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 Short wavelet primer
 From legos to wavelets
 Sparsity

 Wavelet-domain image denoising
 Soft-thresholding
 SURELETS

 Image reconstruction with sparsity constraints
 Compressed sensing
 ISTA and faster variants
 3-D deconvolution microscopy
 MRI 

Wavelets: Haar transform revisited
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Haar revisited
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Haar wavelet and 2D basis functions
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Sparsity of wavelet decomposition: example
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Wavelet transform

Inverse wavelet transform

Discarding “small coefficients”

Thresholding: w� wNReconstruction: fN = WwN

Wavelet-domain representation: w = W�1f

Higher-order wavelets (splines)

Space-domain representation: f = Ww

f(x) =
X

i,k

�i,k(x)wi,k



Wavelet transform as a mathematical microscope
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Wavelet = Point Spread Function (PSF) of mathematical microscope

Desirable wavelet properties

short support, approximation order (vanishing moments) and differentiability

Shape of PSF is the same at all scales

Magnification by powers of two: 2i

Sampling is critical (no redundancy)

Analysis functions (PSF) are orthogonal

Resolution can be pushed to ultimate limit

) existence of wavelet bases of L2(R)
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Beyond legos: Fractional B-spline wavelets

Remarkable property

Each of these wavelets generates a Riesz basis of L2(R)

(Unser & Blu, SIAM Rev, 2000)
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Wavelets in medical imaging:
Survey 1991-1999

References
• Unser and Aldroubi, Proc IEEE, 1996
• Laine, Annual Rev Biomed Eng, 2000

• Special issue, IEEE Trans Med Im, 2003 

Image processing task Application / modality Principal Authors

Image compression • MRI
• Mammograms
• CT
• Angiograms, etc…

Angelis 94; DeVore 95;
Manduca 95; Wang 96;
etc …

Image enhancement
• Digital radiograms
• MRI
• Mammograms
• Lung X-rays, CT

Laine 94, 95;
Lu, 94; Qian 95;
Guang 97;
etc …

Filtering

Denoising
• MRI
• Ultrasound (speckle)
• SPECT

Weaver 91;
Xu 94; Coifman 95;
Abdel-Malek 97; Laine 98;
Novak 98, 99

Detection of micro-calcifications
• Mammograms

Qian 95; Yoshida 94;
Strickland 96; Dhawan 96;
Baoyu 96; Heine 97; Wang 98

Texture analysis and classification
• Ultrasound
• CT, MRI
• Mammograms

Barman 93; Laine 94; Unser
95; Wei 95; Yung 95; Busch
97; Mojsilovic 97

Feature extraction

Snakes and active contours
• Ultrasound

Chuang-Kuo 96

Wavelet encoding • Magnetic resonance imaging Weaver-Healy 92;
Panych 94, 96; Geman 96;
Shimizu 96; Jian 97

Image reconstruction • Computer tomography
• Limited angle data
• Optical tomography
• PET, SPECT

Olson 93, 94; Peyrin 94;
Walnut 93; Delaney 95;
Sahiner 96; Zhu 97;
Kolaczyk 94; Raheja 99

Statistical data analysis Functional imaging
• PET
• fMRI

Ruttimann 93, 94, 98;
Unser 95; Feilner 99; Raz 99

Multi-scale Registration Motion correction
• fMRI, angiography
Multi-modality imaging
• CT, PET, MRI

Unser 93; Thévenaz 95, 98;
Kybic 99

3D visualization • CT, MRI Gross 95, 97; Muraki 95;
Kamath 98; Horbelt 99

First published paper on biomedical applications
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Denoising by wavelet thresholding
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Basic idea

Orthogonal WT: white noise� white noise

Signal is concentrated in few coefficients, while noise is spread-out evenly

⇥ Noise attenuation is achieved by simple wavelet shrinkage/thresholding
w̃ = T�(w)

w

References

The pioneers

B. Weaver, X. Yansun, D.M. Healy Jr., and L.D. Cromwell, “Filtering noise from images with

wavelet transforms,” Magnet. Reson. in Med., vol. 21, no. 2, pp. 288-295, 1991.

