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INTRODUCTION

Acquisition

Algorithm design

� Fundamental issue in biomedical imaging

Linking the discrete and the continuous

� Mismatch between theory and practice

Theory : Shannon’s sampling theorem

Practice: nearest neighbor, linear interpolation

� Limitations of Shannon sampling theory

Ideal lowpass filters do not exist

Incompatible with finite support signals

Gibbs oscillations

Slow decay of sinc(x)

� Basic problem

How do you interpolate a signal ?
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Interpolation and biomedical imaging
Image processing task Specific operation Imaging modality

Tomographic

reconstruction
• Filtered backprojection

• Fourier reconstruction

• Iterative techniques

• 3D + time

Commercial CT (X-rays)

EM

PET, SPECT

Dynamic CT, SPECT, PET

Sampling grid

conversion
• Polar-to-cartesian coordinates

• Spiral sampling

• k-space sampling

• Scan conversion

Ultrasound (endovascular)

Spiral CT, MRI

MRI

2D operations

• Zooming, panning, rotation

• Re-sizing, scaling

All

• Stereo imaging

• Range, topography

Fundus camera

OCT

3D operations

• Re-slicing

• Max. intensity projection

• Simulated X-ray projection

CT, MRI, MRA

Visualization

Surface/volume rendering

• Iso-surface ray tracing

• Gradient-based shading

• Stereogram

CT

MRI

Geometrical correction • Wide-angle lenses

• Projective mapping

• Aspect ratio, tilt

• Magnetic field distortions

Endoscopy

C-Arm fluoroscopy

Dental X-rays

MRI

Registration • Motion compensation

• Image subtraction

• Mosaicking

• Correlation-averaging

• Patient positioning

• Retrospective comparisons

• Multi-modality imaging

• Stereotactic normalization

• Brain warping

fMRI, fundus camera

DSA

Endoscopy, fundus camera,

EM microscopy

Surgery, radiotherapy

CT/PET/MRI

• Contours

• Ridges

• Differential geometry

AllFeature detection

Contour extraction

• Snakes and active contours MRI, Microscopy (cytology)
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Splines: a unifying framework

Linking the discrete and the continuous …..

Splines

      WaveletsMultiresolution        
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Splines: bad press phenomenon

! Classical review article on interpolation, IEEE TMI, 1983
Comparison of four interpolators:
“The cubic B-spline provides the most smoothing.”

! Classical book on Digital Image Processing, 1991 (2nd ed)
About high-order B-splines:
“[out-of-band] interpolation error reduces significantly for higher-order 
interpolation functions, but at the expense of resolution error [i.e., 
distortion]”

! Recent book on Volume Rendering, 1998
“The results of scaling the original image using [cubic] B-spline 
interpolation are shown in Figure 5.20. You can see the blurring 
effects …..”

  

! 

M
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CONTINUOUS/DISCRETE REPRESENTATION

! Splines: definition

! Basic atoms: B-splines

! Riesz bases
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Splines: definition

1 2 3 4 5 6 7

1
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4
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4Effective degrees of freedom per segment:
(n + 1) � n = 1

(polynomial coefficients) (constraints)

The right framework for signal processing !          

Cardinal splines = unit spacing and infinite number of knots

Definition: A function s(x) is a polynomial spline of degree n with knots

· · · < xk < xk+1 < · · · iff. it satisfies the following two properties:

Piecewise polynomial:

s(x) is a polynomial of degree n within each interval [xk, xk+1);

Higher-order continuity:

s(x), s(1)(x), · · · , s(n�1)(x) are continuous at the knots xk.
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Polynomial B-splines

! !…
1 2 3 4 5

1

�0
+(x) =

⇢
1, x 2 [0, 1)
0, otherwise.

!2 !1 1 2

1

Symmetric B-spline
�n(x) = �n

+

�
x + n+1

2

�

B-spline of degree n

�n
+(x) = �0

+ � �0
+ � · · · � �0

+� �� �
(n + 1) times

(x)

Key properties

Compact support: shortest polynomial spline of degree n

Positivity

Piecewise polynomial

Smoothness: Hölder-continuous of order n
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analog signal
discrete signal

(B-spline coefficients)

9

B-spline representation

Basis functions
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Cubic spline (n=3)
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In modern terminology: {�n
+(x� k)}k�Z forms a Riesz basis.

Theorem (Schoenberg, 1946)
Every cardinal polynomial spline s(x) has a unique and stable representation in terms
of its B-spline expansion

s(x) =
�

k�Z
c[k] �n

+(x� k)

1-

continuous-space image image array
(B-spline coefficients)

Compactly supported
basis functions

B-spline representation of images

10

! Symmetric, tensor-product B-splines

�n(x1, · · · , xd) = �n(x1)� · · ·� �n(xd)

! Multidimensional spline function

s(x1, · · · , xd) =
X

(k1,···kd)�Zd

c[k1, · · · , kd] �n(x1 � k1, · · · , xd � kd)
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Riesz basis

11

Unique representation of a function f � V : f =
�

k�Z
ck�k

Definition: Let V = span{�k}k�Z be a subspace of a Hilbert space H . Then,

{�k}k�Z is a Riesz basis of V iff. there exist two constants A > 0 and B < +⇥ s.t.

⌅c ⇤ ⇥2, A · ⇧c⇧�2 �
���

k�Z ck�k

��
H� �� �

�f�H

� B · ⇧c⇧�2

Properties

Linear independence
Consequence of lower Riesz bound: f = 0� ck = 0

Stability
Perturbation: c + �c �� f + �f

Consequence of upper Riesz bound: ��c��2 bounded � ��f�H bounded

Norm equivalence
The basis is orthonormal iff. A = B = 1, in which case, �c��2 = � f�H

1-

Shift-invariant spaces

12

Generating function: �(x) F�⇥ �̂(�) =
�

x⇥Rp

�(x)e�j⇤�,x⌅dx1 · · · dxp

Proposition. V (⇥) is a subspace of L2(Rp) with {⇥(x� k)}k�Zp as its Riesz basis iff.

