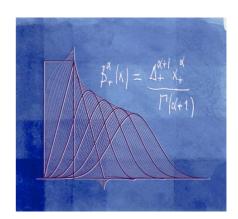


New representer theorems: From compressed sensing to deep learning

Michael Unser Biomedical Imaging Group EPFL, Lausanne, Switzerland

Joint work with Julien Fageot, John-Paul Ward and Kyong Jin



Mathematisches Kolloquium, Universität Wien, October 24, 2018, Wien, Austria

OUTLINE

- Introduction
 - Image reconstruction as an inverse problem
 - Learning as an inverse problem

Prologue: discrete-domain regularization

Continuous-domain theory

- Splines and operators
- *L*₂ regularization (theory of RKHS) : classical representer theorem
- gTV regularization: representer theorem for CS

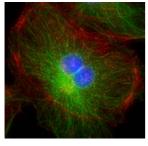
From compressed sensing to deep networks

- Unrolling forward/backward iterations: FBPConv
- New representer theorem for deep neural networks

Variational formulation of inverse problem

Linear forward model

 $\mathbf{y} = \mathbf{Hs} + \mathbf{n}$



S

Problem: recover ${\bf s}$ from noisy measurements ${\bf y}$

Reconstruction as an optimization problem

$$\mathbf{s_{rec}} = \arg\min_{\mathbf{s}\in\mathbb{R}^N} \underbrace{\|\mathbf{y} - \mathbf{Hs}\|_2^2}_{\text{data consistency}} + \underbrace{\lambda \|\mathbf{Ls}\|_p^p}_{\text{regularization}}, \quad p = 1, 2$$

Linear inverse problems (20th century theory)

Dealing with ill-posed problems: Tikhonov regularization

 $\mathcal{R}(\mathbf{s}) = \|\mathbf{Ls}\|_2^2$: regularization (or smoothness) functional

L: regularization operator (i.e., Gradient)

$$\min \mathcal{R}(\mathbf{s})$$
 subject to $\|\mathbf{y} - \mathbf{Hs}\|_2^2 \le \sigma^2$

Equivalent variational problem

$$\mathbf{s}^{\star} = \arg\min \underbrace{\|\mathbf{y} - \mathbf{Hs}\|_2^2}_{\text{data consistency}} + \underbrace{\lambda \|\mathbf{Ls}\|_2^2}_{\text{regularization}}$$

Formal linear solution: $\mathbf{s} = (\mathbf{H}^T \mathbf{H} + \lambda \mathbf{L}^T \mathbf{L})^{-1} \mathbf{H}^T \mathbf{y} = \mathbf{R}_{\lambda} \cdot \mathbf{y}$

Interpretation: "filtered" backprojection

Andrey N. Tikhonov (1906-1993)

Learning as a (linear) inverse problem but an infinite-dimensional one ...

Given the data points $(x_m, y_m) \in \mathbb{R}^{N+1}$, find $f : \mathbb{R}^N \to \mathbb{R}$ such that $f(x_m) \approx y_m$ for $m = 1, \ldots, M$

Introduce smoothness or regularization constraint

(Poggio-Girosi 1990)

 $R(f) = \|f\|_{\mathcal{H}}^2 = \|\mathbf{L}f\|_{L_2}^2 = \int_{\mathbb{R}^N} |\mathbf{L}f(\boldsymbol{x})|^2 d\boldsymbol{x}: \text{ regularization functional}$ $\min_{f \in \mathcal{H}} R(f) \quad \text{subject to} \quad \sum_{m=1}^M |y_m - f(\boldsymbol{x}_m)|^2 \le \sigma^2$

Regularized least-squares fit

$$f_{\text{RKHS}} = \arg\min_{f \in \mathcal{H}} \left(\sum_{m=1}^{M} |y_m - f(\boldsymbol{x}_m)|^2 + \lambda \|f\|_{\mathcal{H}}^2 \right) \Rightarrow \text{ kernel estimator}$$

5

Unifying continuous-domain formulation

Unknown is a function $f : \mathbb{R}^d \to \mathbb{R}$

• Regularization functional: $R(f) : \mathcal{B}(\mathbb{R}^d) \to \mathbb{R}^+$

Promotes smoothness (Sobolev norm) or sparsity (gTV)