Theoretical justification and link with sparsity

D.L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Information Theory, vol. 41, no. 3,

pp. 613-627, May 1995. (> 4000 ISI citations)

Wavelet denoising: variational interpretation
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Basic denoising algorithm

Compute wavelet transform of noisy signal: w = WT y

Apply pointwise non-linearity: w̃ = T�{w}

Compute inverse wavelet transform: f̃ = Ww̃

Equivalent optimization problem

w̃ = arg min
w

n

ky � f̃k2
2 + �kwk`1

o

with f̃ = Ww

Signal + noise model : y = f + n

�

2

(LASSO Tibshirani J. Royal Statist. 1996;  Chambolle et al., IEEE Trans. Im Proc. 1998)

w̃ = T�(w)

w



BIG extension: SURE-LET
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SNR improvement: + 15.73 dB

SURE-LET Demo

(Luisier et al., IEEE Trans. Image Proc.  2007)

2009 Young Author Best Paper Award
IEEE Signal Processing Society

Key features of SURE-LET wavelet denoising algorithm

Generalized non-linearities: Linear Expansion of Thresholds:

T�(w) !
PK

k=1 akfk(w)

Optimizes thresholding parameters ak from noisy data

using Stein’s Unbiased Risk Estimate (SURE)

Incorporates inter-scale dependencies via prediction tree

Improved performance:

- 1 to 1.5 dB better than basic soft thresholding

- Very close to oracle performance

- Outperforms standard Wiener filter

Standard Color Image

Input PSNR=18.59 dB
16



Denoised with OWT SURE-LET

Output PSNR = 31.91 dB
17

Denoised with UWT SURE-LET

Output PSNR = 33.27 dB
18



SURE-LET denoising                  (Poisson + Gaussian noise, UWT)
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C-elegance embryo

PureDenoise (plugin for ImageJ)

http://bigwww.epfl.ch/algorithms/

(Luisier et al., Sig. Proc.  2010)

2D PureDenoise (UWT): Tobacco cells

Ground truth
(average over 500 acquisitions)

20



2D + time SURE-LET denoising (DWT) : C-elegance embryo
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WAVELET-REGULARIZED IMAGE RECONSTRUCTION

 Imaging as an inverse problem
 Sparsity and wavelet regularization

 Theory of compressed sensing
 Sparsity and l1-minimization

 ISTA (Iterative Shrinkage-thresholding)
 Faster algorithms: ML-ISTA, FISTA, FWISTA
 Applications

 3-D deconvolution fluorescence microscopy
 MRI reconstruction



f

Imaging as an inverse problem
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noise

Linear forward model

linear
model

noise

H n

g = Hf + n

Ill-posed inverse problem: recover f from noisy measurements g

3-D fluorescence microscopy: H (convolution matrix)

MRI: H Fourier matrix (possibly, non-cartesian)

Theory of compressive sensing

24

[Donoho et al., 2005
     Candès-Tao, 2006, ...]

Formulation of ill-posed recovery problem when 2K < Nu ⇤ Nv

(P0) min
v
⌅u�Av⌅22 subject to ⌅v⌅0 ⇥ K

Theoretical result

Under suitable conditions on A (e.g., restricted isometry), the solution is unique
and the recovery problem (P0) is equivalent to:

(P1) min
v
⇤u�Av⇤22 subject to ⇤v⇤1 ⇥ C1

Generalized sampling setting (after discretization)

Linear inverse problem: u = Hf + n

Sparse representation of signal: f = Wv with kvk0 = K ⌧ Nv

Nu ⇥Nv system matrix : A = HW



Sparsity and l1-minimization
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v1

v2

�2-ball: |v1|2 + |v2|2 = Constant

�1-ball: |v1| + |v2| = Constant

min
v

�
⇤u�Av⇤2�2 + � ⇤v⇤�1

⇥
⇥ min

v
⇤u�Av⇤2�2 subject to ⇤v⇤�1 = C1

smallest “weighted” �2-distance to u

(ũ1, ũ2)

