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OUTLINE

■ Introduction
■ Image reconstruction as an inverse problem
■ Learning as an inverse problem

■Prologue: discrete-domain regularization
■Continuous-domain theory
■  Splines and operators
■  L2 regularization (theory of RKHS) : classical representer theorem
■  gTV regularization: representer theorem for CS

■From compressed sensing to deep networks
■  Unrolling forward/backward iterations: FBPConv
■  New representer theorem for deep neural networks 2
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noise

n

Linear forward model

s
Integral operator

H

y = Hs+ n

Problem: recover s from noisy measurements y

srec = arg min
s2RN

ky �Hsk22| {z }
data consistency

+ �kLskpp| {z }
regularization

, p = 1, 2

Reconstruction as an optimization problem

Variational formulation of inverse problem

Formal linear solution: s = (HT
H+ �LT

L)�1
H

T
y = R� · y

Linear inverse problems (20th century theory)
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Equivalent variational problem

s
? = argmin ky �Hsk22| {z }

data consistency

+ �kLsk22| {z }
regularization

Interpretation: “filtered” backprojection

R(s) = kLsk22: regularization (or smoothness) functional

L: regularization operator (i.e., Gradient)

Formal linear solution: s = (HT
H+ �LT

L)�1
H

T
y = R� · y

Andrey N. Tikhonov (1906-1993)

min
s

R(s) subject to ky �Hsk22  �2

Dealing with ill-posed problems: Tikhonov regularization



Learning as a (linear) inverse problem
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but an infinite-dimensional one …
Given the data points (xm, ym) 2 RN+1, find f : RN ! R such that
f(xm) ⇡ ym for m = 1, . . . ,M

Regularized least-squares fit

fRKHS = argmin
f2H

 
MX

m=1

|ym � f(xm)|2 + �kfk2
H

!

minf2H R(f) subject to
MX

m=1

|ym � f(xm)|2  �2

Introduce smoothness or regularization constraint

R(f) = kfk2
H

= kLfk2L2
=

Z

RN

|Lf(x)|2dx: regularization functional

(Poggio-Girosi 1990)

) kernel estimator

Unifying continuous-domain formulation
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E
�
y,H{f}

�
| {z }

Banach vs. Hilbert space (RKHS)

Linear functionals vs. point values

Arbitrary convex loss vs. least squaresRegularized functional fit to the data

fopt = argmin
f2B

 
MX

m=1

|ym � hhm, fi|2 + �R(f)

!

Unknown is a function f : Rd ! R

Linear measurement operator H : B ! RM

H = (h1, . . . , hM ) : f 7!
�
hh1, fi, . . . , hhM , fi

�

(Schölkopf 2001; Rosasco 2004) 

Regularization functional: R(f) : B(Rd) ! R+

Promotes smoothness (Sobolev norm) or sparsity (gTV)

Native space B(Rd)

B(Rd) = {f : Rd ! R : R(f) < 1}



Prologue: Discrete-domain regularization
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Classical least-squares fit with l2 regularization
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Linear measurement model:
ym = hhm,xi+ n[m], m = 1, . . . ,M

System matrix of size M ⇥N : H = [h1 · · ·hM ]T

= H
T
a =

MX

m=1

amhm where a = (HH
T + �IM )�1

y

Lemma

(HT
H+ �IN )�1

H
T = H

T (HH
T + �IM )�1

xLS = arg min
x2RN

ky �Hxk22 + �kxk22

) xLS = (HT
H+ �IN )�1

H
T
y

Interpretation: xLS 2 span{hm}Mm=1



Switch to l1 regularization ⇒ sparsifying effect
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(U.-Fageot-Gupta IEEE Trans. Info. Theory, Sept. 2016) 
V

If CS condition on H is satisfied,
then solution is unique

Linear measurement model:
ym = hhm,xi+ n[m], m = 1, . . . ,M

System matrix of size M ⇥N : H = [h1 · · ·hM ]T

(P1): V = arg min
x2RN

ky �Hxk22 + �kxk`1

element of canonical basis with [en]m = �m�n

Representer theorem for unconstrained `1 minimization

The solution set V of (P1) is convex, compact with extreme points of the form

xsparse =
KX

k=1

akenk with K = kxsparsek0  M .

