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Variational formulation of inverse problems

m Linear forward model

y=Hs+n

Integral operator

Problem: recover s from noisy measurements y

m Reconstruction as an optimization problem

Srec = argsrélﬂi@ |y — Hs||§ + )\HLSHg , p=12

. M
data consistency  regularization



Learning as a (linear) inverse problem

but an infinite-dimensional one ...

Given the data points (€., ym) € RVTL find f : RY - R st f(zn) ®ymform=1,..., M
m Introduce smoothness or regularization constraint (Poggio-Girosi 1990)
R(f) = |fI5, = ILfIZ, :/ |Lf(z)|>da: regularization functional
RN

M
mingey R(f) subjectto > |ym — f(zm)]* < o

m=1

m Regularized least-squares fit (theory of RKHS)

(X ) ) = kernel estimator
frkus = argmin Z [ym — f(@m)|” + Al fll% )
fen \ 2 (Wahba 1990; Schélkopf 2001)

RKHS representer theorem for machine learning

M
(P2) argmin (Z (Y — f(zm)]* + /\||f|%> (Poggio-Girosi 1990)
m=1

ry : R x R? = R is the (unique) reproducing kernel for the RKHS 7 if
= r3(-, 20) € H forallxzy € R? (Aronszajn, 1950)
= f(il)o) = <’I“H(‘, il)o),f)y forall f € Hand zy € R¢

Formal characterization: r4 (-, o) = R{d(- — x¢)} = (6(~ - a:o)) (Riesz conjugate)

Representer theorem for Lo-regularization

M
The solution of (P2) has the generic parametric form:  f(x) = Z A T3 (2, T
m=1

(de Boor 1966; Kimeldorf-Wahba 1971; Poggio-Girosi 1990)



RKHS representer theorem for machine learning

M
P2’ i E(Ym, f(xm AlfI12 ith F:R xR — R conve
(P2)  argmin (Z (Y f(m)) + |fy> wi vex

m=1

ry : R4 x R? = R is the (unique) reproducing kernel for the RKHS # if
= r3(-, 20) € H forallxzy € RY (Aronszajn, 1950)
= f(xo) = (ry (-, o), f)u forall f € Hand zy € R?

Formal characterization: r4;(-, o) = R{0(- — o)} = <5(- - -’Bo)) (Riesz conjugate)

Representer theorem for L,-regularization

M
The solution of (P2’) has the generic parametric form:  f(x) = Z A TH (T, To)
m=1

(de Boor 1966; Kimeldorf-Wahba 1971; Poggio-Girosi 1990; Schélkopf 2001)

Supports the theory of SVM, kernel methods, etc.

Is there a mother of all representer theorems ?

arg min E(y,v(f) +¢ (| fllar)

Classical representer theorem in machine learning:
e X’ = H is a reproducing kernel Hilbert space.
e v:H = RM: fs (f(x1),...,(f(zn)) is the sampling operator.
(de Boor 1966; Kimeldorf-Wahba 1971; Poggio-Girosi 1990; Schélkopf 2001)
Most general set-up:
e X is a Banach space.
e v: X R fs ((v1,f),..., (va, f)) is ageneral linear measurement operator.
o E:RM x RM — R+ U {+oc0} is a proper |.s.c. convex loss functional.

e ¢ : Rt — RT is some arbitrary strictly-increasing convex function.
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General notion of Banach space

Normed space: vector space X" equipped with a norm || - || x

Convergent sequence of functions (p;) in X

. L . Stefan Banach (1892-1945)
hzmgoi =¢; e, lim;|lp—pilx =0

Definition
A Banach space is a complete normed space X;
that is, such that lim; p; = ¢ € X for any convergent sequence (¢;) in X.

m Generality of the concept

= Linear space of vectors u = (u,...,uy) € RY
= Linear space of functions u : R — R = Linear space of vector-valued functions w = (u1,...,uy) : R — RN

= Space of linear functional v : X — R = Linear space £(X,Y) of bounded operator U : X — Y



Dual of a Banach space

Dual of the Banach space (X, || - || x):
X’ = space of linear functionals g : f — (g, f) £ g(f) € R that are continuous on X

