EPFL

Representer theorems for machine learning and inverse problems

Michael Unser Biomedical Imaging Group EPFL, Lausanne, Switzerland

One World Seminar "Mathematical Methods for Arbitrary Data Sources", June 8, 2020

Variational formulation of inverse problems

Linear forward model

Problem: recover s from noisy measurements y

■ Reconstruction as an optimization problem

$$\mathbf{s_{rec}} = \arg\min_{\mathbf{s} \in \mathbb{R}^N} \underbrace{\|\mathbf{y} - \mathbf{H}\mathbf{s}\|_2^2}_{\text{data consistency}} + \underbrace{\lambda \|\mathbf{L}\mathbf{s}\|_p^p}_{\text{regularization}}, \quad p = 1, 2$$

Learning as a (linear) inverse problem

but an infinite-dimensional one ...

Given the data points $(x_m,y_m)\in\mathbb{R}^{N+1}$, find $f:\mathbb{R}^N\to\mathbb{R}$ s.t. $f(x_m)\approx y_m$ for $m=1,\ldots,M$

Introduce smoothness or regularization constraint

(Poggio-Girosi 1990)

$$R(f) = \|f\|_{\mathcal{H}}^2 = \|\mathrm{L}f\|_{L_2}^2 = \int_{\mathbb{R}^N} |\mathrm{L}f(x)|^2 \mathrm{d}x$$
: regularization functional

$$\min_{f \in \mathcal{H}} R(f)$$
 subject to $\sum_{m=1}^{M} \left| y_m - f(m{x}_m) \right|^2 \leq \sigma^2$

■ Regularized least-squares fit (theory of RKHS)

$$f_{\text{RKHS}} = \arg\min_{f \in \mathcal{H}} \left(\sum_{m=1}^{M} |y_m - f(\boldsymbol{x}_m)|^2 + \lambda ||f||_{\mathcal{H}}^2 \right)$$

⇒ kernel estimator
(Wahba 1990; Schölkopf 2001)

3

RKHS representer theorem for machine learning

(P2)
$$\arg\min_{f\in\mathcal{H}}\left(\sum_{m=1}^{M}|y_m-f(\boldsymbol{x}_m)|^2+\lambda\|f\|_{\mathcal{H}}^2\right)$$

(Poggio-Girosi 1990)

 $r_{\mathcal{H}}:\mathbb{R}^d imes\mathbb{R}^d o\mathbb{R}$ is the (unique) **reproducing kernel** for the RKHS \mathcal{H} if

 $lacksquare r_{\mathcal{H}}(\cdot,oldsymbol{x}_0)\in\mathcal{H} \ \ ext{for all } oldsymbol{x}_0\in\mathbb{R}^d$

 $lacksquare f(m{x}_0) = \langle r_{\mathcal{H}}(\cdot,m{x}_0), f
angle_{\mathcal{H}} \; ext{ for all } f \in \mathcal{H} \; ext{and} \; m{x}_0 \in \mathbb{R}^d$

(Aronszajn, 1950)

Formal characterization: $r_{\mathcal{H}}(\cdot, \boldsymbol{x}_0) = \mathrm{R}\{\delta(\cdot - \boldsymbol{x}_0)\} = \left(\delta(\cdot - \boldsymbol{x}_0)\right)^*$ (Riesz conjugate)

Representer theorem for L_2 -regularization

The solution of (P2) has the generic parametric form: $f(\boldsymbol{x}) = \sum_{m=1}^{M} a_m r_{\mathcal{H}}(\boldsymbol{x}, \boldsymbol{x}_m)$

(de Boor 1966; Kimeldorf-Wahba 1971; Poggio-Girosi 1990)

RKHS representer theorem for machine learning

$$\text{(P2')} \quad \arg\min_{f\in\mathcal{H}} \left(\sum_{m=1}^M E\big(y_m, f(\boldsymbol{x}_m)\big) + \lambda \|f\|_{\mathcal{H}}^2 \right) \quad \text{with} \quad E: \mathbb{R}\times\mathbb{R} \to \mathbb{R} \text{ convex}$$

 $r_{\mathcal{H}}:\mathbb{R}^d imes \mathbb{R}^d o \mathbb{R}$ is the (unique) **reproducing kernel** for the RKHS \mathcal{H} if

- $lacksquare r_{\mathcal{H}}(\cdot,oldsymbol{x}_0)\in\mathcal{H} \ \ ext{for all } oldsymbol{x}_0\in\mathbb{R}^d$
- $ullet f(m{x}_0) = \langle r_{\mathcal{H}}(\cdot, m{x}_0), f
 angle_{\mathcal{H}} \ ext{ for all } f \in \mathcal{H} ext{ and } m{x}_0 \in \mathbb{R}^d$

(Aronszajn, 1950)

Formal characterization: $r_{\mathcal{H}}(\cdot, \boldsymbol{x}_0) = \mathrm{R}\{\delta(\cdot - \boldsymbol{x}_0)\} = \Big(\delta(\cdot - \boldsymbol{x}_0)\Big)^*$ (Riesz conjugate)

Representer theorem for L_2 -regularization

The solution of (P2') has the generic parametric form: $f(x) = \sum_{m=1}^{M} a_m r_{\mathcal{H}}(x, x_m)$

(de Boor 1966; Kimeldorf-Wahba 1971; Poggio-Girosi 1990; Schölkopf 2001)

Supports the theory of SVM, kernel methods, etc.

Ę

Is there a mother of all representer theorems?

$$\arg\min_{f \in \mathcal{X}'} E(\boldsymbol{y}, \boldsymbol{\nu}(f)) + \psi(\|f\|_{\mathcal{X}'})$$

Classical representer theorem in machine learning:

- $\mathcal{X}' = \mathcal{H}$ is a reproducing kernel Hilbert space.
- ullet $u:\mathcal{H}' o\mathbb{R}^M:f\mapsto ig(f(oldsymbol{x}_1),\ldots,\langle f(oldsymbol{x}_M)ig)$ is the sampling operator.

(de Boor 1966; Kimeldorf-Wahba 1971; Poggio-Girosi 1990; Schölkopf 2001)

Most general set-up:

- \mathcal{X} is a Banach space.
- $\nu: \mathcal{X} \to \mathbb{R}^M: f \mapsto (\langle \nu_1, f \rangle, \dots, \langle \nu_M, f \rangle)$ is a general linear measurement operator.
- $E:\mathbb{R}^M\times\mathbb{R}^M\to\mathbb{R}^+\cup\{+\infty\}$ is a proper l.s.c. convex loss functional.
- $\psi: \mathbb{R}^+ \to \mathbb{R}^+$ is some arbitrary strictly-increasing convex function.