0 < A2 ⇥
�

n�Zp

|⇥̂(� + 2�n)|2 ⇥ B2 < +⇤ (almost everywhere)

Hint for the proof (in 1D):

�c�2
⇤2 =

1
2�

� 2�

0
|C(ej⇥)|2d⇥ (Parseval)

�f�2
L2

=
1
2�

�

⇥�R
|C(ej⇥)|2|⇤̂(⇥)|2d⇥

=
1
2�

�

n�Z

� 2�

0
|C(ej⇥)|2|⇤̂(⇥ + 2�n)|2d⇥ =

1
2�

� 2�

0
|C(ej⇥)|2

�

n�Z
|⇤̂(⇥ + 2�n)|2d⇥

Integer-shift-invariant subspace associated with a generating function � (e.g. B-spline):

V (�) =

�
f(x) =

�

k�Zp

c[k]�(x� k) : c � ⇥2(Zp)

�
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INTERPOLATION REVISITED

! Classical interpolation

! Generalized interpolation

! Interpolation: filtering solution

! Application

1-

Classical image interpolation

14

Discrete image data
f [k], k = (k1, · · · , kp) � Zp

Continuous image model
f(x), x = (x1, · · · , xp) � Rp

Interpolation formula: f(x) =
�

k�Zp

f [k] �int(x� k)

f [k]: pixel values at location k

�int(x): continuous-space interpolation function

�int(x� k): interpolation function translated to location k

Interpolation condition

At the grid points x = k0 : f(k0) =
�

k�Zp

f [k] �int(k0 � k)

Only possible for all f iff. �int(k) =

�
1, k = 0
0, otherwise
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Examples of popular interpolation functions

15

sinc(x)

Interpolation condition:

⇥int(k) = �k =

�
1, k = 0
0, otherwise

-4 -2 0 2 4
-0.2

0.2

0.4

0.6

0.8

1

Bandlimited

tri(x) = �1(x)

!2 !1 0 1 2 3
!0.2

0.2

0.4

0.6

0.8

1

Piecewise linear

Cubic convolution

[Keys, 1981; Karup-King 1899]

!2 !1 0 1 2 3
!0.2

0.2

0.4

0.6

0.8

1
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Generalized image interpolation

16

but one new difficulty:

How to pre-compute the coefficients c[k] ?

Desired features for the interpolation kernel
short (to minimize computations)

simple expression (e.g., polynomial)

smooth (to avoid model discontinuities)

good approximation properties: reproduction of polynomials

Separable basis functions: �(x) = �(x1) · �(x2) · · · �(xp)

Further acceleration

Faster interpolation formulas!

Simple shift-invariant structure

simple expression (e.g., polynomial)

� selected freely (not interpolating and much shorter)

Generalized interpolation formula: f(x) =
�

k�Zp

c[k] �(x� k)
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Interpolation: filtering solution

17

Digital filter

f [k] c[k] = (hint � f)[k] with Hint(z) =
1

B(z)
=

1�
k�Zp �(k)z�k

Inverse filtering solution

Note: �(x) separable � hint[k] separable

Discrete convolution equation: f [k] = (b � c)[k]

with b[k] �= �(k) z�� B(z) =
�

k�Zp

b[k]z�k

Interpolation condition: f(x)|x=k = f [k] =
�

k1�Zp

c[k1]�(k � k1)

Interpolation problem: Given the samples {f [k]}, find the (B-spline) expansion coefficients {c[k]}

1-

One-to-one continuous/discrete representation

18

f(x) =
�

k�Zp

c[k]�(x� k) c[k]

f [k]

B-spline coefficients

Riesz-basis property

Continuously defined signal

Discrete signal

Sampling: f(x)|x=k

Digital filtering

In principle, all �’s are equally acceptable, but. . .

� b (FIR) � hint (IIR)
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Example: cubic-spline interpolation

19

B-spline interpolation

bn
1 [k] = ⇥n(x)|x=k

z⇤⌅ Bn
1 (z) =

bn/2c�

k=�bn/2c

⇥n(k)z�k

f [k] =
�

k2Z
c[l] ⇥n(x� l)|x=k = (bn

1 ⇥ c) [k] ⇧ c[k] = (bn
1 )�1 ⇥ f [k]

(bn
1 )�1 [k] z⇤⌅ 6

z + 4 + z�1
=

(1� �)2

(1� �z)(1� �z�1)
1

1� �z�1

1
1� �z

7

B-spline interpolation

bn
1 [k] = ⇥n(x)|x=k

z⇤⌅ Bn
1 (z) =

bn/2c�

k=�bn/2c

⇥n(k)z�k

f [k] =
�

k2Z
c[l] ⇥n(x� l)|x=k = (bn

1 ⇥ c) [k] ⇧ c[k] = (bn
1 )�1 ⇥ f [k]

(bn
1 )�1 [k] z⇤⌅ 6

z + 4 + z�1
=

(1� �)2

(1� �z)(1� �z�1)
1

1� �z�1

1
1� �z

7

Cascade of first-order recursive filters

causal anti-causal

1/6 1/6

4/6Cubic B-spline

⇥(x) = �3(x) =

�
��

��

2
3 �

1
2 |x|2(2� |x|), 0 ⇥ |x| < 1

1
6 (2� |x|)3, 1 ⇥ |x| < 2
0, otherwise

(symmetric exponential)