(g, f)) _
(IIfHX e [

(g, f)

X' is a Banach space equipped with the dual norm: llgllar = sup
fex\{o}

(9.1
m Generic duality bound = lglla = G5, f#0

Forany f € X,g € X" [{g, /)] < llgllx | F]lx

m Duals of L, spaces: (Lp(Rd)), = Ly (R%)  with % +=1 forpe(l,00)

Hoider nequalty: (1.1 < [ | 1£(r)e(r)|dr < 17l el

Riesz conjugate for Hilbert spaces

m Duality bound for Hilbert spaces (equivalent to Cauchy-Schwarz inequality)

Forall (u,v) € H x H': [, 0)] < [[ull ol

s Frigyes Riesz (1880-1956
m Definition gy ( )

The Riesz conjugate of v € H is the unique element u* € H' such that

(w,u*) = (u, )y = ||ullfy = [Julla [Ju*{|l2e (sharp duality bound)

m Properties ¥

= u*=R"Y{u} (inverse Riesz map)
= Norm preservation:  |lully = ||u*|l2 (isometry)
= Invertibility:  w = (u*)* = R{u*} (H') = H (reflexivity)

» Linearity: (ug +u2)* = uf + uj}



Generalization: Duality mapping

Definition
Let (X, X”) be a dual pair of Banach spaces. Then, the elements f* € X’ and f € X
form a conjugate pair if

o | f*|lxr = |fllx (norm preservation), and -
Arne Beurling (1905-1986)
o (f* Parxx = |If*la|lfllx (sharp duality bound).

For any given f € X, the set of admissible conjugates defines the duality mapping

J) ={f e X 1f = 1flx and (F%, Plarcx = 12 1 F 112},

which is a non-empty subset of X”’. Whenever the duality mapping is single-valued
(for instance, when X’ is strictly convex), one also defines the duality operator
Jx : X — X', which is such that f* = Jx(f).

(Beurling-Livingston, 1962)

Properties of duality mapping

Theorem
Let (X, X”) be a dual pair of Banach spaces. Then, the following holds:

—_

. Every f € X admits at least one conjugate f* € X”.
2. J(Af) = MNJ(f) forany A € RT (homogeneity).
3. Forevery f € X, the set J(f) is convex and weak-x closed in X”.

4. The duality mapping is single-valued if X" is strictly convex; the latter condition
is also necessary if X is reflexive.

5. When X is reflexive, then the duality map is bijective if and only if both A and
X’ are strictly convex.

X is reflexive if X' = X.

X is strictly convex if, for all f1, fo € X suchthat ||fi]|lx = [|follx = 1
and f1 # fa, one has ||\ f1 + (1 — ) fa]|x < 1forany X € (0,1).



Mother of all representer theorems

arg min E(y,v(f) + ¢ (Ifllx)

Mathematical assumptions:
e (X,X’)is adual pair of Banach spaces.
o N, = span{v,, }M_, C X with the v, being linearly independent.

e v: X 5 RM: fs (11, f),.... (va, [)) is the linear measurement operator
(it is weak* continuous on X’ because vy, ...,y € X).

o [ :RM x RM — RY is a strictly-convex loss functional.

e ¢ : RT — R is some arbitrary strictly-increasing convex function.

Mother of all representer theorems (Cont’d)

Theorem
For any fixed y € RM the solution set of the generic optimization problem

S = arg;leli)I(I/E(y,V(f)) + ¥ (I fllxr)

is non-empty, convex and weak™*-compact.

Any solution fop € S C X’ is a (X', X)-conjugate of a common

M
ngZamlxmeNycX

m=1
with suitable weights a € RM;i.e., S C J(1p).
If the Banach space X is reflexive and strictly convex, then the solution is unique with

fo=Jx{w} € X’ (Banach conjugate of ). If X is a Hilbert space, then f, = Zﬁf:l
where v}, is the Riesz conjugate of v,,.

AmVi,

(Unser, ArXiv 2019)

Lausanne, Christmas 2018
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1. Learning in reproducing Kernel Hilbert space

Definition

if (- —x) € H' forany = € R%. The corresponding unique Hilbert conjugate /(- x)
(5(- — az))* € ‘H when indexed by x is called the reproducing kernel of H.