CONTENT

- Regularization in science and engineering
 - Inverse problems and learning
 - Representer theorem for RKHS
- Unifying representer theorem
 - Banach spaces and their duals
 - Duality mapping
 - Mother of all representer theorems
- Applications: Optimization in specific Banach spaces
 - Learning in RKHS
 - Tikhonov regularization
 - *l*_p-norm regularization
 - Sparse kernel expansions
- Deep neural networks

General notion of Banach space

Normed space: vector space $\mathcal X$ equipped with a norm $\|\cdot\|_{\mathcal X}$

Stefan Banach (1892-1945)

Definition

A Banach space is a **complete normed** space \mathcal{X} ;

that is, such that $\lim_i \varphi_i = \varphi \in \mathcal{X}$ for any convergent sequence (φ_i) in \mathcal{X} .

- Generality of the concept
 - Linear space of vectors $u = (u_1, ..., u_N) \in \mathbb{R}^N$
- Linear space of functions $u: \mathbb{R}^d \to \mathbb{R}$ Linear space of vector-valued functions $u = (u_1, \dots, u_N) : \mathbb{R}^d \to \mathbb{R}^N$
 - Space of linear functional $u: \mathcal{X} \to \mathbb{R}$ Linear space $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ of bounded operator $U: \mathcal{X} \to \mathcal{Y}$

Dual of a Banach space

Dual of the Banach space $(\mathcal{X}, \|\cdot\|_{\mathcal{X}})$:

 \mathcal{X}' = space of linear functionals $g:f\mapsto \langle g,f\rangle \stackrel{\vartriangle}{=} g(f)\in \mathbb{R}$ that are continuous on \mathcal{X}

 \mathcal{X}' is a Banach space equipped with the **dual norm**:

$$||g||_{\mathcal{X}'} = \sup_{f \in \mathcal{X} \setminus \{0\}} \left(\frac{\langle g, f \rangle}{||f||_{\mathcal{X}}} \right) = \sup_{f \in \mathcal{X}: ||f||_{\mathcal{X}} \le 1} |\langle g, f \rangle|$$

Generic duality bound

$$\Rightarrow \|g\|_{\mathcal{X}'} \ge \frac{|\langle g, f \rangle|}{\|f\|_{\mathcal{X}}}, \quad f \ne 0$$

For any $f \in \mathcal{X}, g \in \mathcal{X}'$: $|\langle g, f \rangle| \leq \|g\|_{\mathcal{X}'} \|f\|_{\mathcal{X}}$

■ Duals of L_p spaces: $\left(L_p(\mathbb{R}^d)\right)' = L_{p'}(\mathbb{R}^d)$ with $\frac{1}{p} + \frac{1}{p'} = 1$ for $p \in (1, \infty)$

$$\text{H\"older inequality:} \quad |\langle f,\varphi\rangle| \leq \int_{\mathbb{D}^d} |f(\boldsymbol{r})\varphi(\boldsymbol{r})| \; \mathrm{d}\boldsymbol{r} \leq \|f\|_{L_p} \|\varphi\|_{L_{p'}}$$

9

Riesz conjugate for Hilbert spaces

Duality bound for Hilbert spaces (equivalent to Cauchy-Schwarz inequality)

For all $(u, v) \in \mathcal{H} \times \mathcal{H}'$: $|\langle u, v \rangle| \leq ||u||_{\mathcal{H}} ||v||_{\mathcal{H}'}$

Frigyes Riesz (1880-1956)

Definition

The **Riesz conjugate** of $u \in \mathcal{H}$ is the unique element $u^* \in \mathcal{H}'$ such that

$$\langle u, u^* \rangle = \langle u, u \rangle_{\mathcal{H}} = \|u\|_{\mathcal{H}}^2 = \|u\|_{\mathcal{H}} \|u^*\|_{\mathcal{H}'}$$
 (sharp duality bound)

Properties

 $\mathbf{u}^* = \mathbf{R}^{-1}\{u\}$ (inverse Riesz map)

(isometry)

Norm preservation: $||u||_{\mathcal{H}} = ||u^*||_{\mathcal{H}'}$

 $(\mathcal{H}')' = \mathcal{H}$ (reflexivity)

Invertibility: $u = (u^*)^* = R\{u^*\}$

• Linearity: $(u_1 + u_2)^* = u_1^* + u_2^*$

Generalization: Duality mapping

Definition

Let $(\mathcal{X}, \mathcal{X}')$ be a dual pair of Banach spaces. Then, the elements $f^* \in \mathcal{X}'$ and $f \in \mathcal{X}$ form a **conjugate pair** if

- $||f^*||_{\mathcal{X}'} = ||f||_{\mathcal{X}}$ (norm preservation), and
- $\langle f^*, f \rangle_{\mathcal{X}' \times \mathcal{X}} = ||f^*||_{\mathcal{X}'} ||f||_{\mathcal{X}}$ (sharp duality bound).

For any given $f \in \mathcal{X}$, the set of admissible conjugates defines the **duality mapping**

$$J(f) = \{ f^* \in \mathcal{X}' : \|f^*\|_{\mathcal{X}'} = \|f\|_{\mathcal{X}} \text{ and } \langle f^*, f \rangle_{\mathcal{X}' \times \mathcal{X}} = \|f^*\|_{\mathcal{X}'} \|f\|_{\mathcal{X}} \},$$

which is a non-empty subset of \mathcal{X}' . Whenever the duality mapping is single-valued (for instance, when \mathcal{X}' is strictly convex), one also defines the duality operator $J_{\mathcal{X}}: \mathcal{X} \to \mathcal{X}'$, which is such that $f^* = J_{\mathcal{X}}(f)$.

Arne Beurling (1905-1986)

(Beurling-Livingston, 1962)

11

Properties of duality mapping

Theorem

Let $(\mathcal{X}, \mathcal{X}')$ be a dual pair of Banach spaces. Then, the following holds:

- 1. Every $f \in \mathcal{X}$ admits at least one conjugate $f^* \in \mathcal{X}'$.
- 2. $J(\lambda f) = \lambda J(f)$ for any $\lambda \in \mathbb{R}^+$ (homogeneity).
- 3. For every $f \in \mathcal{X}$, the set J(f) is convex and weak-* closed in \mathcal{X}' .
- 4. The duality mapping is **single-valued** if \mathcal{X}' is **strictly convex**; the latter condition is also necessary if \mathcal{X} is reflexive.
- 5. When \mathcal{X} is **reflexive**, then the duality map is **bijective** if and only if both \mathcal{X} and \mathcal{X}' are **strictly convex**.

 \mathcal{X} is *reflexive* if $\mathcal{X}'' = \mathcal{X}$.