• Native space $\mathcal{B}(\mathbb{R}^d)$ Banach vs. Hilbert space (RKHS)

 $\mathcal{B}(\mathbb{R}^d) = \{ f : \mathbb{R}^d \to \mathbb{R} : R(f) < \infty \}$

Linear measurement operator $\mathbf{H}: \mathcal{B} \to \mathbb{R}^M$ Linear functionals vs. point values

$$\mathbf{H} = (h_1, \dots, h_M) : f \mapsto (\langle h_1, f \rangle, \dots, \langle h_M, f \rangle)$$

■ Regularized functional fit to the data $Arbitrary \ convex \ loss \ vs. \ least \ squares$ $f_{opt} = \arg\min_{f \in \mathcal{B}} \left(\sum_{m=1}^{M} |y_m - \langle h_m, f \rangle|^2 + \lambda R(f) \right)$ (Schölkopf 2001; Rosasco 2004)

 $E(\boldsymbol{y}, \mathbf{H}\{f\})$

Prologue: Discrete-domain regularization

7

Classical least-squares fit with *l*₂ **regularization**

- Linear measurement model:
 - $y_m = \langle \mathbf{h}_m, \mathbf{x} \rangle + n[m], \quad m = 1, \dots, M$
- System matrix of size $M \times N$: $\mathbf{H} = [\mathbf{h}_1 \cdots \mathbf{h}_M]^T$

$$\mathbf{x}_{\text{LS}} = \arg\min_{\mathbf{x}\in\mathbb{R}^N} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_2^2$$

$$\Rightarrow \quad \mathbf{x}_{\mathrm{LS}} = (\mathbf{H}^T \mathbf{H} + \lambda \mathbf{I}_N)^{-1} \mathbf{H}^T \mathbf{y}$$
$$= \mathbf{H}^T \mathbf{a} = \sum_{m=1}^M a_m \mathbf{h}_m \quad \text{where} \quad \mathbf{a} = (\mathbf{H} \mathbf{H}^T + \lambda \mathbf{I}_M)^{-1} \mathbf{y}$$

Interpretation: $\mathbf{x}_{\text{LS}} \in \text{span}\{\mathbf{h}_m\}_{m=1}^M$

Lemma $(\mathbf{H}^T\mathbf{H} + \lambda \mathbf{I}_N)^{-1}\mathbf{H}^T = \mathbf{H}^T(\mathbf{H}\mathbf{H}^T + \lambda \mathbf{I}_M)^{-1}$

Switch to l_1 regularization \Rightarrow sparsifying effect

Linear measurement model:

$$y_m = \langle \mathbf{h}_m, \mathbf{x} \rangle + n[m], \quad m = 1, \dots, M$$

System matrix of size $M \times N$: $\mathbf{H} = [\mathbf{h}_1 \cdots \mathbf{h}_M]^T$

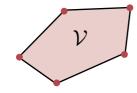
(P1):
$$\mathcal{V} = \arg\min_{\mathbf{x}\in\mathbb{R}^N} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_{\ell_1}$$

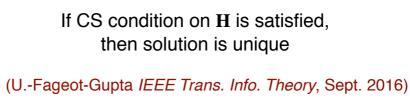
Representer theorem for unconstrained ℓ_1 minimization

The solution set \mathcal{V} of (P1) is convex, compact with extreme points of the form

$$\mathbf{x}_{\text{sparse}} = \sum_{k=1}^{K} a_k \mathbf{e}_{n_k} \quad \text{with} \quad K = \|\mathbf{x}_{\text{sparse}}\|_0 \le M.$$

igwedge element of canonical basis with $[\mathbf{e}_n]_m = \delta_{m-n}$



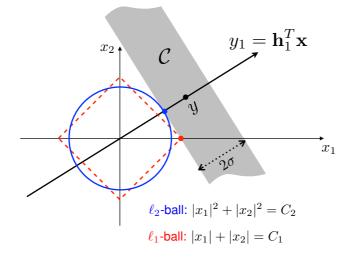


Geometry of *l*₂ vs. *l*₁ minimization

Prototypical inverse problem

 $\min_{\mathbf{x}} \left\{ \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 + \lambda \, \|\mathbf{x}\|_{\ell_2}^2 \right\} \iff \min_{\mathbf{x}} \|\mathbf{x}\|_{\ell_2} \text{ subject to } \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 \le \sigma^2$