A Hilbert space # of functions on R is called a reproducing kernel Hilbert space (RKHS)

m Learning problem

Given the data (@, ym)f::l with «,,, € R?, find the function f : R¢ = R s.t.
M
fO = argl]}gﬁ (Z Em(ymvf(mm)) + ¢(||f||%)>
m=1

= F, :R xR — R (strictly convex)

= ¢ : R — RT (strictly increasing and convex)

15
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Learning in RKHS (Cont’d)

m Special case of generalized representer theorem

s X=H X' =H" (Reflexive Banach space)

= Uy =0(-—x,) (Dirac sampling functionals)

M
= Additive loss: E(y,z) = Y Em (Ym, 2m)
m=1

m Key observation
Reproducing kernel = Schwartz kernel of Riesz map
R=Jy H -H:v—v' = / h(-,y)v(y)dy = v =R{0(—xn)}=h(,xm)
Rd
m Implied form of unique solution = linear kernel expansion

M M
fo= Z amVy, = Z G T (Schélkopf representer theorem, 2001)
m=1 m=1

2. Tikhonov regularization

H: Hilbert space on R¢ with Rieszmap Jyr =R:H — H

m lll-posed linear inverse problem

Measurement functionals: vy, --- ,va € H'

Goal: recover a function f : R — R from noisy measurements v,,, = Vi, [) + €m

m Formulation of reconstruction problem (penalized least-squares)

Given the data y € RM | find the function fo : R* — R sit.
M
fo =iy (Z [ym — (vm )2 + A||f||%>
m=1

A € R*: adjustable regularization parameter.

17



Tikhonov regularization: closed-form solution

m Application of generalized representer theorem

w X =H,6 X' =H'=%H (Hibert space)

= Measurement functionals: v,,, € H’,

(t) = AJt|* (convex)

Conjugate functions: ¢,,, = v}, = R{v,,} € H

m=1,....M ]
= fOZZamSOm

m=1

m Optimal discretization: "the miraculous simplification”

= System matrix H € RM*M - Gram matrix (symmetric, positive-definite)

[H}m,n = <Vm’50n> = <Vm7V:L> = <V:n7V;>7{ = <90m7§0n>7'l

M
= f= Zam@m = v(f)=Ha, |f|}=a"Ha
m=1

€ span{¢m, }

= @op = arg min ([ly — Hall3 + \[Hal3) = (H+ )"y

ERM

3. £,-norm regularization

m Finite-dimensional setup (CS)

= Goal: Recover s = (s,,) € RY from a set of corrupted linear measurements

ym:h;‘gs—l—em,mzl,...,]\/f

s Compressed sensing scenario: M < N

= Strategy: Try to favor sparse solutions

m Formulation of reconstruction task

= Datay € RM

» Systemmatrix H=[h; hy --- h

M]T c RMXN

= Minimization problem with p > 0 small

s = arg min (E(y,H:v) n /\Hac||§p>

RN

) € R*: adjustable regularization parameter

20



f»-norm regularization (Cont’d)

m Application of general representer theorem

s X=RY | le,), A =RV, ,) with L4+1=1

= Holder inequality: |(u,v)| < [lulle, [|v]le,

P(z) = A|z|P is convex for p > 1

| - Ile, and [ - ||¢, norms are strictly convex for p € (1,00) = unique solution

|v”|z:; sign(vn)

= Known g-to-p duality map: [v*],, = o
£q

q—1

m Parametric form of the solution: ’[HTa]n)

[s]n =

pral > )
Eq

with parameter vector a € RM

Qualitative effect of Banach conjugation

q—1
* UTL .
Je, @) 4g(Z) — 1,(Z) vy = ||v|:q_2 Slgn(vn)
eq
s=(v/[vlle,)




Qualitative effect of Banach conjugation
o 5= (/lvlle,)” -

0.5 0.5

-0.5- -0.51

n (¢,p) = (2,2) : identity /

10 @

» (¢,p) — (1,00) : saturation of v*

~1.0bL

= (q,p) — (o0, 1) : sparsification of v* )