 \mathcal{X} is *strictly convex* if, for all $f_1, f_2 \in \mathcal{X}$ such that $||f_1||_{\mathcal{X}} = ||f_2||_{\mathcal{X}} = 1$ and $f_1 \neq f_2$, one has $||\lambda f_1 + (1 - \lambda)f_2||_{\mathcal{X}} < 1$ for any $\lambda \in (0, 1)$.

Mother of all representer theorems

$$\arg\min_{f\in\mathcal{X}'} E(\boldsymbol{y}, \boldsymbol{\nu}(f)) + \psi(\|f\|_{\mathcal{X}'})$$

Lausanne, Christmas 2018

Mathematical assumptions:

- $(\mathcal{X}, \mathcal{X}')$ is a dual pair of Banach spaces.
- $\mathcal{N}_{m{
 u}}=\mathrm{span}\{
 u_m\}_{m=1}^M\subset\mathcal{X}$ with the u_m being linearly independent.
- $\nu: \mathcal{X}' \to \mathbb{R}^M: f \mapsto (\langle \nu_1, f \rangle, \dots, \langle \nu_M, f \rangle)$ is the linear measurement operator (it is weak* continuous on \mathcal{X}' because $\nu_1, \dots, \nu_M \in \mathcal{X}$).
- $E: \mathbb{R}^M \times \mathbb{R}^M \to \mathbb{R}^+$ is a strictly-convex loss functional.
- $\psi: \mathbb{R}^+ \to \mathbb{R}^+$ is some arbitrary strictly-increasing convex function.

19

Mother of all representer theorems (Cont'd)

Theorem

For any fixed $y \in \mathbb{R}^M$, the solution set of the **generic** optimization problem

$$S = \arg\min_{f \in \mathcal{X}'} E(\boldsymbol{y}, \boldsymbol{\nu}(f)) + \psi(\|f\|_{\mathcal{X}'})$$

is non-empty, convex and weak*-compact.

Any solution $f_0 \in S \subset \mathcal{X}'$ is a $(\mathcal{X}', \mathcal{X})$ -conjugate of a common

$$\nu_0 = \sum_{m=1}^{M} a_m \nu_m \in \mathcal{N}_{\boldsymbol{\nu}} \subset \mathcal{X}$$

with suitable weights $a \in \mathbb{R}^M$; i.e., $S \subseteq J(\nu_0)$.

If the Banach space $\mathcal X$ is **reflexive and strictly convex**, then the solution is **unique** with $f_0 = \mathrm{J}_{\mathcal X}\{\nu_0\} \in \mathcal X'$ (Banach conjugate of ν_0). If $\mathcal X$ is a Hilbert space, then $f_0 = \sum_{m=1}^M a_m \nu_m^*$ where ν_m^* is the Riesz conjugate of ν_m .

(Unser, ArXiv 2019)

CONTENT

- Regularization in science and engineering
- Unifying representer theorem
- Applications: Optimization in specific Banach spaces
 - Learning in RKHS
 - Tikhonov regularization
 - lp-norm regularization
 - Sparsity promoting regularization
 - Sparse kernel expansions
 - Deep neural networks

1. Learning in reproducing Kernel Hilbert space

Definition

A Hilbert space \mathcal{H} of functions on \mathbb{R}^d is called a **reproducing kernel Hilbert space** (RKHS) if $\delta(\cdot - x) \in \mathcal{H}'$ for any $x \in \mathbb{R}^d$. The corresponding unique **Hilbert conjugate** $h(\cdot, x) = (\delta(\cdot - x))^* \in \mathcal{H}$ when indexed by x is called the **reproducing kernel** of \mathcal{H} .

Learning problem

Given the data $ig(x_m,y_mig)_{m=1}^M$ with $x_m\in\mathbb{R}^d$, find the function $f_0:\mathbb{R}^d o\mathbb{R}$ s.t.

$$f_0 = \arg\min_{f \in \mathcal{H}} \left(\sum_{m=1}^{M} E_m(y_m, f(\boldsymbol{x}_m)) + \psi(\|f\|_{\mathcal{H}}) \right)$$

- \blacksquare $E_m: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ (strictly convex)
- $\psi: \mathbb{R} \to \mathbb{R}^+$ (strictly increasing and convex)

Learning in RKHS (Cont'd)

- Special case of generalized representer theorem

 - $lacksquare
 u_m = \delta(\cdot oldsymbol{x}_m)$ (Dirac sampling functionals)
 - $\qquad \text{Additive loss: } E(\boldsymbol{y},\boldsymbol{z}) = \sum_{m=1}^{M} E_m \big(y_m, z_m \big)$
- Key observation

Reproducing kernel = Schwartz kernel of Riesz map

$$R = J_{\mathcal{H}'}: \mathcal{H}' \to \mathcal{H}: \nu \mapsto \nu^* = \int_{\mathbb{R}^d} h(\cdot, \boldsymbol{y}) \nu(\boldsymbol{y}) d\boldsymbol{y} \qquad \Rightarrow \quad \nu_m^* = R\{\delta(\cdot - \boldsymbol{x}_m)\} = h(\cdot, \boldsymbol{x}_m)$$

■ Implied form of unique solution = linear kernel expansion

$$f_0 = \sum_{m=1}^{M} a_m
u_m^* = \sum_{m=1}^{M} a_m h(\cdot, x_m)$$

(Schölkopf representer theorem, 2001)

17

2. Tikhonov regularization

 \mathcal{H} : Hilbert space on \mathbb{R}^d with Riesz map $J_{\mathcal{H}'} = R: \mathcal{H}' o \mathcal{H}$

Ill-posed linear inverse problem

Measurement functionals: $\nu_1, \cdots, \nu_M \in \mathcal{H}'$

Goal: recover a function $f: \mathbb{R}^d \to \mathbb{R}$ from noisy measurements $y_m = \langle \nu_m, f \rangle + \epsilon_m$

Formulation of reconstruction problem (penalized least-squares)

Given the data $\boldsymbol{y} \in \mathbb{R}^M$, find the function $f_0 : \mathbb{R}^d \to \mathbb{R}$ s.t.

$$f_0 = \arg\min_{f \in \mathcal{H}} \left(\sum_{m=1}^{M} |y_m - \langle \nu_m, f \rangle|^2 + \lambda ||f||_{\mathcal{H}}^2 \right)$$

 $\lambda \in \mathbb{R}^+$: adjustable regularization parameter.