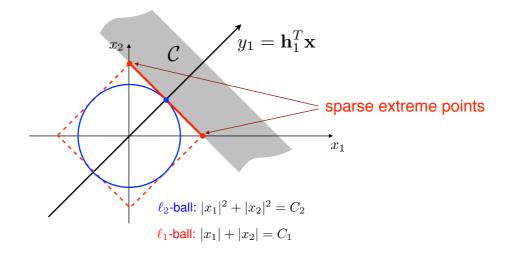
 $\min_{\mathbf{x}} \left\{ \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 + \lambda \|\mathbf{x}\|_{\ell_1} \right\} \iff \min_{\mathbf{x}} \|\mathbf{x}\|_{\ell_1} \text{ subject to } \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 \le \sigma^2$



Geometry of l₂ vs. l₁ minimization

Prototypical inverse problem

$$\begin{split} \min_{\mathbf{x}} \left\{ \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_{2}}^{2} + \lambda \|\mathbf{x}\|_{\ell_{2}}^{2} \right\} & \Leftrightarrow \quad \min_{\mathbf{x}} \|\mathbf{x}\|_{\ell_{2}} \text{ subject to } \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_{2}}^{2} \leq \sigma^{2} \\ \min_{\mathbf{x}} \left\{ \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_{2}}^{2} + \lambda \|\mathbf{x}\|_{\ell_{1}} \right\} & \Leftrightarrow \quad \min_{\mathbf{x}} \|\mathbf{x}\|_{\ell_{1}} \text{ subject to } \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_{2}}^{2} \leq \sigma^{2} \end{split}$$



Configuration for **non-unique** ℓ_1 solution

11

Part II: Continuous-domain theory

Continuous-domain regularization (L2 scenario)

Regularization functional:

$$\|\mathbf{L}f\|_{L_2}^2 = \int_{\mathbb{R}^d} |\mathbf{L}f(\boldsymbol{x})|^2 \mathrm{d}\boldsymbol{x}$$

L: suitable differential operator

Theory of reproducing kernel Hilbert spaces (Aronszajn 1950) $\langle f, g \rangle_{\mathcal{H}} = \langle Lf, Lg \rangle$

Interpolation and approximation theory

- Smoothing splines (Schoenberg 1964, Kimeldorf-Wahba 1971)
- Thin-plate splines, radial basis functions
- Machine learning
 - Radial basis functions, kernel methods (Poggio-Girosi 1990)
 - Representer theorem(s)

13

Splines are analog, but intrinsically sparse

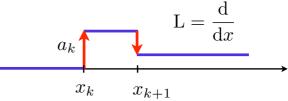
L $\{\cdot\}$: admissible differential operator $\delta(\cdot - \boldsymbol{x}_0)$: Dirac impulse shifted by $\boldsymbol{x}_0 \in \mathbb{R}^d$

Definition

The function $s: \mathbb{R}^d \to \mathbb{R}$ is a (non-uniform) L-spline with knots $(\boldsymbol{x}_k)_{k=1}^K$ if

$$L\{s\} = \sum_{k=1}^{K} a_k \delta(\cdot - \boldsymbol{x}_k) = \boldsymbol{w}_{\boldsymbol{\delta}}$$
 : spline's innovation

Spline theory: (Schultz-Varga, 1967)



(Duchon 1977)

(Schölkopf-Smola 2001)

Spline synthesis: example

$$L = D = \frac{d}{dx}$$
Null space: $\mathcal{N}_{D} = \operatorname{span}\{p_{1}\}, \quad p_{1}(x) = 1$
 $\rho_{D}(x) = D^{-1}\{\delta\}(x) = \mathbb{1}_{+}(x)$: Heaviside function
$$w_{\delta}(x) = \sum_{k} a_{k}\delta(x - x_{k})$$

$$w_{\delta}(x) = \sum_{k} a_{k}\delta(x - x_{k})$$

$$f_{x_{1}} = \sum_{k} a_{k}\delta(x - x_{k})$$

Spline synthesis: generalization

 $\rm L:$ spline admissible operator (LSI)