Prototypical inverse problem

min
v

�
⇤u�Av⇤2�2 + � ⇤v⇤2�2

⇥
⇥ min

v
⇤u�Av⇤2�2 subject to ⇤v⇤�2 = C2

Elliptical norm: ⇥u�Av⇥2
2 = (v � ũ)T AT A(v � ũ) with ũ = A�1u

Wavelet-regularized image reconstruction
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Reconstruction as a (convex) optimization problem

Iterative reconstruction algorithms

Generic ISTA (Iterative Soft-Thresholding Algorithm)

3-D deconvolution microscopy: ML-ISTA (Multi-level ISTA)

MRI reconstruction: WFISTA (Weighted fast ISTA)

(C. Vonesch, Ph.D. thesis)

(M. Guerquin-Kern, Ph.D. thesis)

(Daubechies et al. 2004)

g = Hf + n
Hypotheses:

System matrix H is known (physics)

f = Ww has a “sparse” wavelet expansion

f? = argmin kg �Hfk22| {z }
data consistency

+�k

wz }| {
W�1f k`1)| {z }

regularization



Alternating minimization: ISTA

27

Proof of convergence: (Daubechies, Defrise, De Mol, 2004)

Convex cost functional: J(f) = ⇥g �Hf⇥2
2 + �⇥WT f⇥1

Pure denoising: H = I � f = W T�{WT g} (Chambolle et al., IEEE-IP 1998)

�

2

u

v = T�(u)

(Figueiredo, Nowak, IEEE-IP 2003)

Iterative Shrinkage-Thresholding Algorithm (ISTA)

1. Initialization (n 0), f0 = g

2. Landweber update: z = fn + ⌧HT (g �Hfn)

3. Wavelet denoising: w = WT z, w̃ = T⌧�{w} (soft threshold)

4. Signal update: fn+1  Ww̃ and repeat from Step 2 until convergence

Special cases

Classical least squares: � = 0 ) f = (HTH)�1HTg

Landweber algorithm: fn+1 = fn + ⌧HT (g �Hfn) (steepest descent)

Extension: General proximity operators
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p = 1
p = 2
p = 3

!3 !2 !1 1 2 3

!3

!2

!1

1

2

3 p = 1/2

[Combettes-Pesquet, SIAM, 2007] 

Potential function �(v)

Symmetric: �(v) = �(�v)

Non-decreasing, but not necessarily convex

Examples: �(v) = �|v|p with 0 ⇥ p ⇥ ⇤

prox|·|p(u, 1)
Scalar proximity operator = non-linear map

prox�(u;�) = argmin

v

1

2

ku� vk2 + ��(v)

Lower semicontinuous, convex function � : RN 7! R

Moreau’s proximity operator with strengtht � > 0

prox�(u;�) = arg min

v2RN

1

2

ku� vk2 + ��(v)

u



Extended ISTA: Iterative Shrinkage/thresholding 
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Convergence guarantee: J(vn)� J(v?)  L

n
kv0 � v?k22

Minimize: J(v) =
1

2
ku�Avk22 + �

X

n

�(vn) ) v? = argmin
v

J(v)

Extended ISTA algorithm: wavelet-domain formulation

input: A,u,v0,� 2 R+

Initialization: n = 0

Repeat

vn+1 = prox�

�
vn + ⌧AT

(u�Avn);�⌧
�

n n+ 1

until Stopping criterion

return vn

� : R 7! R (lower semicontinuous, convex)

Faster scheme: deconvolution in a Shannon basis
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H circulant ⇥ decoupled optimization across subbands

⇤HWw⇤22 =
�

j�S

⇤HWjwj⇤22 �
�

j�S

�j⇤Wjwj⇤22 =
�

j�S

�j⇤wj⇤22

(Vonesch-U., IEEE-IP, 2008)

Characteristics of Shannon’s wavelet basis

Orthonormality

Wavelet subspaces correspond
to ideal frequency subbands

TLISTA FTLparallel ISTA

) Substantial acceleration of ISTA
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Fast multilevel wavelet-regularized deconvolution
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Shannon wavelets 9/7 wavelets