Geometry of l2  vs. l1 minimization
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Prototypical inverse problem

min
x

�
ky �Hxk2`2 + � kxk2`2

 
, min

x
kxk`2 subject to ky �Hxk2`2  �2

min
x

�
ky �Hxk2`2 + � kxk`1

 
, min

x
kxk`1 subject to ky �Hxk2`2  �2

x2

x1

`2-ball: |x1|2 + |x2|2 = C2

`1-ball: |x1|+ |x2| = C1

C
y1 = hT

1 x

y

2�



Geometry of l2  vs. l1 minimization
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Prototypical inverse problem

min
x

�
ky �Hxk2`2 + � kxk2`2

 
, min

x
kxk`2 subject to ky �Hxk2`2  �2

min
x

�
ky �Hxk2`2 + � kxk`1

 
, min

x
kxk`1 subject to ky �Hxk2`2  �2

x2

x1

`2-ball: |x1|2 + |x2|2 = C2

`1-ball: |x1|+ |x2| = C1

C y1 = hT
1 x

sparse extreme points

Configuration for non-unique `1 solution

Part II: Continuous-domain theory

�12



Continuous-domain regularization (L2 scenario)
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(Schoenberg 1964, Kimeldorf-Wahba 1971)

(Aronszajn 1950)

(Schölkopf-Smola 2001)

Theory of reproducing kernel Hilbert spaces

Regularization functional: kLfk2L2
=

Z

Rd

|Lf(x)|2dx

(Duchon 1977) 

L: suitable differential operator

hf, giH = hLf,Lgi

Interpolation and approximation theory

Smoothing splines

Thin-plate splines, radial basis functions

(Poggio-Girosi 1990)

Machine learning

Radial basis functions, kernel methods

Representer theorem(s)
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Splines are analog, but intrinsically sparse

Spline theory: (Schultz-Varga, 1967)

:   spline’s innovation

L{·}: admissible differential operator
�(·� x0): Dirac impulse shifted by x0 2 Rd

Definition
The function s : Rd ! R is a (non-uniform) L-spline with knots (xk)Kk=1 if

L{s} =
KX

k=1

ak�(·� xk) = w�

L =
d
dxak

xk xk+1



Spline synthesis: example
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L = D =
d

dx

x
x1

w�(x) =
X

k

ak�(x� xk)

a1

x

s(x) = b1p1(x) +
X

k

ak +(x� xk)

b1

Null space: ND = span{p1}, p1(x) = 1

⇢D(x) = D�1{�}(x) = +(x): Heaviside function

Spline synthesis: generalization

�16

Requires specification of boundary conditions

L: spline admissible operator (LSI)

) s(x) =
X

k

ak⇢L(x� xk) +
N0X

n=1

bnpn(x)

Spline’s innovation: w�(x) =
X

k

ak�(x� xk)

Finite-dimensional null space: NL = span{pn}N0
n=1

⇢L(x) = L�1{�}(x): Green’s function of L

xk



RKHS representer theorem for L2 regularization
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(Schölkopf-Smola 2001)(P2’) argmin
f2H

�
F (y,f) + �kfk2

H

�
Sample values: f =

�
f(x1), . . . , f(xM )

�

Supports the theory of SVM, kernel methods, variational splines, etc.

Convex loss function: F : RM ⇥ RM ! R

(P2) argmin
f2H

 
MX

m=1

|ym � f(xm)|2 + �kfk2
H

!

    

’
Representer theorem for L2-regularization
The generic parametric form of the solution of (P2 ) is

f(x) =
MX

m=1

amrH(x,xm)

rH : Rd
⇥ Rd

! R is the (unique) reproducing kernel for the Hilbert H if

rH(x0, ·) 2 H for all r0 2 Rd

f(x0) = hrH(x0, ·), fiH for all f 2 H and x0 2 Rd

L2 representer theorem for variational splines

�18

Theoretical difficulty:

⇢L⇤L(x) = (L⇤L)�1{�}(x): Green’s function of (L⇤L)

+
N0X

n=1

bnpn(x);

L2 representer theorem for variational splines
The solution of (P2) is unique and of the form

f(x) =
MX

m=1

am⇢L⇤L(x� xm)

i.e., it is a (L⇤L)-spline with knots at the {xm}.

Example: L = D2 with ⇢D4(x) / |x|3 ) f(x) is a cubic spline

kfk2
H

�! kLfk2L2
(only a semi-norm !)