 $ho_{\mathrm{L}}({m x}) = \mathrm{L}^{-1}\{\delta\}({m x})$: Green's function of L

Finite-dimensional null space: $\mathcal{N}_{L} = \operatorname{span}\{p_n\}_{n=1}^{N_0}$

Spline's innovation:
$$w_{\delta}(\boldsymbol{x}) = \sum_{k} a_{k} \delta(\boldsymbol{x} - \boldsymbol{x}_{k})$$

$$\Rightarrow \quad s(\boldsymbol{x}) = \sum_{k} a_{k} \rho_{L}(\boldsymbol{x} - \boldsymbol{x}_{k}) + \sum_{n=1}^{N_{0}} b_{n} p_{n}(\boldsymbol{x})$$
Requires specification of boundary conditions

RKHS representer theorem for L₂ regularization

(P2)
$$\arg\min_{f\in\mathcal{H}}\left(\sum_{m=1}^{M}|y_m - f(\boldsymbol{x}_m)|^2 + \lambda \|f\|_{\mathcal{H}}^2\right)$$

 $r_{\mathcal{H}} : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is the (unique) **reproducing kernel** for the Hilbert \mathcal{H} if $r_{\mathcal{H}}(\boldsymbol{x}_0, \cdot) \in \mathcal{H}$ for all $\boldsymbol{r}_0 \in \mathbb{R}^d$ $f(\boldsymbol{x}_0) = \langle r_{\mathcal{H}}(\boldsymbol{x}_0, \cdot), f \rangle_{\mathcal{H}}$ for all $f \in \mathcal{H}$ and $\boldsymbol{x}_0 \in \mathbb{R}^d$

Convex loss function: $F : \mathbb{R}^M \times \mathbb{R}^M \to \mathbb{R}$

Sample values:
$$oldsymbol{f} = ig(f(oldsymbol{x}_1), \dots, f(oldsymbol{x}_M)ig)$$

(P2')
$$\arg\min_{f\in\mathcal{H}} \left(F(\boldsymbol{y},\boldsymbol{f}) + \lambda \|f\|_{\mathcal{H}}^2\right)$$

(Schölkopf-Smola 2001)

Representer theorem for L_2 -regularization The generic parametric form of the solution of (P2') is

$$f(\boldsymbol{x}) = \sum_{m=1}^{M} a_m r_{\mathcal{H}}(\boldsymbol{x}, \boldsymbol{x}_m)$$

Supports the theory of SVM, kernel methods, variational splines, etc.

17

L₂ representer theorem for variational splines

Theoretical difficulty:

 $\|f\|_{\mathcal{H}}^2 \longrightarrow \|\mathbf{L}f\|_{L_2}^2$ (only a semi-norm !)

(P2)
$$\arg\min_{f\in\mathcal{H}_{L}}\left(\sum_{m=1}^{M}|y_{m}-f(\boldsymbol{x}_{m})|^{2}+\lambda\|\mathbf{L}f\|_{L_{2}(\mathbb{R}^{d})}^{2}\right)$$

 $ho_{\mathrm{L}^*\mathrm{L}}({m x}) = (\mathrm{L}^*\mathrm{L})^{-1}\{\delta\}({m x})$: Green's function of $(\mathrm{L}^*\mathrm{L})$

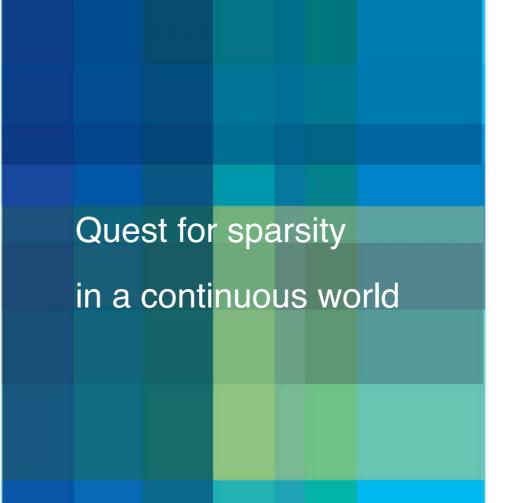
(Schoenberg 1964, Kimeldorf-Wahba 1971)