Tikhonov regularization: closed-form solution

- Application of generalized representer theorem
 - $\mathcal{X} = \mathcal{H}', \ \mathcal{X}' = \mathcal{H}'' = \mathcal{H}$ (Hilbert space)
 - Measurement functionals: $\nu_m \in \mathcal{H}', m = 1, \dots, M$
 - \blacksquare Conjugate functions: $\varphi_m = \nu_m^* = \mathbf{R}\{\nu_m\} \in \mathcal{H}$
 - $\psi(t) = \lambda |t|^2 \text{ (convex)}$

$$\Rightarrow f_0 = \sum_{m=1}^{M} a_m \varphi_m \in \operatorname{span}\{\varphi_m\}$$

- Optimal discretization: "the miraculous simplification"
 - lacksquare System matrix $\mathbf{H} \in \mathbb{R}^{M imes M}$ = **Gram matrix** (symmetric, positive-definite)

$$[\mathbf{H}]_{m,n} = \langle \nu_m, \varphi_n \rangle = \langle \nu_m, \nu_n^* \rangle = \langle \nu_m^*, \nu_n^* \rangle_{\mathcal{H}} = \langle \varphi_m, \varphi_n \rangle_{\mathcal{H}}$$

$$\Rightarrow \quad \boldsymbol{a}_{\mathrm{opt}} = \arg\min_{\boldsymbol{a} \in \mathbb{R}^{M}} \left(\|\boldsymbol{y} - \mathbf{H}\boldsymbol{a}\|_{2}^{2} + \lambda \|\mathbf{H}\boldsymbol{a}\|_{2}^{2} \right) = (\mathbf{H} + \lambda \mathbf{I})^{-1} \boldsymbol{y}$$

19

3. ℓ_p -norm regularization

- Finite-dimensional setup (CS)
 - Goal: Recover $s=(s_n)\in\mathbb{R}^N$ from a set of corrupted linear measurements $y_m=m{h}_m^T s+\epsilon_m, \, m=1,\ldots,M$
 - Compressed sensing scenario: $M \ll N$
 - Strategy: Try to favor sparse solutions
- Formulation of reconstruction task
 - lacksquare Data $oldsymbol{y} \in \mathbb{R}^M$
 - System matrix $\mathbf{H} = [\mathbf{h}_1 \ \mathbf{h}_2 \ \cdots \ \mathbf{h}_M]^T \in \mathbb{R}^{M \times N}$
 - Minimization problem with p > 0 small

$$oldsymbol{s} = rg \min_{oldsymbol{x} \in \mathbb{R}^N} \left(Eig(oldsymbol{y}, \mathbf{H} oldsymbol{x}) + \lambda \|oldsymbol{x}\|_{\ell_p}^p
ight)$$

 $\lambda \in \mathbb{R}^+$: adjustable regularization parameter

ℓ_p -norm regularization (Cont'd)

Application of general representer theorem

$$\quad \blacksquare \quad \mathcal{X} = (\mathbb{R}^N, \|\cdot\|_{\ell_q}) \;, \quad \mathcal{X}' = (\mathbb{R}^N, \|\cdot\|_{\ell_p}) \quad \text{with} \quad \tfrac{1}{p} + \tfrac{1}{q} = 1$$

- lacksquare Hölder inequality: $|\langle oldsymbol{u}, oldsymbol{v}
 angle| \leq \|oldsymbol{u}\|_{\ell_p} \|oldsymbol{v}\|_{\ell_q}$
- $\psi(x) = \lambda |x|^p$ is convex for $p \ge 1$
- $\blacksquare \ \|\cdot\|_{\ell_p} \text{ and } \|\cdot\|_{\ell_q} \text{ norms are strictly convex for } p \in (1,\infty) \quad \Rightarrow \quad \text{unique solution}$
- Known q-to-p duality map: $[v^*]_n = \frac{|v_n|^{q-1}}{\|v\|_{\ell_q}^{q-2}} \mathrm{sign} \big(v_n\big)$

Parametric form of the solution:

$$[oldsymbol{s}]_n = rac{\left| [\mathbf{H}^T oldsymbol{a}]_n
ight)^{q-1}}{\| \mathbf{H}^T oldsymbol{a} \|_{\ell_q}^{q-2}} \mathrm{sign} ig([\mathbf{H}^T oldsymbol{a}]_n ig)$$

with parameter vector $oldsymbol{a} \in \mathbb{R}^M$

21

Qualitative effect of Banach conjugation

$$\mathbf{J}_{\ell_{\mathbf{q}}(\mathbb{Z})}: \boldsymbol{\ell_{q}}(\mathbb{Z}) \to \underline{\boldsymbol{\ell_{p}}}(\mathbb{Z}) \qquad \qquad \boldsymbol{v_{n}^{*}} = \frac{|\boldsymbol{v_{n}}|^{q-1}}{\|\boldsymbol{v}\|_{\ell_{q}}^{q-2}} \mathrm{sign}\big(\boldsymbol{v_{n}}\big)$$

$$s = (v/\|v\|_{\ell_a})^*$$

Qualitative effect of Banach conjugation

 $\blacksquare \left(q,p\right) =\left(2,2\right)$: identity

 $\blacksquare (q,p) o (1,\infty)$: saturation of $oldsymbol{v}^*$

 $lackbox{\ \ } (q,p)
ightarrow (\infty,1)$: sparsification of $oldsymbol{v}^*$

4. Sparsity promoting regularization

$$S = \arg\min_{f \in \mathcal{X}'} E(\boldsymbol{y}, \boldsymbol{\nu}(f)) + \psi(\|f\|_{\mathcal{X}'})$$

- Cases where the solution set is not necessarily unique
 - lacksquare \mathcal{X}' is non-reflexive, non-strictly convex; e.g., $\mathcal{X}'=\ell_1(\mathbb{Z})$
 - lacktriangledown Representer theorem \Rightarrow S is convex, weak* compact
 - \blacksquare Krein-Milman theorem: S is the convex hull of its **extreme points**

Theorem

All extreme points f_0 of S can be expressed as

$$f_0 = \sum_{k=1}^{K_0} a_k e_k$$

for some $1 \leq K_0 \leq M$ where the e_k are some **extreme points** of the unit "regularization" ball $B_{\mathcal{X}'} = \{f \in \mathcal{X}' : \|f\|_{\mathcal{X}'} \leq 1\}$ and $\boldsymbol{a} = (a_1, \cdots, a_{K_0}) \in \mathbb{R}^{K_0}$.

Extreme points

Definition

Let S be a convex set. Then, the point $x \in S$ is **extreme** if it cannot be expressed as a (non-trivial) convex combination of any other points in S.

sparse !!!

- **E**xtreme points of unit ball in $\ell_p(\mathbb{Z})$
 - $\bullet \ell_{\infty}(\mathbb{Z}): e_k[n] = \pm 1$
 - $lacksquare \ell_1(\mathbb{Z}): \quad e_k = \pm \delta[\cdot n_k]$ (Kronecker impulse)
 - $\label{eq:local_p} \quad \blacksquare \quad \ell_p(\mathbb{Z}) \text{ with } p \in (1,\infty): \quad e_k = u/\|u\|_{\ell_p} \text{ for any } u \in \ell_p(\mathbb{Z})$

Definition of strictly convexity: all boundary points are extreme !!!