Interpolation filter

6
z + 4 + z�1

=
(1� �)2

(1� �z)(1� �z�1)
z�� hint[k] =

�
1� �

1 + �

�
�|k|

� = �2 +
�

3 = �0.171573

Discrete B-spline kernel: B(z) =
z + 4 + z�1

6
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void    ConvertToInterpolationCoefficients (

            double c[ ],   long DataLength,    double  z[ ],   long NbPoles,   double  Tolerance)

 {double Lambda = 1.0; long n, k;

    if (DataLength == 1L) return;

    for (k = 0L; k < NbPoles; k++) Lambda = Lambda * (1.0 - z[k]) * (1.0 - 1.0 / z[k]);

    for (n = 0L; n < DataLength; n++) c[n] *= Lambda;

    for (k = 0L; k < NbPoles; k++) {

        c[0] = InitialCausalCoefficient(c, DataLength, z[k], Tolerance);

        for (n = 1L; n < DataLength; n++) c[n] += z[k] * c[n - 1L];

        c[DataLength - 1L] = (z[k] / (z[k] * z[k] - 1.0))

        ! * (z[k] * c[DataLength - 2L] + c[DataLength - 1L]);

        for (n = DataLength - 2L; 0 <= n; n--) c[n] = z[k] * (c[n + 1L]- c[n]); }

}

20

Generic C-code  (splines of any degree n)

double  InitialCausalCoefficient (

            double  c[ ],  long    DataLength,  double  z,  double  Tolerance) 

{  double Sum, zn, z2n, iz; long n, Horizon;

    Horizon = (long)ceil(log(Tolerance) / log(fabs(z)));

    if (DataLength < Horizon) Horizon = DataLength;

    zn = z; Sum = c[0];

    for (n = 1L; n < Horizon; n++) {Sum += zn * c[n]; zn *= z;}

    return(Sum);

}

" Main recursion

" Initialization
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Interpolating basis function

Finite-cost implementation of an infinite impulse response interpolator !

-5 -4 -3 -2 -1 1 2 3 4 5

1

f(x) =
�

k�Z
c[k]�(x� k) =

�

k�Z
(f [k] � hint[k])�(x� k)

=
�

k�Z
f [k] �int(x� k)

Equivalent interpretation of generalized interpolationn

Interpolation basis function

�int(x) =
�

k�Z
hint[k] �(x� k)

Example: cubic-spline interpolant
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Limiting behavior (splines)

" Spline interpolator

Impulse response Frequency response

+!

1

2

0.5 1 1.5 2

1

0.5

" Asymptotic property

Includes Shannon"s theory as a particular case !

(Aldroubi et al., Sig. Proc., 1992)

The cardinal spline interpolators converge to the sinc-interpolator (ideal filter) as the
degree goes to infinity:

lim
n��

⇤n
int(x) = sinc(x), lim

n��
⇤̂n

int(⇥) = rect
� ⇥

2�

�
(in all Lp-norms)

� 2� 3� 4�

⇥n
int(x) F�� ⇥̂n

int(�) =
�

sin(�/2)
�/2

�n+1

Hn
int(e

j�)
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Geometric transformation of images

" 2D separable model

2D re-sampling2D filtering

(separable)

" Applications

zooming, rotation, re-sizing, re-formatting, warping

Geometric transformation

f(x, y) =
k1+n+1�

k=k1

l1+n+1�

l=l1

c[k, l] �n(x� l) �n(y � l)

f [k, l] c[k, l] (x, y)

5

(x0, y0)

f(x0, y0) =
k0+n+1�

k=k0(x0)

l0+n+1�

l=l0(y0)

c[k, l] �(x0 � l) �(y0 � l)
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Cubic-spline coefficients in 2D

Digital filter
(recursive, 

   separable)

Geometric transformation

f(x, y) =
k1+n+1�

k=k1

l1+n+1�

l=l1

c[k, l] �n(x� l) �n(y � l)

f [k, l] c[k, l] (x, y)

Pixel values f [k, l]

B-spline coefficients c[k, l]

5

Geometric transformation

f(x, y) =
k1+n+1�

k=k1

l1+n+1�

l=l1

c[k, l] �n(x� l) �n(y � l)

f [k, l] c[k, l] (x, y)

Pixel values f [k, l]

B-spline coefficients c[k, l]

5
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Interpolation benchmark

Cumulative rotation experiment: the best algorithm wins !

Truncated sinc Cubic splineTruncated sinc Cubic spline

Bilinear Windowed-sinc Cubic spline

1-26

High-quality image interpolation

Thévenaz et al., Handbook of Medical Image Processing, 2000
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MINIMUM-ERROR SIGNAL APPROXIMATION

! Least-squares approximation

! Orthogonal projection

! Image pyramids

1-

Least-squares fit: multi-scale approximation

! Shift-invariant space at scale a

1 2 3 4 5

2 4

Va(�) =

�
s(x) =

�

k�Z
c[k]�a(x� ak) : c[k] � ⇥2

�

Rescaled basis function: �a(x) �= a�1/2�
�

x
a

�

a = 1

a = 2

Orthogonal 

projector

! Minimum-error approximation at scale a

Continuous-space input f(x)

such that min
s�Va

�f � s�2
L2

c[k] = ⇥f, �̃a(· � ak)⇤L2

Biorthogonality condition: ⇥̃a ⇥ Va(⇥) such that ⇤⇥a(·), ⇥̃a(· � ak)⌅L2 = �k
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Image pyramids

29

Repeated application of REDUCE operator

ci�1[k]
h̃[k] � 2

Optimal prefilter

Rescaled basis function: �2i(x) �= 2�i/2�
�

x
2i

�

c1[k] = ⇤
�

l�Z
c0[l]�(· � l), �̃2(· � 2k)⌅ = (c0 ⇥ h̃)[2k]