(Vonesch-Unser, IEEE-IP, 2009)

Key features of multilevel wavelet deconvolution algorithm (ML-ISTA)

Acceleration by one order of magnitude with respect to ISTA

(multigrid iteration strategy)

Applicable in 2D or 3D:

first wavelet attempt for the deconvolution of 3D fluorescence micrographs

Works for any wavelet basis

Typically outperforms oracle Wiener solution (best linear algorithm)

Wavelet-regularized 3-D deconvolution microscopy
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Confocal referenceML-ISTA 15 iterations
Input data

(open pinhole) ISTA 15 iterations

Maximum-intensity projections of 512�352�96 image stacks;
Zeiss LSM 510 confocal microscope with a 63� oil-immersion objective;
C. Elegans embryo labeled with Hoechst, Alexa488, Alexa568;
each channel processed separately; computed PSF based on diffraction-limited model;
separable orthonormalized linear-spline/Haar basis.

(Vonesch-U. IEEE Trans. Im. Proc. 2009)



3D deconvolution of widefield stack
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Maximum intensity projections of 384�448�260 image stacks;
Leica DM 5500 widefield epifluorescence microscope with a 63� oil-immersion objective;
C. Elegans embryo labeled with Hoechst, Alexa488, Alexa568;
each channel processed separately; computed PSF based on diffraction-limited model;
Haar basis, 3 decomposition levels for X-Y, 2 decomposition levels for Z.

FISTA: Fast ISTA
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[Daubechies et al, 2004]

[Beck & Teboulle, 2009]

[Beck and Teboulle, 2009]

ISTA: repetition of a simple fixed-point operation

... but slow

FISTA= controlled over-relaxation

Guaranteed convergence

P

wn+1 = P(wn)

J(wn)� J(w?) = O (1/n)

wn�1 wn

wn+1

J(wn)� J(w?) = O(1/n2)

Wavelet expansion: f = Ww Global system matrix: A = HW

vn

limn!1 wn = w? with f? = Ww?



FISTA: Fast ISTA
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Solution: v? = argmin
v

J(v)

[Beck and Teboulle, 2009]

Convergence guarantee: J(vn)� J(v?)  4L

(n+ 1)2
kv0 � v?k22

Minimize: J(v) =
1

2
ku�Avk22 + �kvk1

FISTA algorithm: wavelet-domain formulation

input: A,u,v0,� 2 R+

Initialization: n = 0, t0 = 1, w0 = 0

Repeat

wn+1 = prox

�
vn + ⌧AT

(u�Avn); �⌧
�

tn+1 =

1+
p

1+4t2n
2

vn+1 = wn+1 +

✓
tn � 1

tn+1

◆
(wn+1 �wn)

n n+ 1

until Stopping criterion

return vn

FWISTA: Fast weighted ISTA
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generic FISTA FWISTA (accelerated)

Idea: Adaptive step size/regularization tailored to the problem

⇒ faster convergence at same computational cost

[Guerquin-Kern et al., TMI 2011]

� ! ⇤or/and

un vn+1

J(v) = ku�Avk22 + k⇤vk1

C = ATA⇤�1
⌧ �C � 0

vv?

Sharper quadratic upper bound

⇢(C) ! ⇤�1
⌧

⇢I�C � 0



FWISTA: Fast weighted ISTA
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Solution: v? = argmin
v

J(v)

better constant

Convergence guarantee: J(vn)� J(v?)  4

(n+ 1)2
k⇤�1/2(v0 � v?)k22

Condition for convergence:

(⇤�1 �C) positive definite

Minimize: J(v) =
1

2
ku�Avk22 + �kvk1

FWISTA algorithm: wavelet-domain formulation

input: C = ATA, c = ATu, v0, ⇤ = diag(⌧ )