(Schoenberg 1964, Kimeldorf-Wahba 1971)

(P2) arg min
f2HL

 
MX

m=1

|ym � f(xm)|2 + �kLfk2L2(Rd)

!
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EDEE Course �20

Quest for sparsity

in a continuous world



Sparsity and continuous-domain modeling
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Statistical modeling

Sparse stochastic processes

Splines and approximation theory

L1 splines

Locally-adaptive regression splines

Generalized TV

(Mammen-van de Geer 1997)

(Adcock-Hansen 2011)

(Eldar 2011)

(Fisher-Jerome 1975)

(Steidl et al. 2005; Bredies et al. 2010)

(Unser et al. 2011-2014)

Compressed sensing (CS)

Generalized sampling and infinite-dimensional CS

Xampling: CS of analog signals

Recovery of Dirac impulses from Fourier measurements

(Bredies 2013; Candes & Fernandez-Granda 2014; Duval-Peyré 2015)

(Vetterli et al. 2002)

Proper continuous counterpart of 
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S(Rd): Schwartz’s space of smooth and rapidly decaying test functions on Rd

S 0(Rd): Schwartz’s space of tempered distributions

Equivalent definition of “total variation” norm

kwkM = sup
'2C0(Rd):k'k1=1

hw,'i

Basic inclusions

�(·� x0) 2 M(Rd) with k�(·� x0)kM = 1 for any x0 2 Rd

kfkM = kfkL1(Rd) for all f 2 L1(Rd) ) L1(Rd) ✓ M(Rd)

`1(Zd)

Space of bounded Radon measures on Rd

M(Rd) =
�
C0(Rd)

�0
=
�
w 2 S 0(Rd) : kwkM = sup

'2S(Rd):k'k1=1
hw,'i < 1

 
,

where w : ' 7! hw,'i =
R
Rd '(r)w(r)dr



Representer theorem for gTV regularization
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Convex loss function: F : RM ⇥ RM ! R

(P1) arg min
f2ML(Rd)

 
MX

m=1

|ym � hhm, fi|2 + �kLfkM

!

’
Representer theorem for gTV-regularization
The extreme points of (P1 ) are non-uniform L-spline of the form

fspline(x) =
KknotsX

k=1

ak⇢L(x� xk) +
N0X

n=1

bnpn(x)

with ⇢L such that L{⇢L} = �, Kknots  M �N0, and kLfsplinekM = kak`1 .

L: spline-admissible operator with null space NL = span{pn}N0
n=1

gTV semi-norm: kL{s}kM = supk'k11hL{s},'i

Measurement functionals hm : ML(Rd) ! R (weak⇤-continuous)

with ⌫(f) =
�
hh1, fi, . . . , hhM , fi

�
(P1’) arg min

f2ML(Rd)

�
F
�
y,⌫(f)

�
+ �kLfkM

�

V

⌫ : ML ! RM

(U.-Fageot-Ward, SIAM Review 2017)

Example: 1D inverse problem with TV(2) regularization 
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no penalty

Generic form of the solution

L = D2 =
d2

dx2
⇢D2(x) = (x)+: ReLU ND2 = span{1, x}

sspline(x) = b1 + b2x+
KX

k=1

ak(x� ⌧k)+

with K < M and free parameters b1, b2 and (ak, ⌧k)Kk=1

⌧k

Total 2nd-variation: TV(2)(s) = supk'k11hD2s,'i = kD2skM

sspline = arg min
s2M2

D(R)

 
MX

m=1

|ym � hhm, si|2 + �TV(2)(s)

!



Other spline-admissible operators
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L = Dn (pure derivatives)

) polynomial splines of degree (n� 1)

L = Dn + an�1Dn�1 + · · ·+ a0I (ordinary differential operator)

) exponential splines

Fractional Laplacian: (��)
�
2

F ! k!k�

) polyharmonic splines

Fractional derivatives: L = D� F ! (j!)�

) fractional splines

(Dahmen-Micchelli 1987) 

(Schoenberg 1946) 

(U.-Blu 2000) 

(Duchon 1977) 