� h̃[k] = ⇥�(·), �̃2(· + k)⇤

ci[k]

Successive approximations at dyadic scales

V2i(�) =

�
s(x) =

�

k�Z
ci[k]�2i(x� 2ik) : ci[k] � ⇥2

�
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SPLINES: IMAGING APPLICATIONS

! Sampling and interpolation
! Interpolation, re-sampling, grid conversion
! Image reconstruction
! Geometric correction

! Feature extraction
! Contours, ridges
! Differential geometry
! Shape and active contour models 

! Image matching
! Stereo
! Image registration (multimodal, rigid-body or elastic)
! Optical flow
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Spline approximation: LS resizing 

31

Spline space at scale a

Va =

⇤
s(x) =

⇧

k�Z
c[k]�n

a (x� ak) : c[k] ⇤ ⇤2

⌅

Rescaled basis function: �n
a (x) := �n

�
x
a

⇥

Dual B-spline: �̃n
a (x) such that ⌅�̃n

a (x),�n
a (x� ak)⇧ = ⇥[k]

a = 1 a = 2

Minimum error spline approximation at scale a

Continuous-space input f(x) c[k] = ⌅f, �̃n
a (·� ak)⇧

such that min
s�Va

⌃f � s⌃2
L2

f [k] = s(k) + n[k]

Orthogonal projection onto Va (cubic spline)

a = 1 ⇥ 10

20

Spline space at scale a

Va =

⇤
s(x) =

⇧

k�Z
c[k]�n

a (x� ak) : c[k] ⇤ ⇤2

⌅

Rescaled basis function: �n
a (x) := �n

�
x
a

⇥

Dual B-spline: �̃n
a (x) such that ⌅�̃n

a (x),�n
a (x� ak)⇧ = ⇥[k]

a = 1 a = 2

Minimum error spline approximation at scale a

Continuous-space input f(x) c[k] = ⌅f, �̃n
a (·� ak)⇧

such that min
s�Va

⌃f � s⌃2
L2

f [k] = s(k) + n[k]

Orthogonal projection onto Va (cubic spline)

a = 1 ⇥ 10

20

Approximation at arbitrary scales: differential approach using splines

1-

Application: image resizing

" Spline projectorSNR=22.94 dB

! Interpolation

! Resizing algorithm

! scaling= 70%

! Linear splines
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+ 5.419 dB

Application: image resizing (LS)

(Munoz et al., IEEE Trans. Imag. Proc, 2001)

! Orthogonal projector

! Resizing algorithm

! scaling= 70%

SNR=28.359 dB

! Linear splines

1-

!2 !1 1 2
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0.5

1

Discrete operator
Reduction of degree !2 !1 1 2
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0.6

0.8
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Example: cubic B-spline

B-spline derivatives

34

Derivative operator

Df(x) = df(x)
dx

F�� (j�)� f̂(�)

Sketch of proof:

�̂n(⇤) = sinc
� ⇤

2⇥

�n+1
=

�
ej�/2 � e�j�/2

j⇤

�n+1

� (j⇤)m � �̂n(⇤) = (ej�/2 � e�j�/2)m �
�

ej�/2 � e�j�/2

j⇤

�n+1�m

Finite-difference operator (centered)

�f(x) �= f(x + 1
2 )� f(x� 1

2 ) F�� (ej�/2 � e�j�/2)� f̂(�)

Dm�n(x) = �m�n�m(x)

Derivative of a B-spline (exact)
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Cubic-spline image differentials

Differential

mask

2D filtering

(separable)

! Convolution-based implementation

JAVA code available:

http://bigwww.epfl.ch/

c[k, l]

�p+q

�xp�yq
f(k, l)

f(k, l)

⇥p+q

⇥xp⇥yq
�(x, y)

����
x=k,y=l

�2

�x2
:

1
6

�

��
1 �2 1
4 �8 4
1 �2 1

�

��
�2

�x�y
:

1
2 · 2

�

��
1 0 �1
0 0 0
�1 0 1

�

��

�2

�y2
:

1
6

�

��
1 4 1
�2 �8 �2

1 4 1

�

��

�2

�x2
+

�2

�y2
:

1
3

�

��
1 1 1
1 �8 1
1 1 1

�

��

�

�y
:

1
6 · 2

2

64
�1 �4 �1

0 0 0
1 4 1

3

75

�

�x
:

1
6 · 2

�

��
�1 0 1
�4 0 4
�1 0 1

�

��

Laplacian

Gradient masksHessian masks

1-

Multi-modal image registration

Specificities of the approach

! Criterion: mutual-information

! Cubic-spline model
! high quality

! sub-pixel accuracy

! Multiresolution strategy

! Marquardt-Levenberg-like 
optimizer 

! Speed

! Robustness

Thévenaz and Unser, IEEE Trans. Imag Proc, 2000 

36
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CONCLUSION

! Generalized interpolation
! Same as standard interpolation, except for a prefiltering step

! Offers more flexibility

! Best cost/performance tradeoff (splines)

! Infinite-support interpolator at finite cost

! Special case of polynomial splines
! Simple to manipulate

! Smooth and well-behaved

! Excellent approximation properties

! Multiresolution properties

! Unifying formulation for continuous/discrete image processing

! Tools: digital filters, convolution operators

! Efficient recursive filtering solutions

! Flexibility: piecewise-constant to bandlimited

1-38

Splines: the end of the tunnel

! Survey article on interpolation, IEEE TMI, 2000
Comparison of 31 interpolation algorithms:

“It [the cubic B-spline interpolator] produces one of the best results in 

terms of similarity to the original images, and of the top methods, it 

runs fastest.”

! Addendum on spline interpolation, IEEE TMI, 2001
 “Therefore, high-degree B-splines are preferable interpolators for 

numerous applications in medical imaging, particularly if high 

precision is required.”