25

Geometry of l_2 vs. l_1 minimization

Prototypical inverse problem

$$\begin{split} & \min_{\mathbf{x}} \left\{ \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 + \lambda \, \|\mathbf{x}\|_{\ell_2}^2 \right\} \; \Leftrightarrow \; \min_{\mathbf{x}} \|\mathbf{x}\|_{\ell_2} \; \text{subject to} \; \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 \leq \sigma^2 \\ & \min_{\mathbf{x}} \left\{ \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 + \lambda \, \|\mathbf{x}\|_{\ell_1} \right\} \; \Leftrightarrow \; \min_{\mathbf{x}} \|\mathbf{x}\|_{\ell_1} \; \text{subject to} \; \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 \leq \sigma^2 \end{split}$$

Geometry of l_2 vs. l_1 minimization

Prototypical inverse problem

$$\begin{split} & \min_{\mathbf{x}} \left\{ \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 + \lambda \, \|\mathbf{x}\|_{\ell_2}^2 \right\} \;\; \Leftrightarrow \;\; \min_{\mathbf{x}} \|\mathbf{x}\|_{\ell_2} \;\; \text{subject to} \;\; \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 \leq \sigma^2 \\ & \min_{\mathbf{x}} \left\{ \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 + \lambda \, \|\mathbf{x}\|_{\ell_1} \right\} \;\; \Leftrightarrow \;\; \min_{\mathbf{x}} \|\mathbf{x}\|_{\ell_1} \;\; \text{subject to} \;\; \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 \leq \sigma^2 \end{split}$$

Configuration for **non-unique** ℓ_1 solution

5. Sparse kernel expansions

Context

 $lacksquare{\mathcal{S}}(\mathbb{R}^d)$: Schwartz's space of smooth and rapidly decaying functions on \mathbb{R}^d

Laurent Schwartz (1915-2002)

- $lacksquare{\ \ } \mathcal{S}'(\mathbb{R}^d)$: the space of tempered distributions
- Regularization operator $L: \mathcal{S}'(\mathbb{R}^d) \xrightarrow{c.} \mathcal{S}'(\mathbb{R}^d)$
- Inverse operator $L^{-1}: \mathcal{S}'(\mathbb{R}^d) \xrightarrow{c.} \mathcal{S}'(\mathbb{R}^d)$
- \blacksquare Bivariate kernel: $h:\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}$

$$\mathrm{L}^{-1}\{arphi\} = \int_{\mathbb{R}^d} rac{h(\cdot, oldsymbol{y}) arphi(oldsymbol{y}) \mathrm{d} oldsymbol{y}}{igwedge}$$
 Schwartz kernel

■ Native Banach space for $\left(\mathrm{L},\mathcal{M}(\mathbb{R}^d)\right)$

$$\mathcal{M}_{\mathrm{L}}(\mathbb{R}^d) = \{ f \in \mathcal{S}'(\mathbb{R}^d) : \|\mathrm{L}f\|_{\mathcal{M}} \stackrel{\triangle}{=} \sup_{\|\varphi\|_{\infty} \leq 1: \varphi \in \mathcal{S}(\mathbb{R}^d)} \langle \mathrm{L}f, \varphi \rangle < +\infty \}$$

Isometry with space of Radon measures

lacksquare Space of bounded Radon measures on \mathbb{R}^d

$$\mathcal{M}(\mathbb{R}^d) = \{ f \in \mathcal{S}'(\mathbb{R}^d) : \|f\|_{\mathcal{M}} \stackrel{\triangle}{=} \sup_{\|\varphi\|_{\infty} \le 1: \varphi \in \mathcal{S}(\mathbb{R}^d)} \langle f, \varphi \rangle < +\infty \}$$

Johann Radon (1887-1956)

- Extreme points of unit ball in $\mathcal{M}(\mathbb{R}^d)$: $e_k = \pm \delta(\cdot \boldsymbol{\tau}_k)$ with $\boldsymbol{\tau}_k \in \mathbb{R}^d$
- Basic isometries

$$L: \mathcal{M}_L(\mathbb{R}^d) \to \mathcal{M}(\mathbb{R}^d)$$

$$L^{-1}: \mathcal{M}(\mathbb{R}^d) \to \mathcal{M}_L(\mathbb{R}^d)$$

$$L^{-1}: \varphi \mapsto \int_{\mathbb{R}^d} h(\cdot, \boldsymbol{y}) \varphi(\boldsymbol{y}) d\boldsymbol{y}$$

Extreme points of unit ball in $\mathcal{M}_{\mathrm{L}}(\mathbb{R}^d)$:

$$u_k = L^{-1}\{e_k\} = \pm L^{-1}\{\delta(\cdot - \tau_k)\} = \pm h(\cdot, \tau_k)$$

29

Sparse kernel expansions (Cont'd)

$$\mathrm{L}^{-1}: \varphi \mapsto \int_{\mathbb{R}^d} \mathbf{h}(\cdot, \boldsymbol{y}) \varphi(\boldsymbol{y}) \mathrm{d} \boldsymbol{y}$$

$$S = \arg\min_{f \in \mathcal{M}_{L}(\mathbb{R}^{d})} \left(\sum_{m=1}^{M} E_{m}(y_{m}, f(\boldsymbol{x}_{m})) + \lambda \| \mathbf{L}f \|_{\mathcal{M}} \right)$$

Theorem

All extreme points f_0 of S can be expressed as

$$f_0(oldsymbol{x}) = \sum_{k=1}^{K_0} a_k oldsymbol{h}(oldsymbol{x}, oldsymbol{ au}_k)$$

with parameters $K_0 \leq M$, $\boldsymbol{\tau}_1, \dots, \boldsymbol{\tau}_{K_0} \in \mathbb{R}^d$ and $\boldsymbol{a} = (a_k) \in \mathbb{R}^{K_0}$. Moreover, $\|\mathrm{L} f_0\|_{\mathcal{M}} = \sum_{k=1}^{K_0} |a_k| = \|\boldsymbol{a}\|_{\ell_1}$.