 L_2 representer theorem for variational splines The solution of (P2) is unique and of the form

$$f(\boldsymbol{x}) = \sum_{m=1}^{M} a_m \rho_{L^*L}(\boldsymbol{x} - \boldsymbol{x}_m) + \sum_{n=1}^{N_0} b_n p_n(\boldsymbol{x});$$

i.e., it is a (L^*L) -spline with knots at the $\{x_m\}$.

Example: $\mathcal{L} = \mathcal{D}^2$ with $\rho_{\mathcal{D}^4}(x) \propto |x|^3 \quad \Rightarrow \quad f(x)$ is a cubic spline



Sparsity and continuous-domain modeling

Compressed sensing (CS)

- Generalized sampling and infinite-dimensional CS (Adcock-Hansen 2011)
- Xampling: CS of analog signals
- Recovery of Dirac impulses from Fourier measurements (Vetterli et al. 2002) (Bredies 2013; Candes & Fernandez-Granda 2014; Duval-Peyré 2015)
- Splines and approximation theory
 - Locally-adaptive regression splines
 (Fisher-Jerome 1975)
 (Mammen-van de Geer 1997)
 - Generalized TV (Steidl et al. 2005; Bredies et al. 2010)
- Statistical modeling
 - Sparse stochastic processes

(Unser et al. 2011-2014)

(Eldar 2011)

21

Proper continuous counterpart of $\ell_1(\mathbb{Z}^d)$

 $\mathcal{S}(\mathbb{R}^d)$: Schwartz's space of smooth and rapidly decaying test functions on \mathbb{R}^d $\mathcal{S}'(\mathbb{R}^d)$: Schwartz's space of tempered distributions

Space of bounded Radon measures on \mathbb{R}^d

$$\begin{split} \mathcal{M}(\mathbb{R}^d) &= \left(C_0(\mathbb{R}^d) \right)' = \big\{ w \in \mathcal{S}'(\mathbb{R}^d) : \|w\|_{\mathcal{M}} = \sup_{\varphi \in \mathcal{S}(\mathbb{R}^d) : \|\varphi\|_{\infty} = 1} \langle w, \varphi \rangle < \infty \big\},\\ \text{where } w : \varphi \mapsto \langle w, \varphi \rangle = \int_{\mathbb{R}^d} \varphi(\boldsymbol{r}) w(\boldsymbol{r}) \mathrm{d}\boldsymbol{r} \end{split}$$

Equivalent definition of "total variation" norm

 $\|w\|_{\mathcal{M}} = \sup_{\varphi \in C_0(\mathbb{R}^d) : \|\varphi\|_{\infty} = 1} \langle w, \varphi \rangle$

Basic inclusions

•
$$\delta(\cdot - \boldsymbol{x}_0) \in \mathcal{M}(\mathbb{R}^d)$$
 with $\|\delta(\cdot - \boldsymbol{x}_0)\|_{\mathcal{M}} = 1$ for any $\boldsymbol{x}_0 \in \mathbb{R}^d$

 $\| \| \|_{\mathcal{M}} = \| f \|_{L_1(\mathbb{R}^d)} \text{ for all } f \in L_1(\mathbb{R}^d) \quad \Rightarrow \quad L_1(\mathbb{R}^d) \subseteq \mathcal{M}(\mathbb{R}^d)$

Representer theorem for gTV regularization

(P1)
$$\arg \min_{f \in \mathcal{M}_{\mathrm{L}}(\mathbb{R}^d)} \left(\sum_{m=1}^M |y_m - \langle h_m, f \rangle|^2 + \lambda \|\mathrm{L}f\|_{\mathcal{M}} \right)$$