! Recent evaluation of interpolation, Med. Image Anal., 2001
Comparison of 126  interpolation algorithms:

“ The results show that spline interpolation is to be preferred over all 

other methods, both for its accuracy and its relatively low cost.”

(Lehmann et al)

(Meijering et al)
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SAMPLING: 50+ years after Shannon

2

! Introduction: Shannon revisited

! Sampling preliminaries

! Sampling revisited

! Quantitative approximation theory

! Interpolation/approximation in the presence of noise

Analog/physical world Discrete domain

Signal subspace
sampling

interpolation

Continuous signals: L2(R)

Discrete signals: �2(Z)

�
�������

�������

Review paper on sampling

reconstruction algorithms

signal processing

image analysis

...
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Shannon!s sampling reinterpreted

3

�
analysis synthesis

sampling

�(x)

�

k�Z
�(x� k)

f(x) � L2 f̃(x)f̃(x)
�(�x)

anti-aliasing 
filter ideal filter

!! Generating function:

!! Subspace of bandlimited functions:

!! Analysis:

!! Synthesis:

�(x) = sinc(x)

V (�) = span{�(x� k)}k�Z

f̃(k) = �sinc(x � k), f(x)�

f̃(x) =
�

k�Z

f̃(k) sinc(x� k)

[Hardy, 1941]

Orthogonal projection operator !

Orthogonal basis: �sinc(x � k), sinc(x � l)� = �k�l

2-

Generalized sampling: roadmap

4

signal coefficients

Riesz-basis property

Continuous-domain model

Discrete signal

Interpolation
 problem

acquisition

 device

sampling
noise

f̃(x) =
�

k�Z
c[k]�(x� k)

+

Measurements:

Reconstruction

algorithm

{c[k]}k�Z

{f [k]}k�Z

f(x) � L2(R)
g[k] = (h � f)(x)|x=k + n[k]

Nonideal acquisition system

Goal: Specify � and the reconstruction algorithm
so that f̃(x) is a good approximation of f(x)
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SAMPLING PRELIMINARIES

! Function and sequence spaces

! Smoothness conditions and sampling

! Shift-invariant subspaces

! Equivalent basis functions

2-

Continuous-domain signals

6

Fourier transform

Integral definition: f̂(⇥) =
�

x�R
f(x)e�j�xdx

Parseval relation: �f�2
L2

=
1
2�

�

��R
|f̂(⇥)|2d⇥

Mathematical representation: a function of the continuous variable x � R

Lebesgue’s space of finite-energy functions

L2(R) =
�

f(x), x ⇥ R :
�

x�R
|f(x)|2dx < +�

�

L2-inner product: ⇤f, g⌅ =
�

x�R
f(x)g�(x)dx

L2-norm: ⇧f⇧L2 =
��

x�R
|f(x)|2dx

�1/2

=
�
⇤f, f⌅
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Discrete-domain signals

7

Discrete-time Fourier transform

z-transform: A(z) =
�

k�Z
a[k]z�k

Fourier transform: A(ej�) =
�

k�Z
a[k]e�j�k

Mathematical representation: a sequence indexed by the discrete variable k � Z

Space of finite-energy sequences

�2(Z) =

�
a[k], k ⇥ Z :

�

k�Z
|a[k]|2 < +�

�

�2-norm: ⇤a⇤�2 =

�
�

k�Z
|a[k]|2

�1/2

2-

Smoothness conditions and sampling

8

Mathematical requirements for ideal sampling

The input signal f(x) should be continuous

The samples f [k] = f(x)|x=k should be in �2

Sobolev’s space of order s ⇥ R+

W s
2 (R) =

�
f(x), x ⇥ R :

�

��R
(1 + |�|2s)|f̂(�)|2d� < +�

�

f and all its derivatives up to (fractional) order s are in L2

Generalized (almost everywhere) version of Poisson"s formula ##[Blu-U., 1999]

Theorem
Let f(x) � W s

2 with s > 1
2 . Then, the samples of f at the integers, f [k] = f(x)|x=k,

are in ⇤2 and

F (ej�) =
�

k�Z
f [k]e�j�k =

�

n�Z
f̂(⇥ + 2�n) a.e.
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Shift-invariant spaces

9

Generating function: ⇥(x) F�� ⇥̂(�) =
�

x⇥R
⇥(x)e�j�xdx

Autocorrelation (or Gram) sequence

a⇥[k] �= ⌅⇤(·),⇤(·� k)⇧ F⇥⇤ A⇥(ej�) =
�

n�Z
|⇤̂(⇥ + 2�n)|2

Integer-shift-invariant subspace associated with a generating function � (e.g., B-spline):

V (�) =

�
f(x) =

�

k�Z
c[k]�(x� k) : c � ⇥2(Z)

�

�

A · ⇤c⇤�2 ⇥
���

k�Z c[k]�(x� k)
��

L2� �� �
�f�L2

⇥ B · ⇤c⇤�2

Riesz-basis condition

Positive-definite Gram sequence: 0 < A2 �
�

n�Z
A⇥(ej�) � B2 < +�

Orthonormal basis � a⇥[k] = �k � A⇥(ej�) = 1 � �c�⇤2 = �f�L2
(Parseval)

2-

Example of sampling spaces

10

bandlimited functions

�(x) = sinc(x)
�

n�Z
|⇤̂(⇥ + 2�n)|2 = 1 � the basis is orthonormal

a�[k] = �k � the basis is orthonormal

!2 !1 1 2

1Polynomial splines of degree n

⇥(x) = �n(x) = (�0 � �0 · · · � �0

� �� �
(n+1) times

)(x)

Autocorrelation sequence: a�n [k] = (�n � �n)(x)|x=k = �2n+1(k)

Piecewise-constant functions

⇥(x) = rect(x) = �0(x)

Proposition. The B-spline of degree n, �n(x), generates a Riesz basis with lower and
upper Riesz bounds A = inf⇤{A�n(ej⇤)} �

�
2
⇥

�n+1
and B = sup⇤{A�n(ej⇤)} = 1.
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Equivalent and dual basis functions

11

Proposition. Let � be a valid (Riesz) generator of V (�) = span{�(x � k)}k�Z.
Then, �eq also generates a Riesz basis of V (�) iff.