4. Sparsity promoting regularization
§ = arg min E(y.»(f) + ¢ (Ifll)

m Cases where the solution set is not necessarily unique

= X is non-reflexive, non-strictly convex; e.g., X’ = ¢1(Z)
= Representer theorem = S'is convex, weak* compact

= Krein-Milman theorem: S is the convex hull of its extreme points

Theorem
All extreme points fj of S can be expressed as

Ko
fo=>_ arex
k=1
for some 1 < Ky < M where the e;, are some extreme points of the unit “regularization” ball
By = {f cX: HfHX' < 1} and a = (al, 000 ,CLKO) € R¥o,

(Boyer-Chambolle-De Castro-Duval-De Gournay-Weiss, arXiv:1806.09810, 2019)
24



Extreme points

m Definition

Let S be a convex set. Then, the point = € S is extreme
if it cannot be expressed as a (non-trivial) convex combination of any other points in S.

m Extreme points of unit ball in ¢,(Z)

] EOO(Z) : ek[n] = :l:l ‘1 -05 0 0‘5 1
» (1(Z): er = 0] — ng] (Kronecker impulse) = sparse !l
s 0,(Z)withp € (1,00) 1 e, = u/||ullg, forany u € £,(Z)

Definition of strictly convexity: all boundary points are extreme !!!

25

Geometry of I> vs. /1 minimization

m Prototypical inverse problem

min { |}y — Hx|?, + A[x|7,}  min x|, subjectto [ly ~ Hx|3, <o

m)in{”y —Hx|;, + Ax[l,} & n;in |x|l,, subjectto |y —Hx|7, < o?

_ T
. y1 =hyx

(: : /\/‘e 7 1

Kz-ba”: |l‘1‘2 + |l‘2‘2 = Cz

g] -ball: ‘.I?1| + |.T2| = Cl

26



Geometry of I> vs. /1 minimization

m Prototypical inverse problem
min {|ly — Hx|3, + Al|x/|,} <« min x|, subjectto [ly - Hx|?, <o

m)in{”y — Hfo2 + A ||X||gl} & mxin |Ix||¢, subjectto ||y — Hx||§2 < o?

T2 C Y1 = h,{X

/ / sparse extreme points

ég-ba”: |.7,'1‘2 + |$2‘2 = CQ

(-ball: |1 | + |xe] = Cy

Configuration for non-unique ¢; solution
27

5. Sparse kernel expansions

m Context

= S(R?): Schwartz’s space of smooth and rapidly decaying functions on R¢ Laurent Schwartz (1915-2002)
= S'(RY): the space of tempered distributions

= Regularization operator L : S'(R?) = S’(R%)

= Inverse operator L1 : S’(R%) == S’(R9)

= Bivariate kernel: h : R? x R¢ —» R L™ {p} = /Rd h(-,y)e(y)dy

\

Schwartz kernel

m Native Banach space for (L, M(R?))

MLRY = {f e S'RY : |ILfImL  sup  (Lf,p) < +oo}
lolloc <1:peS(RY)

28



Isometry with space of Radon measures

Space of bounded Radon measures on R¢

M(Rd) = {f S S’(]Rd) : ||f“M é sup <f7 S0> < +OO}
lelloc <1:p€S(R?)

Johann Radon (1887-1956)

Extreme points of unit ball in M(R%): ey = +5(- — 71) with 75, € R?

= Basic isometries
L: ML(Rd) — M(Rd)
—1 . .
L—l :M(Rd) N ML(Rd> L L = /]Rd h( ay)@(y)dy

Extreme points of unit ball in My, (R?):

up =L ep} = £L7HO(- — 74)} = £h(-, T8)

Sparse kernel expansions (Cont’d)

Lo » h(-,y)e(y)dy

M
S =arg min (Z Em(ymaf(wm)) + /\||Lf||M)

femMu(rd) \ =

Theorem
All extreme points f of S can be expressed as

Ko
folx) = aph(z, %)
k=1

Ko
with parameters Ko < M, T1,...,Tx, € R? and a = (ax) € R¥0. Moreover, ||Lfo||pm = Z lak| = |lalle, -
k=1