(Ward-U. 2014) 
Elliptical differential operators; e.g, L = (��+ ↵I)�

) Sobolev splines

Discretization: compatible with CS paradigm

�26

ssparse = arg min
s2RK

✓
1

2
ky �Hsk22 + �kuk1

◆
subject to u = Ls

ADMM algorithm

Linear step

s
k+1 =

�
H

T
H+ µLT

L
��1 �

z0 + z
k+1

�

with z
k+1 = L

T
�
µuk �↵k

�

↵k+1 = ↵k + µ
�
Lsk+1 � uk

�

For k = 0, . . . ,K

LA(s,u,↵) =
1

2
ky �Hsk22 + �

X

n

|[u]n|+↵T (Ls� u) +
µ

2
kLs� uk22

Proximal step =    pointwise non-linearity

uk+1 = prox|·|
�
Lsk+1 + 1

µ↵
k+1; �2

µ

�



Example: ISMRM reconstruction challenge
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L2 regularization (Laplacian)

(Guerquin-Kern IEEE TMI 2011)

`1 / TV regularization
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OUTLINE

■ Linear inverse problems and regularization ✔

■Continuous-domain theory ✔
■  Splines and operators
■  Classical L2 regularization: theory of RKHS
■  Minimization of gTV: the optimality of splines

■From compressed sensing to deep networks
■  Image recovery with sparsity constraints
■  FBPConvNet
■  Representer theorem for deep neural networks



When is unrolled ADMM a deep ConvNet ?

�29

Linear step

Proximal step

ADMM algorithm z0 = H
T
y

s
k+1 =

�
H

T
H+ µLT

L
��1 �

z0 + z
k+1

�

with z
k+1 = L

T
�
µuk �↵k

�

s0 = 0

u0 = 0

↵0 = 0

↵k+1 = ↵k + µ
�
Lsk+1 � uk

�

=    Convolutions

=    pointwise non-linearity

Initialization

For k = 0, . . . ,K

Answer: when H
T
H and L are both convolutions

LA(s,u,↵) =
1

2
ky �Hsk22 + �2

X

n

|[u]n|+↵T (Ls� u) +
µ

2
kLs� uk22

uk+1 = prox|·|
�
Lsk+1 + 1

µ↵
k+1; �2

µ

�

Recent appearance of Deep ConvNets
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CT reconstruction based on Deep ConvNets

Input: Sparse view FBP reconstruction

Training: Set of 500 high-quality full-view CT reconstructions

Architecture: U-Net with skip connection (Jin et al., IEEE TIP 2017)

(Jin et al. 2016; Adler-Öktem 2017; Chen et al. 2017; ... )



Dose reduction by 7: 143 views

(Jin et al., IEEE Trans. Im Proc., 2017)
 Reconstructed from

from 1000 views

CT data  

Dose reduction by 20: 50 views

 Reconstructed from
from 1000 views

CT data  

(Jin et al., IEEE Trans. Im Proc., 2017)
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Finale:  

Representer theorem for deep learning 
 

Deep neural networks and splines
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(Goodfellow PMLR 2013)

(Glorot ICAIS 2011)

(LeCun-Bengio-Hinton  Nature 2015)

(Montufar NIPS 2014)

(Wang-Sun IEEE-IT 2005)

Preferred choice of activation function: ReLU

ReLU works nicely with dropout / `1-regularization

Networks with hidden ReLU are easier to train

State-of-the-art performance

Deep nets as Continuous PieceWise-Linear maps

MaxOut ) CPWL

ReLU ) CPWL

CPWL ) Deep ReLU network



Feedforward deep neural network
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Layers: ` = 1, . . . , L

Deep structure descriptor: (N0, N1, · · · , NL)

Neuron or node index: (n, `), n = 1, · · · , N`

Activations functions: �n,` : R ! R

layers

nodes

(n, `)

….….

neuron

(n� 1, `)

zn,` = �n,`

�
wT

n,`z`�1 + bn,`
�

�`�`�1

f ` f `+1

�`+1

Action of layer ` : RN`�1 ! RN`

z` = �n � f `(z`�1)

Linear step: RN`�1 ! RN`

f ` : x 7! f `(x) = W`x+ b`

Nonlinear step: RN` ! RN`

�` : x 7! �`(x) =
�
�1,`(x1), . . . ,�N`,`(xN`)

�

fdeep(x) = (�L � fL � �L�1 � · · · � �2 � f2 � �1 � f1) (x)

Conventional design: �n,` = �

New adaptive design: x 7! �n,`(x) s.t. TV(2)(�n,`) minimum

Deep neural net with optimized activations
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Layers: ` = 1, . . . , L

Deep structure descriptor: (N0, N1, · · · , NL)

Neuron or node index: (n, `), n = 1, · · · , N`

Activations functions: �n,` : R ! R

layers

nodes

(n, `)

….….