0 < C1 ⇥ |P (ej�)|2 ⇥ C2 < +⇤ (almost everywhere)

�eq(x) =
�

k�Z
p[k]�(x� k)Equivalent basis functions:

Dual basis function

Unique function
�
⇥� V (⇥) such that �⇥(x),

�
⇥(x� k)� = �k (biorthogonality)

Together, � and
�
� operate as if they were an orthogonal basis; i.e., the orthogonal

projector of any function f ⇥ L2 onto V (�) is given by

PV (�)f(x) =
�

k�Z
⇤f,

�
�(· � k)⌅� �� �

c[k]

�(x� k)

2-

Example: four equivalent cubic-spline bases

12

!4 !2 0 2 4 6

!1

!0.5

0.5

1

1.5

2

2.5

!2 0 2 4

0.2

0.4

0.6

0.8

1

!4 !2 0 2 4 6
!0.2

0.2

0.4

0.6

0.8

1

1.2

!4 !2 0 2 4 6

!0.2

0.2

0.4

0.6

0.8

1

Compact support

Interpolating spline: �int(x)

Cubic B-spline: ⇥(x) = �3(x)

Orthogonal spline: �ortho(x)

Interpolation: �⇥int(x), �(x � k)� = �k Orthogonality: �⇥ortho(x),⇥ortho(x � k)� = �k

Biorthogonality: �⇥(x),
�
⇥(x � k)� = �k

Dual spline:
�
�(x)
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SAMPLING REVISITED

! Generalized sampling system

! Generalized sampling theorem

! Consistent sampling: properties

! Performance analysis

! Applications

2-

Generalized sampling system

14

�

acquisition

 device reconstruction

sampling

�

k�Z
�(x� k)

f(x) � L2 f̃(x)
�1(�x) �2(x)

c1 c2

digital

correction filter

Constraints

Consistent measurements: ⌅f̃ , �1(· � k)⇧ = c1[k] = ⌅f,�1(· � k)⇧, ⇤k ⇥ Z

Linearity and integer-shift invariance

Q(z)

Digital filtering solution: f̃(x) =
�

n�Z
(q � c1)[k]� �� �

c2[k]

�2(x� k)

�1(�x): prefilter (acquisition system)

�2(x): generating function (reconstruction subspace)
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Generalized sampling theorem

15

Cross-correlation sequence: a12[k] = ⌅�1(·� k),�2(·)⇧
F⇥⇤ A12(ej�)

� Consistent sampling theorem

Let A12(ej�) ⇤ m > 0. Then, there exists a unique solution f̃ ⌅ V (�2) that is
consistent with f in the sense that c1[k] = ⇧f,�1(· � k)⌃ = ⇧f̃ , �1(· � k)⌃

f̃(x) = P2�1f(x) =
�

n�Z
(q ⇥ c1)[k]�2(x� k) with Q(z) =

1�
k�Z a12[k]z�k

(consistency)

f

P2f P2�1f

V (�1)

V (�2)

Geometric interpretation

f̃ = P2�1f is the projection of f onto V (�2) perpendicular to V (�1).

Orthogonality of error:

⇥f � f̃ , �1(· � k)⇤ = ⇥f,�1(· � k)⇤� �� �
c1[k]

�⇥f̃ , �1(· � k)⇤� �� �
c1[k]

= 0

2-

Consistent sampling: properties

16

Generalization of Shannon’s theorem

Every signal f � V (�2) can be reconstructed exactly

f̃ = P2�1f : oblique projection onto V (�2) perpendicular to V (�1)

f

P2f P2�1f

V (�1)

V (�2)

�1 � V (�2) � V (�1) = V (�2) � P2�1 = P2 (orthogonal projection)

Special case: least-squares approximation

Minimun-error approximation: f̃(x) = P2f(x) =
�

k�Z
⇥f,

�
�2(· � k)⇤� �� �
(c1�q)[k]

�2(x � k)

Flexibility and realism

- �1 and �2 can be selected freely

- They need not be biorthogonal (unlike wavelet pairs)
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Application 1: interpolation revisited

17

Interpolation constraint

Ideal sampler: ⇥1(x) = �(x)

Reconstruction function: ⇥2(x) = ⇥(x)

Cross-correlation: a12[k] = ⇥�(· � k),⇥(·)⇤ = ⇥(k)

c1[k] = f(x)|x=k = ⇥�(· � k), f⇤

Interpolator = consistent ideal sampling system

Reconstruction/interpolation formula

Qint(z) =
1�

k�Z �(k)z�k

-5 -4 -3 -2 -1 1 2 3 4 5

1

Example: cubic-spline interpolant

�int(x) =
�

k�Z
qint[k] �(x� k)

f(x) =
�

k�Z

c[k]
� �� �
(f � qint)[k] �(x� k)

=
�

k�Z
f [k] �int(x� k)

2-

Application 2: consistent image display

18

Problem specification

Ideal acquisition device: �1(x, y) = sinc(x) · sinc(y)

LCD display: �2(x, y) = rect(x) · rect(y)

A12(ej⇥) =
�

n�Z
⇤̂�1(⇥ + 2�n)⇤̂2(⇥ + 2�n) � Q(ej⇥) =

1
sinc

�
⇥
2�

�

0.1 0.2 0.3 0.4 0.5

0.25

0.5

0.75

1

1.25

1.5

�

2�

Separable image-enhancement filter
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QUANTITATIVE APPROXIMATION THEORY

! Order of approximation

! Fourier-domain prediction of the L2-error

! Strang-Fix conditions

! Spline case

! Asymptotic form of the error

! Optimized basis functions (MOMS)

! Comparison of interpolators

2- 20

Order of approximation

!  General “shift-invariant” space at scale a

!  Projection operator

1 2 3 4 5

2 4

a = 1

a = 2

�f � L2, Paf = arg min
sa�Va

�f � sa�L2

!  Order of approximation

Definition
A scaling/generating function � has order of approximation L iff.