30
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Special case: Translation-invariant kernels

m Linear-shift invariant (LSI) setting

= LSl operator L with frequency response L(w) = F{L{0}}(w)
= LSlinverse operator L= : ¢+ hpgr * ¢

= Translation-invariant kernel: h(x, ) = hrsi(x — T)

m Determination of the kernel: hisi(x) = F1 {%} ()

m Determination of the regularization operator

~ 1
Dw)= ——

hLSI (w> THEORIE
L:S(RY) == S'(RY) < L(w) smooth and slowly growing Hus IR GRS

Example of admissible kernels: B

husi(®) = exp (=[l|*)  with a € (0,2)

RKHS vs. sparse kernel expansions (LSI)

M
feLr?,iLI%Rd) (Z Em(ym7 f(wm)) + >‘||LfH2L2>

m=1

Positive-definite kernel:

M
= frius(x) = Z amhpp (T — T,y,) hep(z) = F~! { 1

m=1

Quadratic energy: ||LfRKHSH2L2 =a’Ga

L) } (@)

min (Z Epn (4 f(@m)) + A||Lf||M)

feMu(RY) \ “—
Admissible kernel:

Ko
= fsparse(m) = Z CLkhLSI(w - Tk) hLSI(m) =F! {f(lw)
k=1

Sparsity-promoting energy: ||Lfsparse||M = llallg,

Adaptive parameters: Ky < M, Ty,...,Tx, € R?

} (@)

31
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6. Deep neural network

m Layers: ¢=1,...,L

layers
= Deep structure descriptor: (Ng, N1, -+, Np)
= Neuron or node index: (n,¢), n=1,--- ,N;
= Activation function: 0 : R - R (RelLU) O
O
= Linear step: RVe-1 — RV
(n-10 O
forxe fo(x) =W+ by
neuron 77,[
= Nonlinear step: R™V¢ — RNe 0
) _ Zn,e =0 (W Ze-1 + bng)
oz oy(x) = (o(x1),...,0(zN,)) odes
~ Learned
fieep(®) = (G0 fr oo 100030 f,0010f;)(x)
33
Refinement: free-form activation functions
m Layers: {=1,...,L layers
= Deep structure descriptor: (Ng, N1, -+, Np)
= Neuron or node index: (n,¢), n=1,--- ,N;
= Activation function: ¢ : R - R (RelLU) N O
) O
= Linear step: RVe-1 — RN N
Om-10 O
frixz— f(x) =W+ by
neuron (n-,é)
= Nonlinear step: RV — RVe
Zn,e = One(WE Ze-1 + bne
Ug:a}l—)dg(;l:): (O’n’g(l‘l),...,UNL@(I’N[)) nodes (i +but)

facep(®) = (0r 0 froor-10--0020 fy0010 f)(x)

NN\ S

Joint learning / training ?

34



Constraining activation functions

m Regularization functional
= Should not penalize simple solutions (e.g., identity or linear scaling)

= Should impose diffentiability (for DNN to be trainable via backpropagation)

= Should favor simplest CPWL solutions; i.e., with “sparse 2nd derivatives”

m Second total-variationof 6 : R — R

A
TV2() = D20 s = suPgesry: ol <1 (D20 )

m Native space for (M(R), D?)

BVA(R) = {f:R = R:|D%f|m < oo}

Representer theorem for deep neural networks

Theorem (TV(Z)—optimality of deep spline networks) (U. JMLR 2019)

= neural network f : RNe — RNz with deep structure (No, Ny,..., Nz)
z—f(x)=(ocpolLo0o, 10 -0ly00104)(x)
= normalized linear transformations £, : RNe-1 — RV¢ 2 s U,z with weights
Up=[uy -+ up,,T € RVNeXNe1 guch that ||, of| = 1

= free-form activations o, = (014, ...,0n,.) : RNt — RNe with oy ¢,..., 0w, 0 € BVP(R)
Given a series data points (,,y,,,) m = 1,..., M, we then define the training problem
M N L N
arg min E(y,, f(x +u Y Ri(Up)+ A V3@, ()
. N <mZ Y E(m) ; (Uy) ;g (