Special case: Translation-invariant kernels

- Linear-shift invariant (LSI) setting
 - \blacksquare LSI operator L with frequency response $\ \widehat{L}(\omega) = \mathcal{F}\big\{L\{\delta\}\big\}(\omega)$
 - ${\color{red} \blacksquare} \;\; \mathsf{LSI} \; \mathsf{inverse} \; \mathsf{operator} \; \mathsf{L}^{-1} : \varphi \mapsto h_{\mathsf{LSI}} * \varphi$
 - lacktriangle Translation-invariant kernel: $h(m{x},m{ au})=h_{ ext{LSI}}(m{x}-m{ au})$
- Determination of the kernel: $h_{\mathrm{LSI}}(m{x}) = \mathcal{F}^{-1}\left\{rac{1}{\widehat{L}(m{\omega})}
 ight\}(m{x})$
- Determination of the regularization operator

$$\widehat{L}(\boldsymbol{\omega}) = \frac{1}{\widehat{h}_{\mathrm{LSI}}(\boldsymbol{\omega})}$$

 $\mathrm{L}: \mathcal{S}'(\mathbb{R}^d) \xrightarrow{c.} \mathcal{S}'(\mathbb{R}^d) \quad \Leftrightarrow \quad \widehat{L}(\boldsymbol{\omega}) \text{ smooth and slowly growing}$

Example of admissible kernels:

$$h_{\mathrm{LSI}}(\boldsymbol{x}) = \exp\left(-\|\boldsymbol{x}\|^{\alpha}\right) \quad \text{with } \alpha \in (0, 2)$$

RKHS vs. sparse kernel expansions (LSI)

$$\min_{f \in L_{2,\mathbf{L}}(\mathbb{R}^d)} \left(\sum_{m=1}^M E_m \big(y_m, f(\boldsymbol{x}_m) \big) + \lambda \| \mathbf{L} f \|_{L_2}^2 \right)$$

 $\Rightarrow f_{ ext{RKHS}}(oldsymbol{x}) = \sum_{m=1}^{M} a_m oldsymbol{h}_{ ext{PD}}(oldsymbol{x} - oldsymbol{x}_m)$

Positive-definite kernel:

$$rac{m{h}_{ ext{PD}}(m{x}) = \mathcal{F}^{-1}\left\{rac{1}{|\widehat{m{L}}(m{\omega})|^2}
ight\}(m{x})$$

Quadratic energy: $\|\mathbf{L}f_{\mathrm{RKHS}}\|_{L_{2}}^{2}=oldsymbol{a}^{T}\mathbf{G}oldsymbol{a}$

$$\min_{f \in \mathcal{M}_{\mathbf{L}}(\mathbb{R}^d)} \left(\sum_{m=1}^M E_m \big(y_m, f(\boldsymbol{x}_m) \big) + \lambda \| \mathbf{L} f \|_{\mathcal{M}} \right)$$

 $\Rightarrow f_{ ext{sparse}}(oldsymbol{x}) = \sum_{k=1}^{K_0} a_k oldsymbol{h}_{ ext{LSI}}(oldsymbol{x} - oldsymbol{ au}_k)$

Admissible kernel:

$$m{h}_{ ext{LSI}}(m{x}) = \mathcal{F}^{-1} \left\{ rac{1}{\widehat{m{L}}(m{\omega})}
ight\} (m{x})$$

Sparsity-promoting energy: $\|\mathrm{L} f_{\mathrm{sparse}}\|_{\mathcal{M}} = \|m{a}\|_{\ell_1}$

Adaptive parameters: $K_0 \leq M, \boldsymbol{\tau}_1, \dots, \boldsymbol{\tau}_{K_0} \in \mathbb{R}^d$

6. Deep neural network

- \blacksquare Layers: $\ell = 1, \ldots, L$
- Deep structure descriptor: (N_0, N_1, \cdots, N_L)
- Neuron or node index: $(n, \ell), n = 1, \dots, N_{\ell}$
- Activation function: $\sigma: \mathbb{R} \to \mathbb{R}$ (ReLU)
- lacksquare Linear step: $\mathbb{R}^{N_{\ell-1}}
 ightarrow \mathbb{R}^{N_{\ell}}$

$$f_{\ell}: x \mapsto f_{\ell}(x) = \mathbf{W}_{\ell}x + \mathbf{b}_{\ell}$$

 \blacksquare Nonlinear step: $\mathbb{R}^{N_\ell} \to \mathbb{R}^{N_\ell}$

$$\sigma_{\ell}: \boldsymbol{x} \mapsto \sigma_{\ell}(\boldsymbol{x}) = (\sigma(x_1), \dots, \sigma(x_{N_{\ell}}))$$

earned

$$\mathbf{f}_{ ext{deep}}(oldsymbol{x}) = (oldsymbol{\sigma}_L \circ oldsymbol{f}_L \circ oldsymbol{\sigma}_{L-1} \circ \cdots \circ oldsymbol{\sigma}_2 \circ oldsymbol{f}_2 \circ oldsymbol{\sigma}_1 \circ oldsymbol{f}_1) \, (oldsymbol{x})$$

33

Refinement: free-form activation functions

- Layers: $\ell = 1, \dots, L$
- Deep structure descriptor: (N_0, N_1, \cdots, N_L)
- Neuron or node index: $(n, \ell), n = 1, \dots, N_{\ell}$
- Activation function: $\sigma : \mathbb{R} \to \mathbb{R}$ (ReLU)
- lacksquare Linear step: $\mathbb{R}^{N_{\ell-1}}
 ightarrow \mathbb{R}^{N_{\ell}}$

$$oldsymbol{f}_\ell: oldsymbol{x} \mapsto oldsymbol{f}_\ell(oldsymbol{x}) = oldsymbol{\mathbf{W}}_\ell oldsymbol{x} + oldsymbol{\mathbf{b}}_\ell$$

lacksquare Nonlinear step: $\mathbb{R}^{N_\ell} o \mathbb{R}^{N_\ell}$

$$\sigma_{\ell}: x \mapsto \sigma_{\ell}(x) = (\sigma_{n,\ell}(x_1), \dots, \sigma_{N_{\ell},\ell}(x_{N_{\ell}}))$$

 $\mathbf{f}_{\mathrm{deep}}(oldsymbol{x}) = (oldsymbol{\sigma}_L \circ oldsymbol{f}_L \circ oldsymbol{\sigma}_{L-1} \circ \cdots \circ oldsymbol{\sigma}_2 \circ oldsymbol{f}_2 \circ oldsymbol{\sigma}_1 \circ oldsymbol{f}_1) (oldsymbol{x})$

Joint learning / training ?