neuron

(n� 1, `)

zn,` = �n,`

�
wT

n,`z`�1 + bn,`
�

�`�`�1

f ` f `+1

�`+1

Action of layer ` : RN`�1 ! RN`

z` = �n � f `(z`�1)

Linear step: RN`�1 ! RN`

f ` : x 7! f `(x) = W`x+ b`

Nonlinear step: RN` ! RN`

�` : x 7! �`(x) =
�
�1,`(x1), . . . ,�N`,`(xN`)

�

fdeep(x) = (�L � fL � �L�1 � · · · � �2 � f2 � �1 � f1) (x)



New representer theorem for deep neural networks

�37

Theorem (TV(2)-optimality of deep spline networks)

neural network f : RN0 ! RNL with deep structure (N0, N1, . . . , NL)

x 7! f(x) = (�L � `L � �L�1 � · · · � `2 � �1 � `1) (x)

normalized linear transformations `` : RN`�1 ! RN` ,x 7! U`x with weights U` =

[u1,` · · · uN`,`]
T 2 RN`⇥N`�1 such that kun,`k = 1

free-form activations �` =
�
�1,`, . . . ,�N`,`

�
: RN` ! RN` with �1,`, . . . ,�N`,` 2 BV(2)(R)

Given a series of M data points ym ⇡ f(xm), we then define the training problem

arg min
(U`),(�n,`2BV(2)(R))

 
MX

m=1

E
�
ym, f(xm)

�
+µ

NX

`=1

R`(U`) + �
LX

`=1,

NX̀

n=1

TV(2)(�n,`)

1

A (1)

E : RNL ⇥ RNL ! R+: arbitrary convex error function

R` : RN`⇥N` ! R+: convex cost

(Unser, arXiv:1802.09210, Feb 2018)

If solution of (1) exists, then it is achieved by a deep spline network with activations of the form

�n,`(x) = b1,n,` + b2,n,`x+

Kn,`X

k=1

ak,n,`(x� ⌧k,n,`)+,

with adaptive parameters Kn,`  M � 2, ⌧1,n,`, . . . , ⌧Kn,`,n,` 2 R, and b1,n,`, b2,n,`, a1,n,`,
. . . , aKn,`,n,` 2 R.

Outcome of representer theorem
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Link with `1 minimization techniques

TV(2){�n,`} =

Kn,`X

k=1

|ak,n,`| = kan,`k1

Each neuron
�
fixed index (n, `)

�
is characterized by

• its number 0  K = Kn,` of knots (ideally, much smaller than M );

• the location {⌧k = ⌧k,n,`}
Kn,`

k=1 of these knots (ReLU biases);

• the expansion coefficients bn,` = (b1,n,`, b2,n,`) 2 R2,
an,` = (a1,n,`, . . . , aK,n,`) 2 RK .

These parameters (including the number of knots) are data-dependent and
need to be adjusted automatically during training.



Comparison of linear interpolators
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0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

Deep spline networks: Discussion
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Backward compatibility

Linear regression: � ! 1 ) Kn,` = 0

State-of-the-art ReLU networks

No need to normalize:
(wT

n,`x� zn,`)+ = (an,`uT
n,`x� zn,`)+ = an,`(uT

n,`x� ⌧n,`)+

(Kn,` = 1, bn,` = 0)

Key features

Produces a global mapping x 7! f(x) that is continuous and piecewise-linear

Direct control of complexity (number of knots): adjustment of �

Ability to suppress unnecessary layers

Compressed sensing / `1 minimization

Global optimality achieved with spline activations
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SUMMARY: Controlling smoothness vs. sparsity
■ New findings resonate with what is known in discrete setting
■ l2  solution lives in a fixed subspace of dimension M 
■ Tikhonov solution is intrinsically “blurred”
■ Minimization of l1 favors sparse solutions (independently of sensing matrix)

■ Practical implications
■ Infinite-dimensional optimization is feasible (parametric form of solution)
■ gTV regularization favors sparse innovations with adaptive knots
■ Non-uniform L-splines: universal solutions of linear inverse problems

■ Specificities of continuous-domain formulation
■ Functional model: class of signals + physics

■ L-splines = signals with “sparsest” innovation

■ Smoothing-splines: minimum “spline” energy

L{ssparse} =
KX

k=1

ak�(·� xk)

(L⇤L){ssmooth} =
MX

m=1

amhm

s 7! z = H{s}
s 2 X

and deep neural networks …
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