- \blacksquare L: spline-admissible operator with null space $\mathcal{N}_{\mathrm{L}} = \mathrm{span}\{p_n\}_{n=1}^{N_0}$
- gTV semi-norm: $\|L\{s\}\|_{\mathcal{M}} = \sup_{\|\varphi\|_{\infty} \leq 1} \langle L\{s\}, \varphi \rangle$
- Measurement functionals $h_m:\mathcal{M}_{\mathrm{L}}(\mathbb{R}^d)\to\mathbb{R}$ (weak*-continuous)

Convex loss function: $F : \mathbb{R}^M \times \mathbb{R}^M \to \mathbb{R}$

$$\boldsymbol{
u}:\mathcal{M}_{\mathrm{L}}
ightarrow\mathbb{R}^{M}$$

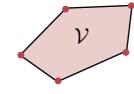
(P1') arg $\min_{f \in \mathcal{M}_{\mathrm{L}}(\mathbb{R}^d)} \left(F(\boldsymbol{y}, \boldsymbol{\nu}(f)) + \lambda \| \mathrm{L}f \|_{\mathcal{M}} \right)$ with $\boldsymbol{\nu}(f) = \left(\langle h_1, f \rangle, \dots, \langle h_M, f \rangle \right)$

Representer theorem for gTV-regularization

The extreme points of (P1') are **non-uniform** L-**spline** of the form

$$f_{\rm spline}(\boldsymbol{x}) = \sum_{k=1}^{K_{\rm knots}} a_k \rho_{\rm L}(\boldsymbol{x} - \boldsymbol{x}_k) + \sum_{n=1}^{N_0} b_n p_n(\boldsymbol{x})$$

with $\rho_{\rm L}$ such that ${\rm L}\{\rho_{\rm L}\} = \delta$, $K_{\rm knots} \leq M - N_0$, and $\|{\rm L}f_{\rm spline}\|_{\mathcal{M}} = \|\mathbf{a}\|_{\ell_1}$.



(U.-Fageot-Ward, SIAM Review 2017)

T

23

Example: 1D inverse problem with TV⁽²⁾ regularization

$$s_{\text{spline}} = \arg \min_{s \in \mathcal{M}_{D}^{2}(\mathbb{R})} \left(\sum_{m=1}^{M} |y_{m} - \langle h_{m}, s \rangle|^{2} + \lambda \text{TV}^{(2)}(s) \right)$$

Total 2nd-variation: $\mathrm{TV}^{(2)}(s) = \sup_{\|\varphi\|_{\infty} \leq 1} \langle \mathrm{D}^2 s, \varphi \rangle = \|\mathrm{D}^2 s\|_{\mathcal{M}}$

$$L = D^2 = \frac{d^2}{dx^2}$$
 $\rho_{D^2}(x) = (x)_+$: ReLU $\mathcal{N}_{D^2} = \text{span}\{1, x\}$

Generic form of the solution

$$s_{\text{spline}}(x) = b_1 + b_2 x + \sum_{k=1}^{K} a_k (x - \tau_k)_+$$
no penalty
$$\tau_k$$

with K < M and free parameters b_1, b_2 and $(a_k, \tau_k)_{k=1}^K$

Other spline-admissible operators

• $L = D^n$ (pure derivatives)	
\Rightarrow polynomial splines of degree $(n-1)$	(Schoenberg 1946)
■ $L = D^n + a_{n-1}D^{n-1} + \cdots + a_0I$ (ordinary different ⇒ exponential splines	tial operator) (Dahmen-Micchelli 1987)
■ Fractional derivatives: $L = D^{\gamma} \stackrel{\mathcal{F}}{\longleftrightarrow} (j\omega)^{\gamma}$ ⇒ fractional splines	(UBlu 2000)
• Fractional Laplacian: $(-\Delta)^{\frac{\gamma}{2}} \stackrel{\mathcal{F}}{\longleftrightarrow} \ \boldsymbol{\omega}\ ^{\gamma}$	
\Rightarrow polyharmonic splines	(Duchon 1977)
Elliptical differential operators; e.g, $L = (-\Delta + \alpha I)^{\gamma}$	
\Rightarrow Sobolev splines	(Ward-U. 2014)