Constraining activation functions

- Regularization functional
 - Should not penalize simple solutions (e.g., identity or linear scaling)
 - Should impose diffentiability (for DNN to be trainable via backpropagation)
 - Should favor simplest CPWL solutions; i.e., with "sparse 2nd derivatives"
- Second total-variation of $\sigma: \mathbb{R} \to \mathbb{R}$

$$TV^{(2)}(\sigma) \stackrel{\triangle}{=} \|D^2 \sigma\|_{\mathcal{M}} = \sup_{\varphi \in \mathcal{S}(\mathbb{R}): \|\varphi\|_{\infty} \le 1} \langle D^2 \sigma, \varphi \rangle$$

■ Native space for $(\mathcal{M}(\mathbb{R}), \mathrm{D}^2)$

$$\mathrm{BV}^{(2)}(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} : \|\mathrm{D}^2 f\|_{\mathcal{M}} < \infty \}$$

35

Representer theorem for deep neural networks

Theorem $(TV^{(2)}$ -optimality of deep spline networks)

(U. JMLR 2019)

- $\begin{array}{c} \bullet \text{ neural network } \mathbf{f}: \mathbb{R}^{N_0} \rightarrow \mathbb{R}^{N_L} \text{ with deep structure } (N_0, N_1, \dots, N_L) \\ x \mapsto \mathbf{f}(x) = \left(\begin{matrix} \sigma_L \circ \boldsymbol{\ell}_L \circ \boldsymbol{\sigma}_{L-1} \circ \dots \circ \boldsymbol{\ell}_2 \circ \boldsymbol{\sigma}_1 \circ \boldsymbol{\ell}_1 \end{matrix} \right) (x) \\ \end{array}$
- **normalized** linear transformations $\boldsymbol{\ell}_{\ell}: \mathbb{R}^{N_{\ell-1}} \to \mathbb{R}^{N_{\ell}}, \boldsymbol{x} \mapsto \mathbf{U}_{\ell} \boldsymbol{x}$ with weights $\mathbf{U}_{\ell} = [\mathbf{u}_{1,\ell} \ \cdots \ \mathbf{u}_{N_{\ell},\ell}]^T \in \mathbb{R}^{N_{\ell} \times N_{\ell-1}}$ such that $\|\mathbf{u}_{n,\ell}\| = 1$
- free-form activations $\sigma_{\ell} = (\sigma_{1,\ell}, \dots, \sigma_{N_{\ell},\ell}) : \mathbb{R}^{N_{\ell}} \to \mathbb{R}^{N_{\ell}}$ with $\sigma_{1,\ell}, \dots, \sigma_{N_{\ell},\ell} \in \mathrm{BV}^{(2)}(\mathbb{R})$

Given a series data points (x_m, y_m) $m = 1, \dots, M$, we then define the training problem

$$\arg \min_{(\mathbf{U}_{\ell}),(\boldsymbol{\sigma}_{\boldsymbol{n},\boldsymbol{\ell}} \in \mathrm{BV}^{(2)}(\mathbb{R}))} \left(\sum_{m=1}^{M} E(\boldsymbol{y}_{m},\mathbf{f}(\boldsymbol{x}_{m})) + \mu \sum_{\ell=1}^{N} R_{\ell}(\mathbf{U}_{\ell}) + \lambda \sum_{\ell=1}^{L} \sum_{n=1}^{N_{\ell}} \mathrm{TV}^{(2)}(\boldsymbol{\sigma}_{\boldsymbol{n},\boldsymbol{\ell}}) \right)$$
(1)

- \blacksquare $E: \mathbb{R}^{N_L} \times \mathbb{R}^{N_L} \to \mathbb{R}^+$: arbitrary convex error function
- $lacksquare R_\ell: \mathbb{R}^{N_\ell imes N_{\ell-1}}
 ightarrow \mathbb{R}^+ : \mathsf{convex} \; \mathsf{cost}$

If solution of (1) exists, then it is achieved by a deep spline network with activations of the form

$$\sigma_{n,\ell}(x) = b_{1,n,\ell} + b_{2,n,\ell}x + \sum_{k=1}^{K_{n,\ell}} a_{k,n,\ell}(x - \tau_{k,n,\ell})_+,$$

with adaptive parameters $K_{n,\ell} \leq M-2$, $\tau_{1,n,\ell},\ldots,\tau_{K_{n,\ell},n,\ell} \in \mathbb{R}$, and $b_{1,n,\ell},b_{2,n,\ell},a_{1,n,\ell},\ldots,a_{K_{n,\ell},n,\ell} \in \mathbb{R}$.

Deep spline networks: Discussion

- Global optimality achieved with spline activations
- Justification of popular schemes / Backward compatibility
 - Standard ReLU networks $(K_{n,\ell} = 1, b_{n,\ell} = 0)$

(Glorot ICAIS 2011)

(LeCun-Bengio-Hinton Nature 2015)

- Linear regression: $\lambda \to \infty \Rightarrow K_{n,\ell} = 0$
- State-of-the-art Parametric ReLU networks1 ReLU + linear term (per neuron)
- $(K_{n,\ell}=1)$

(He et al. CVPR 2015)

- Adaptive-piecewise linear (APL) networks
- $(K_{n,\ell} = 5 \text{ or } 7, \ \boldsymbol{b}_{n,\ell} = \mathbf{0})$

(Agostinelli et al. 2015)

37

Comparison of linear interpolators

$$\arg\min_{f\in H^1(\mathbb{R})}\int_{\mathbb{R}}|\mathrm{D}f(x)|^2\mathrm{d}x \quad \text{s.t.} \quad f(x_m)=y_m, \ m=1,\ldots,M$$

$$\arg\min_{f\in \mathrm{BV}^{(2)}(\mathbb{R})}\|\mathrm{D}^2f\|_{\mathcal{M}}\quad \text{s.t.}\quad f(x_m)=y_m,\ m=1,\ldots,M$$

Conclusion

- Unifying result that supports all known "representer" theorems
 - Classical methods based on quadratic minimization

Kernel-based methods for RKHS

■ Tikhonov regularization

(Poggio-Girosi 1990; Schölkopf 2001)

(Tikhonov 1977; Gupta 2018)

Optimization in reflexive and strictly-convex Banach spaces

 $\blacksquare L_p$ splines

Reproducing kernel Banach spaces

(de Boor 1976; ...)

(Zhang-Xu-Zhang 2009; Zhang-Zhang 2012)

Modern sparsity-based optimization

lacksquare ℓ_1 -minimization for compressed sensing

■ Total variation minimization for the recovery of spikes

- L-splines are optimum solutions for inverse problems with generalized total-variation regularization
- Optimality of deep ReLU networks

(Donoho 2006; Candes 2006; Baraniuk 2007)

(Candes Fernandez-Grada 2013; Duval-Peyré 2015)

(Unser-Fageot-Ward 2017; Flinth-Weiss 2018; Bredies-Carioni 2020)

(Unser 2019)

Conclusion (Cont'd)

- Remarkable level of generality ⇒ opens up new perspectives
 - Fundamental ingredients for applicability
 - Banach space that is matched to the problem at hand
 - Knowledge of dual mapping vs. extreme points

No need for Fréchet derivatives or sub-gradients !!!