⌅f ⇤ WL
2 , ⇧f � Paf⇧L2 ⇥ C · aL · ⇧f (L)⇧L2

Va(�) =

�
sa(x) =

�

k�Z
c[k]�

�x

a
� k

�
: c � ⇥2

�
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Fourier-domain prediction of the L2-error

Theorem [Blu-U., 1999]
Let Paf denote the orthogonal projection of f onto Va(⇤) (at scale a).
Then,

⇤f ⇥ W s
2 , ⌅f�Paf⌅L2 =

�� +�

��
|f̂(⇥)|2E�(a⇥)

d⇥

2�

�1/2

+o(as)

where

E�(⇥) = 1� |⇤̂(⇥)|2�
k�Z |⇤̂(⇥ + 2�k)|2

Fourier-transform notation: f̂(�) =
� +�

��
f(x)e�j�xdx

2-22

Strang-Fix conditions of order L
Let ⇤(x) satisfy the Riesz-basis condition. Then, the following Strang-
Fix conditions of order L are equivalent:

(1) ⇤̂(0) = 1, and ⇤̂(n)(2�k) = 0 for

�
k ⇤= 0
n = 0 . . . L� 1

(2) ⇤(x) reproduces the polynomials of degree L�1; i.e., there exist
weights pn[k] such that

xn =
�

k�Z
pn[k]⇤(x� k), for n = 0 . . . L� 1

(3) E�(⇥) = C2
L

(2L)! · ⇥2L + O(⇥2L+2)

(4) ⌅f ⇥ WL
2 , ⇧f � Paf⇧L2 = O(aL)
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Polynomial splines

23

Order of approximation

�̂n
+(2⇥k + �⇤) = O(|�⇤|n+1) for k ⇥= 0

=� �n
+ has order of approximation L = n + 1

Basis functions: causal B-splines

�n
+(x) =

�
�n�1

+ � �0
+

�
(x)

�0
+(x) =

�
1, for 0 � x < 1
0, otherwise.

Fourier-domain formula

�̂n
+(⇥) =

�
1�e�j�

j�

�n+1

2-24

Spline approximation

! Fourier approximation kernel

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

E�L(⌅) =
�

n⌅=0 |�̂L(⌅ + 2⇤n|2
�

n⇤Z |�̂L(⌅ + 2⇤n)|2

E�L(⌅) = |2 sin(⌅/2)|2L

�
n⌅=0

1
|⇤+2⇥n)|2L

�
n⇤Z |�̂L(⌅ + 2⇤n)|2

=
2⇥(2L)
(2⇤)2L

|⌅|2L + O(|⌅|2L+2)

⇥(z) =
+⇥⇥

n=1

n�z

L = 1
L = 2
L = 4
L = 8

5

� �

Order: L = n + 1

E�n(⇤) =
�

k �=0 |�̂n(⇤ + 2⇥k)|2
�

k�Z |�̂n(⇤ + 2⇥k)|2

! Link with Riemann"s zeta function

E�n(⌅) = |2 sin(⌅/2)|2n+2

�
k ⇥=0

1
|⇤+2⇥k)|2n+2

�
k�Z |�̂n(⌅ + 2⇤k)|2

=
2⇥(2n + 2))
(2⇤)2n+2

· ⌅2n+2 + O(|⌅|2n+4)

�(z) =
+��

n=1

n�z
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Spline reconstruction of a PET-scan

Piecewise constant

Cubic spline

! 

L =1

! 

L = 4

2-26

Asymptotic form of the error

Theorem [U.-Daubechies, 1997]
Let ⇥ be an Lth order function. Then, asymptotically, as a ⇥ 0,

⌅f ⇤ WL
2 , ⇧f � Paf⇧L2 = CL · aL · ⇧f (L)⇧L2

where

CL =
1
L!

����2
+��

n=1

��⇥̂(L)(2�n)
��2 (=

�
E(2L)

� (0)
(2L)! )

Special case: splines of order L = n + 1

CL,splines =
�

2�(2L)
(2⇥)L

=

�
B2L

(2L)!
(Bernoulli number of order 2L)
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Characteristic decay of the error for splines
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Optimized basis functions (MOMS)

28

QUESTION: What are the basis functions with maximum order of approximation and

minimum support ?