25

Discretization: compatible with CS paradigm

$$\mathbf{s}_{sparse} = \arg \min_{\mathbf{s} \in \mathbb{R}^K} \left(\frac{1}{2} \| \mathbf{y} - \mathbf{Hs} \|_2^2 + \lambda \| \mathbf{u} \|_1 \right) \text{ subject to } \mathbf{u} = \mathbf{Ls}$$

ADMM algorithm

$$\mathcal{L}_{\mathcal{A}}(\mathbf{s}, \mathbf{u}, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{s}\|_{2}^{2} + \lambda \sum_{n} |[\mathbf{u}]_{n}| + \boldsymbol{\alpha}^{T}(\mathbf{L}\mathbf{s} - \mathbf{u}) + \frac{\mu}{2} \|\mathbf{L}\mathbf{s} - \mathbf{u}\|_{2}^{2}$$

For
$$k = 0, ..., K$$

$$\mathbf{s}^{k+1} = (\mathbf{H}^T \mathbf{H} + \mu \mathbf{L}^T \mathbf{L})^{-1} (\mathbf{z}_0 + \mathbf{z}^{k+1})$$
with $\mathbf{z}^{k+1} = \mathbf{L}^T (\mu \mathbf{u}^k - \alpha^k)$

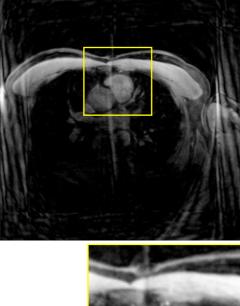
$$\alpha^{k+1} = \alpha^k + \mu (\mathbf{L}\mathbf{s}^{k+1} - \mathbf{u}^k)$$
Proximal step = pointwise non-linearity

$$\mathbf{u}^{k+1} = \operatorname{prox}_{|\cdot|} (\mathbf{L}\mathbf{s}^{k+1} + \frac{1}{\mu}\alpha^{k+1}; \frac{\sigma^2}{\mu})$$

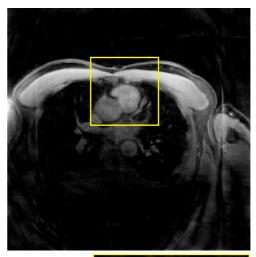
$$\mathbf{z}^{k+1} = \operatorname{prox}_{|\cdot|} (\mathbf{L}\mathbf{s}^{k+1} + \frac{1}{\mu}\alpha^{k+1}; \frac{\sigma^2}{\mu})$$

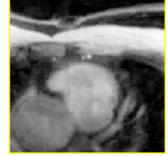
Example: ISMRM reconstruction challenge

 L_2 regularization (Laplacian)



 ℓ_1 / TV regularization





(Guerquin-Kern IEEE TMI 2011)

27

OUTLINE

- Linear inverse problems and regularization
- Continuous-domain theory
 - Splines and operators
 - Classical L₂ regularization: theory of RKHS
 - Minimization of gTV: the optimality of splines

From compressed sensing to deep networks

- Image recovery with sparsity constraints
- FBPConvNet
- Representer theorem for deep neural networks

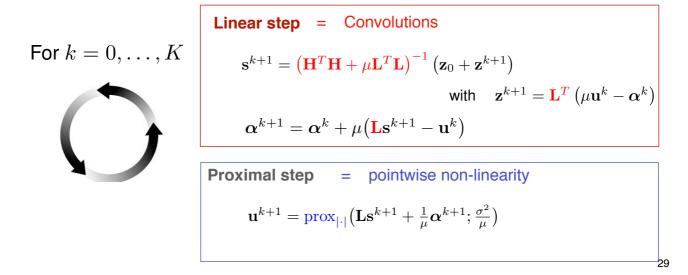
When is unrolled ADMM a deep ConvNet ?