Sparse kernel expansions: Open computational challenge

Efficient algorithm for displacing/removing kernels

Acknowledgments

Many thanks to (former) members of EPFL's Biomedical Imaging Group

- Dr. Julien Fageot
- Prof. John Paul Ward
- Harshit Gupta
- Shayan Aziznejad
- Thomas Debarre
- Dr. Emrah Bostan
- Prof. Ulugbek Kamilov
- Prof. Matthieu Guerquin-Kern

....

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION

and collaborators ...

- Prof. Demetri Psaltis
- Prof. Marco Stampanoni
- Prof. Carlos-Oscar Sorzano
- Dr. Arne Seitz

...

Selected references

- Reference books
 - A. Berlinet and C. Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Probability and Statistics, Kluwer, 2004.
 - W. Rudin, Functional Analysis, McGraw-Hill Book Co., 1991.
 - L. Schwartz. Théorie des Distributions. Hermann, Paris, 1966.
- Selected papers
 - M. Unser, "A unifying representer theorem for inverse problems and machine learning," arXiv:1903.00687 (2019)
 - M. Unser, J. Fageot, and H. Gupta, Representer theorems for sparsity-promoting ℓ_1 regularization, *IEEE Trans. Information Theory*, 62 (2016), pp. 5167–5180.
 - M. Unser, J. Fageot, and J. P. Ward, "Splines are universal solutions of linear inverse problems with generalized-TV regularization," SIAM Review, 59 (2017), pp. 769–793.
 - H. Gupta, J. Fageot, and M. Unser, "Continuous-domain solutions of linear inverse problems with Tikhonov versus generalized TV regularization," *IEEE Trans. Signal Processing*, 66 (2018), pp. 4670–4684.
 - C. Boyer, A. Chambolle, Y. De Castro, V. Duval, F. De Gournay, and P. Weiss, "On representer theorems and convex regularization", SIAM Journal of Optimization, 29 (2019) pp. 1260-1281.
 - S. Aziznejad and M. Unser, "Multiple-kernel regression with sparsity constraint", arXiv:1811.00836, 2018.
 - M. Unser, "A representer theorem for deep neural networks," *J. Machine Learning Research*, 20 (2019), no. 110, pp. 1-30.
- Preprints and demos: http://bigwww.epfl.ch/

Sketch of proof

$$\min_{(\mathbf{U}_{\ell}), (\boldsymbol{\sigma}_{\boldsymbol{n}, \boldsymbol{\ell}} \in \mathrm{BV}^{(2)}(\mathbb{R}))} \left(\sum_{m=1}^{M} E \left(\boldsymbol{y}_{m}, \mathbf{f}(\boldsymbol{x}_{m}) \right) \right. \\ \left. + \mu \sum_{\ell=1}^{N} R_{\ell}(\mathbf{U}_{\ell}) + \lambda \sum_{\ell=1}^{L} \sum_{n=1}^{N_{\ell}} \mathrm{TV}^{(2)}(\boldsymbol{\sigma}_{\boldsymbol{n}, \boldsymbol{\ell}}) \right)$$

Optimal solution $\tilde{\mathbf{f}} = \tilde{\boldsymbol{\sigma}}_L \circ \tilde{\boldsymbol{\ell}}_L \circ \tilde{\boldsymbol{\sigma}}_{L-1} \circ \cdots \circ \tilde{\boldsymbol{\ell}}_2 \circ \tilde{\boldsymbol{\sigma}}_1 \circ \tilde{\boldsymbol{\ell}}_1$ with optimized weights $\tilde{\mathbf{U}}_\ell$ and neuronal activations $\tilde{\boldsymbol{\sigma}}_{n,\ell}$.

Apply "optimal" network $ilde{\mathbf{f}}$ to each data point $oldsymbol{x}_m$:

ullet Initialization (input): $ilde{oldsymbol{y}}_{m,0}=oldsymbol{x}_m.$

$$\begin{split} \bullet \ \ \text{For} \ \ell &= 1, \dots, L \\ \boldsymbol{z}_{m,\ell} &= (z_{1,m,\ell}, \dots, z_{N_\ell,m,\ell}) = \check{\mathbf{U}}_\ell \ \check{\boldsymbol{y}}_{m,\ell-1} \\ \check{\boldsymbol{y}}_{m,\ell} &= (\tilde{y}_{1,m,\ell}, \dots, \tilde{y}_{N_\ell,m,\ell}) \in \mathbb{R}^{N_\ell} \\ \text{with} \ \tilde{y}_{n,m,\ell} &= \check{\boldsymbol{\sigma}}_{n,\ell}(z_{n,m,\ell}) \quad n = 1, \dots, N_\ell. \end{split}$$

 \Rightarrow $\tilde{\mathbf{f}}(\boldsymbol{x}_m) = \tilde{\boldsymbol{y}}_{m,L}$

This fixes two terms of minimal criterion: $\sum_{m=1}^M E(\boldsymbol{y}_m, \tilde{\boldsymbol{y}}_{m,L})$ and $\sum_{\ell=1}^L R_\ell(\tilde{\mathbf{U}}_\ell)$.

 $\tilde{\mathbf{f}}$ achieves global optimum

$$\Leftrightarrow \quad \tilde{\sigma}_{n,\ell} = \arg\min_{f \in \mathrm{BV}^{(2)}(\mathbb{R})} \|\mathrm{D}^2 f\|_{\mathcal{M}} \quad \text{s.t.} \quad f(z_{n,m,\ell}) = \tilde{y}_{n,m,\ell}, \ m = 1, \dots, M$$

43

Tikhonov regularization (Exact solution)

$$f_0 = rg \min_{f \in \mathcal{H}} \left(\sum_{m=1}^M |y_m - \langle
u_m, f
angle|^2 + \lambda \|f\|_{\mathcal{H}}^2
ight)$$
 and $f_0 = \operatorname{span}\{arphi_m\}_{m=1}^M$

■ Equivalent finite-dimensional problem

$$oldsymbol{a}_0 = rg \min_{oldsymbol{a} \in \mathbb{R}^M} \left(\|oldsymbol{y} - \mathbf{H} oldsymbol{a} \|^2 + \lambda oldsymbol{a}^T \mathbf{H} oldsymbol{a}
ight)$$

Closed-form solution

$$\boldsymbol{a}_0 = (\mathbf{H}\mathbf{H} + \lambda \mathbf{H})^{-1}\mathbf{H}\boldsymbol{y} = (\mathbf{H} + \lambda \mathbf{I})^{-1}\boldsymbol{y}$$

 ${f H}$ invertible \Leftrightarrow u_m are linearly independent