Initialization: n = 0, t0 = 1

Repeat

wn+1 = prox

�
vn +⇤(c�Cvn); �⌧

�

tn+1 =

1+
p

1+4t2n
2

vn+1 = wn+1 +

✓
tn � 1

tn+1

◆
(wn+1 �wn)

n n+ 1

until Stopping criterion

return vn

Application: Parallel MRI reconstruction

38

k-space domainspatial domain

Parallel MRI: several receiving coils, known sensitivities

Challenging reconstruction: few k-space samples

Fourier Transform

S(r)f(r) g(k) =

Z
S(r)f(r)ejhr ,ki dr



Simulated parallel MRI experiment
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Shepp-Logan brain phantom
4 coils, undersampled spiral acquisition, 15dB noise

Backprojection

Sp
ac

e

�1 wavelet regularizationL2 regularization (CG)

NCCBI collaboration with K. Prüssmann, ETHZ

[Guerquin-Kern et al., TMI 2011]

MRI: convergence results
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MRI: reconstructions
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ISTA

FISTA

FWISTA

10 it. / 0.8 s 50 it. / 4.5 s 100 it. / 9 s 500 it. / 45 s

42

GUERQUIN-KERN et al.: A FAST WAVELET-BASED RECONSTRUCTION METHOD FOR MAGNETIC RESONANCE IMAGING 1653

Fig. 1. Reference images from left to right: in vivo brain, SL reference, and wrist.

D. Best of Two Worlds: Fast Weighted ISTA (FWISTA)

Taking advantage of the ideas developed previously, we de-
rive an algorithm that corresponds to the subband adaptive ver-
sion of FISTA. In the light of the minimization problem (11),
FWISTA generalizes the FISTA algorithm using a parametric
weighted norm. We give its detailed description in Algorithm
3, where the modifications with respect to FISTA is the SISTA
step in the loop.

Algorithm 3: FWISTA

input: , , , and ;

Initialization: , , ;

repeat

(SISTA step);

;

;

;

until desired tolerance is reached;

return ;

In the same fashion as for SISTA, we revisit the convergence
results of FISTA [18, Thm. 4.4] for FWISTA.

Proposition 3: Let be the sequence generated by Al-
gorithm 3. Then, for any

(21)

Proof: In the spirit of the proof of Proposition 2, we
consider the change of variable and apply
FISTA to solve the new reconstruction problem. The step

is equivalent to
. The convergence results of FISTA

[18, Thm. 4.4] applies on the sequence , which leads to
.

This result shows the clear advantage of FWISTA compared
to ISTA (Proposition 1) and SISTA (Proposition 2). Moreover,
we note that FWISTA can be simply adapted in order to impose
a monotonic decrease of the cost functional value, in the same
fashion as MFISTA. The same convergence properties apply
[19, Thm. 5.1].

E. Random Shifting

Wavelet bases perform well the compression of signals but
can introduce artifacts that can be attributed to their relative
lack of shift-invariance. In the case of regularization, this can be
avoided by switching to a redundant dictionary. The downside,
however, is a significant increase in computational cost. Alter-
natively, the practical technique referred to as random shifting
(RS) [2] can be used. Applying random shifting is much simpler
and computationally more efficient than considering redundant
transforms and leads to sensibly improved reconstruction.

Here, we propose a variational interpretation that motivates
our implementation of FWISTA with RS (see Algorithm 4). We
consider the DWT , with , where

represent the different shifting operations required to get a
translation-invariant DWT. The desired reconstruction would be
defined as the minimizer of

(22)

In 1D, this formulation includes TV regularization, in
other words a single-level undecimated Haar WT without
coarse-scale thresholding.

Rewriting (22) in terms of wavelet coefficients, we get

(23)

with

(24)
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TABLE II
VALUES OF THE OPTIMAL SER AND CORRESPONDING REGULARIZATION PARAMETERS ARE SHOWN FOR THE DIFFERENT WAVELET BASES

TABLE III
RESULTS OF THE PROPOSED WAVELET METHOD FOR DIFFERENT WAVELET DECOMPOSITION DEPTHS. VALUES OF THE REGULARIZATION
PARAMETER, THE FINAL SER, THE RELATIVE MAXIMAL SPATIAL DOMAIN ERROR, AND THE TIME TO REACH 0.5 dB OF THE FINAL SER

TABLE IV
RESULTS OF THE ALGORITHMS CG (LINEAR), IRLS (TV), AND OUR METHOD (WAVELETS) FOR DIFFERENT DEPTHS. VALUES OF THE REGULARIZATION

PARAMETER, THE FINAL SER, THE RELATIVE MAXIMAL SPATIAL DOMAIN ERROR, AND THE TIME TO REACH 0.5 dB OF THE FINAL SER

Fig. 5. Result of different reconstruction algorithms for the three experiments. For each reconstruction, the performance in SER with respect to the reference
(top-left), the reconstruction time (top-right), and the number of iterations (bottom-right) are shown.

