V(\varphi)$ is well posed.

Generalized smoothing splines

- Generalized spline energy: $\xi_{\text {spline }}=\|L s\|_{L_{2}}^{2}$

■ Generalized smoothing-spline fit

Theorem: The solution (among all functions) of the generalized smoothing problem

$$
\min _{s(x)}\left\{\sum_{k \in \mathbb{Z}}|f[k]-s(k)|^{2}+\lambda \int_{-\infty}^{+\infty}|\mathrm{L} s(x)|^{2} d x\right\}
$$

is a cardinal $\mathrm{L}^{*} \mathrm{~L}$-spline.
The solution has a B -spline representation $s_{\lambda}(x)=\sum_{k \in \mathbb{Z}} c[k] \varphi(x-k)$, the coefficients of which are obtained by suitable filtering of the input data (generalized smoothing-spline algorithm).

Stochastic signal models

■ Wide-sense stationary process

- Realization of the stochastic process: $s(x)$
- Zero-mean: $E\{s(x)\}=0$
- Autocorrelation function: $E\{s(y) \cdot s(y-x)\}=c_{s}(x) \in L_{2}$
- Spectral density function: $C_{s}(\omega)=\int_{x \in \mathbb{R}} c_{s}(x) e^{-j \omega x} \mathrm{~d} x \in L_{2}$
- Stochastic differential equation
$\mathrm{L}\{s(x)\}=w(x) \quad$ (driven by white Gaussian noise)

$$
c_{w}(x)=\sigma_{0}^{2} \delta(x)
$$

$$
C_{w}(\omega)=\sigma_{0}^{2} \quad C_{s}(\omega)=\frac{\sigma_{0}^{2}}{|\hat{L}(\omega)|^{2}}
$$

MMSE estimation in the presence of noise

- Statistical hypotheses
- Discrete measurements (signal + noise): $\quad f[k]=s(k)+n[k]$
- Signal autocorrelation: $c_{s}(x)$ such that $\mathrm{L}^{*} \mathrm{~L}\left\{c_{s}(x)\right\}=\sigma_{0}^{2} \cdot \delta(x)$
- Discrete white noise with variance $\sigma^{2} \Rightarrow c_{n}[k]=\sigma^{2} \cdot \delta[k]$

MMSE continuous-domain signal estimation

Theorem

Under the above assumptions, the linear Minimum-Mean Square Error Estimator of $s(x)$ at position $x=x_{0}$, given the measurements $\{f[k]\}_{k \in \mathbb{Z}}$, is $s_{\lambda}\left(x_{0}\right)$ with $\lambda=\frac{\sigma^{2}}{\sigma_{0}^{2}}$, where $s_{\lambda}(x)$ is the $\mathrm{L}^{*} \mathrm{~L}$-smoothing-spline fit of $\{f[k]\}_{k \in \mathbb{Z}}$ given by the generalized smoothing-spline algorithm.

Remark: optimal overall estimators if one adds the assumption of Gaussianity

CONCLUSION

- Generalized sampling
- Unifying Hilbert-space formulation: Riesz basis, etc.
- Approximation point of view:
projection operators (oblique vs. orthogonal)
- Increased flexibility; closer to real-world systems
- Generality: nonideal sampling, interpolation, etc...
- Quest for the "optimal" representation space
- Not bandlimited! (prohibitive cost, ringing, etc.)
- Quantitative approximation theory: L_{2}-estimates, asymptotics
- Optimized functions: MOMS
- Signal-adapted design ?
- Interpolation/approximation in the presence of noise
- Regularization theory: smoothing splines
- Stochastic formulation: new, hybrid form of Wiener filter

Acknowledgments

Many thanks to

- Dr. Thierry Blu
- Prof. Akram Aldroubi
- Prof. Ingrid Daubechies
- Annette Unser, Artist
+ many other researchers, and graduate students
- Software and demos at:

http://bigwww.epfl.ch/

Bibliography

- Sampling review
" M. Unser, "Sampling-50 Years After Shannon," Proceedings of the IEEE, vol. 88, no. 4, pp. 569-587, April 2000.
- Quantitative approximation theory
- T. Blu, M. Unser, "Quantitative Fourier Analysis of Approximation Techniques: Part I-Interpolators and Projectors," IEEE Trans. Signal Processing, vol. 47, no. 10, pp. 2783-2795, October 1999.
- T. Blu, P. Thévenaz, M. Unser, "MOMS: Maximal-Order Interpolation of Minimal Support," IEEE Trans. Image Processing, vol. 10, no. 7, pp. 1069-1080, July 2001.
- Smoothing splines and stochastic formulation
M. Unser, T. Blu, "Generalized Smoothing Splines and the Optimal Discretization of the Wiener Filter," IEEE Trans. Signal Processing, vol. 53, no. 6, pp. 2146-2159, June 2005.
- Preprints and demos: http://bigwww.epfl.ch/