Motivation

Cost of prefiltering is negligible (in 2D and 3D)

Computational cost depends on kernel size W

Order of approximation is a strong determinant of quality

Most interesting MOMS

B-splines: smoothest (�L�1 � ĊL�1) and only refinable MOMS

Shaum’s piecewise-polynomial interpolants (no prefilter)

OMOMS: smallest approximation constant CL

⇥3
opt(x) = �3(x) +

1
42

d2�3(x)
dx2

ANSWER: Shortest functions of order L (MOMS) ⇥moms(x) =
L�1�

k=0

akDk�L�1(x)
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Comparisons of cubic interpolators of size W=4
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INTERPOLATION IN THE PRESENCE OF NOISE

! Interpolation and regularization

! Smoothing splines

! General concept of an L-spline

! Optimal Wiener-like estimators
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Spline-fitting with noisy data

31

Possible formulations

min
s(x)�L2

�spline subject to �data = C1

A priori knowledge of noise variance �

min
s(x)�L2

{�data + � �spline} (Tikhonov-like regularization)

Lagrange multiplier

OR min
s(x)�L2

�data subject to �spline � C2

A priori knowledge of signal class

Context

Input data {f [k]}k�Z corrupted by noise

Model: continuously defined function s(x)

Data term: �data =
�

k�Z |f [k]� s(k)|2 (discrete domain)

Spline energy: �spline = ⇥Dms⇥2
L2

(continuous domain)

2-

Regularized fit: smoothing splines

32

! B-spline representation:

! Smoothing splines

Smoothing 

algorithm

c[k]

s(x) =
�

k�Z
c[k]�n(x� k)

Discrete, noisy input:

f [k] = s(k) + n[k]

Theorem: The solution (among all functions) of the smoothing spline problem

min
s(x)

�
�

k�Z
|f [k]� s(k)|2 + �

� +�

��
|Dms(x)|2dx

�

is a cardinal spline of degree 2m� 1. Its coefficients c[k] = h� ⇥ f [k] can be
obtained by suitable recursive digital filtering of the input samples f [k].

! Special case: the draftman"s spline

The minimum-curvature interpolant is obtained by setting m = 2 and �� 0.
It is a cubic spline !
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General concept of an L-spline

33

Justification:

Dn+1{�n
+(x)} = �n+1

+ {⇥(x)} =
�

k⇥Z d[k]⇥(x� k) F⇥⇤ D(ej�) = (1� e�j�)n+1

Polynomial splines = Dn+1-splines

s(x) =
�

k�Z
s[k]�0

+(x� k) D{s(x)} =
�

k�Z
(s[k]� s[k � 1])�(x� k)�

Special cases

Piecewise-constant = D-splines

L{·}: differential operator (shift-invariant) �(x): Dirac distribution

Definition
The function s(x) is a cardinal L-spline (with knots at the integers) iff.

L{s(x)} =
�

k�Z
a[k]�(x� k)
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Existence of B-spline-like bases
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L{·}: generalized differential operator of order s > 1
2

! 

"

! 

=

L1 = D L2 = D� �I L = D2 � �D

�L(x)

Composition properties

Higher-order B-splines:

�L1(x) and �L2(x) are B-spline generators for the cardinal L1- and L2-splines.

Then, �L1(x) � �L2(x) is a generator for the (L1L2)-splines.

Positive-definite operators: If �L(x) generates a Riesz basis for the L-splines,

then ⇥(x) = �L(x) � �L(�x) generates a Riesz basis for the (L�L)-splines

and the interpolation problem in V (⇥) is well posed.

Riesz-basis representation

Cardinal L-splines generally admit a B-spline-like representation

s(x) =
�

k�Z
c[k]�L(x� k)

⇥L(x) with L = D� �I

Example: first-order exponential B-spline
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Generalized smoothing splines
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!! Generalized spline energy:

Estimation 

algorithm

�spline = �Ls�2
L2

Discrete, noisy input:

f [k] = s(k) + n[k]
s�(x)

Generalized smoothing-spline fit

Theorem: The solution (among all functions) of the generalized smoothing
problem

min
s(x)

�
�

k�Z
|f [k]� s(k)|2 + �

� +�

��
|Ls(x)|2dx

�

is a cardinal L�L-spline.

The solution has a B-spline representation s�(x) =
�

k�Z c[k]⇥(x � k),
the coefficients of which are obtained by suitable filtering of the input data
(generalized smoothing-spline algorithm).

2-

Stochastic signal models
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Spectral shaping

L�1 L

Whitening filter

w(x)
cw(x) = ⇥2

0�(x)
w(x) s(x)

Cw(⇥) = �2
0 Cs(⇥) =

�2
0

|L̂(⇥)|2

Stochastic differential equation

L{s(x)} = w(x) (driven by white Gaussian noise)

Wide-sense stationary process

Realization of the stochastic process: s(x)

Zero-mean: E{s(x)} = 0

Autocorrelation function: E{s(y) · s(y � x)} = cs(x) ⇥ L2

Spectral density function: Cs(�) =
�

x�R cs(x)e�j�xdx ⇥ L2
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Statistical hypotheses

Discrete measurements (signal + noise): f [k] = s(k) + n[k]

Signal autocorrelation: cs(x) such that L�L{cs(x)} = ⇥2
0 · �(x)

Discrete white noise with variance ⇥2 � cn[k] = ⇥2 · �[k]

MMSE continuous-domain signal estimation

Theorem
Under the above assumptions, the linear Minimum-Mean Square Error Estimator of
s(x) at position x = x0, given the measurements {f [k]}k�Z, is s�(x0) with � = ⇥2

⇥2
0

,
where s�(x) is the L�L-smoothing-spline fit of {f [k]}k�Z given by the generalized
smoothing-spline algorithm.

Remark: optimal overall estimators if one adds the assumption of Gaussianity
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CONCLUSION

! Generalized sampling
! Unifying Hilbert-space formulation: Riesz basis, etc.

! Approximation point of view:
projection operators (oblique vs. orthogonal)

! Increased flexibility; closer to real-world systems

! Generality: nonideal sampling, interpolation, etc...

! Quest for the “optimal” representation space
! Not bandlimited ! (prohibitive cost, ringing, etc.)

! Quantitative approximation theory:  L2-estimates, asymptotics

! Optimized functions: MOMS

! Signal-adapted design ?

! Interpolation/approximation in the presence of noise
! Regularization theory: smoothing splines

! Stochastic formulation: new, hybrid form of Wiener filter
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