Gaussian complex noise. The height of the central peak was
also adjusted to correspond to that of the brain data. The refer-
ence image was obtained by sinc-interpolation, by extracting
the lowest frequencies in the DFT.

C. Results

In this section, we present the different experiments we con-
ducted. The two main reconstruction performance measures that
we considered are as follows.

1656 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 30, NO. 9, SEPTEMBER 2011

TABLE II
VALUES OF THE OPTIMAL SER AND CORRESPONDING REGULARIZATION PARAMETERS ARE SHOWN FOR THE DIFFERENT WAVELET BASES

TABLE III
RESULTS OF THE PROPOSED WAVELET METHOD FOR DIFFERENT WAVELET DECOMPOSITION DEPTHS. VALUES OF THE REGULARIZATION
PARAMETER, THE FINAL SER, THE RELATIVE MAXIMAL SPATIAL DOMAIN ERROR, AND THE TIME TO REACH 0.5 dB OF THE FINAL SER

TABLE IV
RESULTS OF THE ALGORITHMS CG (LINEAR), IRLS (TV), AND OUR METHOD (WAVELETS) FOR DIFFERENT DEPTHS. VALUES OF THE REGULARIZATION

PARAMETER, THE FINAL SER, THE RELATIVE MAXIMAL SPATIAL DOMAIN ERROR, AND THE TIME TO REACH 0.5 dB OF THE FINAL SER

Fig. 5. Result of different reconstruction algorithms for the three experiments. For each reconstruction, the performance in SER with respect to the reference
(top-left), the reconstruction time (top-right), and the number of iterations (bottom-right) are shown.

Gaussian complex noise. The height of the central peak was
also adjusted to correspond to that of the brain data. The refer-
ence image was obtained by sinc-interpolation, by extracting
the lowest frequencies in the DFT.

C. Results

In this section, we present the different experiments we con-
ducted. The two main reconstruction performance measures that
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PARAMETER, THE FINAL SER, THE RELATIVE MAXIMAL SPATIAL DOMAIN ERROR, AND THE TIME TO REACH 0.5 dB OF THE FINAL SER

Fig. 5. Result of different reconstruction algorithms for the three experiments. For each reconstruction, the performance in SER with respect to the reference
(top-left), the reconstruction time (top-right), and the number of iterations (bottom-right) are shown.

Gaussian complex noise. The height of the central peak was
also adjusted to correspond to that of the brain data. The refer-
ence image was obtained by sinc-interpolation, by extracting
the lowest frequencies in the DFT.

C. Results

In this section, we present the different experiments we con-
ducted. The two main reconstruction performance measures that
we considered are as follows.

Wavelet-regularized reconstruction of MRI 
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L2 regularization (Laplacian) �1 wavelet regularization

Standard approach (CG) WFISTA algorithm

(Guerquin-Kern et al. IEEE Trans. Med. Im.  2011)



45

CONCLUSION
 Important wavelet features 

 Simple, fast implementation: Mallat’s filterbank algorithm
 Mathematical properties: Riesz basis, vanishing moments,...
 Simulates the organization of the primary visual system

 Many successful applications
 Data compression
 Filtering, denoising
 Detection and feature extraction
 Inverse problems: wavelet regularization

 Current topics in wavelet research and “compressed sensing”
 Better wavelet dictionaries (frames): steerable wavelets, ...
 Better (model-based) regularization schemes
 Automatic parameter adjustment (e.g., scale-dependent threshold)
 Addressing harder inverse problems
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