= E: RNt x RNe — R+: arbitrary convex error function

w Ry : RNexNewi 5 R+: convex cost

If solution of (1) exists, then it is achieved by a deep spline network with activations of the form

Kn e

On,e(T) = bine+ baner + Z eyn,o (T — Thon,e)+
k=1

with adaptive parameters K, < M — 2,71 ¢, ..., Tx, yne €R,aNd b1y 0, b2 00 a1ne, -5 0K, e € R




Deep spline networks: Discussion

m Global optimality achieved with spline activations
m Justification of popular schemes / Backward compatibility

m Standard RelLU networks (K, (=1, b, =0) (Glorot ICAIS 2011)
(LeCun-Bengio-Hinton Nature 2015)

m Linear regression: A = oo = K, , =0

m State-of-the-art Parametric ReLU networks (Kne=1) (He et al. CVPR 2015)

1 ReLU + linear term (per neuron)
® Adaptive-piecewise linear (APL) networks (Kne=50r7, b,,=0) (Agostinellietal. 2015)

37

Comparison of linear interpolators

i Df(x)?dz st f(zm)=ym, m=1,...,M
g min [ DF@Pds st fon) =y m

arg min [[D*fllm st F(@m) =Ym, m=1,...,M
FEBVR)(R)

38



Conclusion

m Unifying result that supports all known “representer” theorems

m Classical methods based on quadratic minimization
= Kernel-based methods for RKHS (Poggio-Girosi 1990; Scholkopf 2001)

= Tikhonov regularization (Tikhonov 1977; Gupta 2018)

= Optimization in reflexive and strictly-convex Banach spaces

= L, splines (de Boor 1976; ...)

= Reproducing kernel Banach spaces (Zhang-Xu-Zhang 2009; Zhang-Zhang 2012)

= Modern sparsity-based optimization
= {1-minimization for compressed sensing (Donoho 2006; Candes 2006; Baraniuk 2007)

= Total variation minimization for the recovery of spikes (Candes Fernandez-Grada 2013; Duval-Peyré 2015)

(Unser-Fageot-Ward 2017; Flinth-Weiss 2018;

= L-splines are optimum solutions for inverse problems
Bredies-Carioni 2020)

with generalized total-variation regularization

= Optimality of deep ReLU networks (Unser 2019)

39

Conclusion (Cont’d)

m Remarkable level of generality = opens up new perspectives

m Fundamental ingredients for applicability
= Banach space that is matched to the problem at hand

= Knowledge of dual mapping vs. extreme points

No need for Fréchet derivatives or sub-gradients !!!

m Sparse kernel expansions: Open computational challenge

Efficient algorithm for displacing/removing kernels

40
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Sketch of proof

(Ue), (o EBV(2) (R))

L N,
(ZEym (@) +Z Uz+>\ZiTVU0m>
=

{=1n=1

Optimal solution f= oo ZL 0Gy_10--:0 22 X8t ozl with optimized weights fJg and neuronal activations ¢, ¢.

Apply “optimal” network f to each data point x,,:
e Initialization (input): g,,, o = Tm.

e Fort=1,...,L

Zml = (zl,m,& ) ZNg,m,f) = UE gm,i—l
P e ~ N.
Yme = Tmts -5 UNgmye) € RV
with gn,m,é = 5’,7.[(2717,,17@) n=1,...,Ny.

This fixes two terms of minimal criterion: S22 E(Ypn Upm, 1) and S Re(Up).
f achieves global optimum

& g, =arg  min ||D2f||M st f(zome) =Unme, m=1,..., M
' FEBV)(R)

Tikhonov regularization (Exact solution)

fo= argmln (Z ym — (vm, F)IP + )‘”f”?{)

and

fo = span{om I,

m Equivalent finite-dimensional problem

ag = argarélﬂig}d (|ly — Hal|* + A\a"Ha)

m Closed-form solution
ap = (HH + \H) 'Hy = (H+ )~

H invertible < v, are linearly independent
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