Answer: when $\mathbf{H}^T \mathbf{H}$ and \mathbf{L} are both convolutions

$$\mathcal{L}_{\mathcal{A}}(\mathbf{s}, \mathbf{u}, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{s}\|_{2}^{2} + \sigma^{2} \sum_{n} |[\mathbf{u}]_{n}| + \boldsymbol{\alpha}^{T}(\mathbf{L}\mathbf{s} - \mathbf{u}) + \frac{\mu}{2} \|\mathbf{L}\mathbf{s} - \mathbf{u}\|_{2}^{2}$$

ADMM algorithm

Initialization $\mathbf{z}_0 = \mathbf{H}^T \mathbf{y}$ $\mathbf{u}^0 = \mathbf{0}$ $\mathbf{s}^0 = \mathbf{0}$ $\boldsymbol{\alpha}^0 = \mathbf{0}$

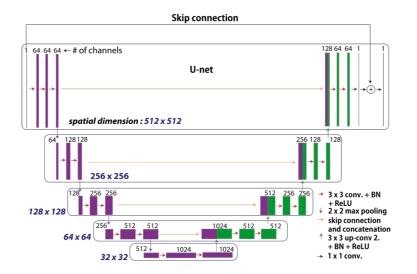


Recent appearance of Deep ConvNets

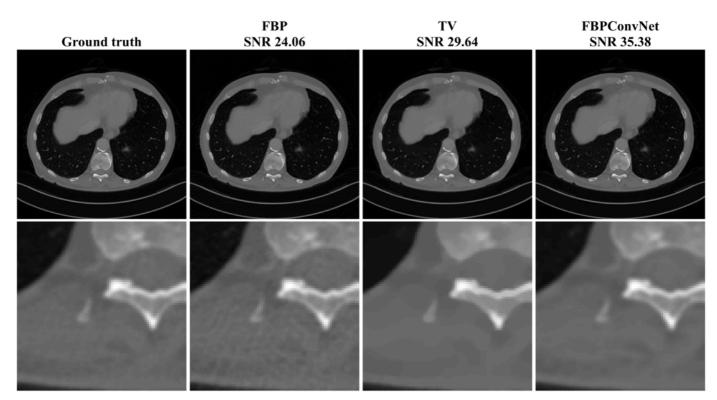
(Jin et al. 2016; Adler-Öktem 2017; Chen et al. 2017; ...)

- CT reconstruction based on Deep ConvNets
 - Input: Sparse view FBP reconstruction
 - Training: Set of 500 high-quality full-view CT reconstructions
 - Architecture: U-Net with skip connection

(Jin et al., IEEE TIP 2017)



CT data Dose reduction by 7: 143 views



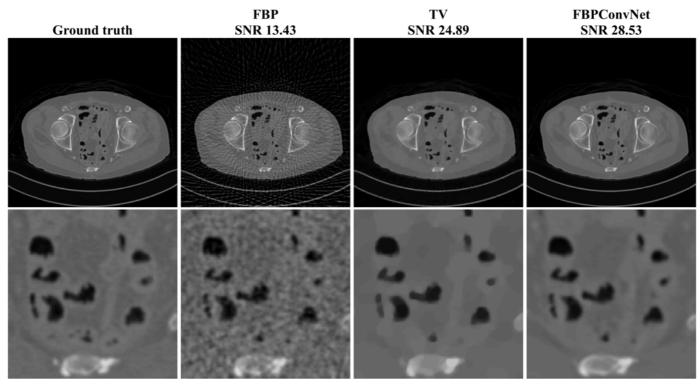
Reconstructed from from 1000 views

MAYO CLINIC

(Jin et al., IEEE Trans. Im Proc., 2017)

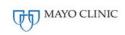
CT data

Dose reduction by 20: 50 views



Reconstructed from from 1000 views

(Jin et al., IEEE Trans. Im Proc., 2017)



Finale:

Representer theorem for deep learning

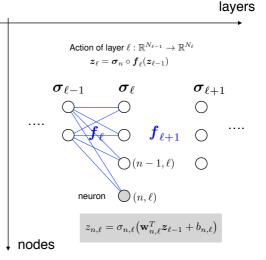
Deep neural networks and splines

- Preferred choice of activation function: ReLU
 - **ReLU** works nicely with dropout / ℓ_1 -regularization (Glorot ICAIS 2011)
 - Networks with hidden ReLU are easier to train
 - State-of-the-art performance (LeCun-Bengio-Hinton *Nature* 2015)
- Deep nets as Continuous PieceWise-Linear maps
 - MaxOut \Rightarrow CPWL (Goodfellow *PMLR* 2013)
 ReLU \Rightarrow CPWL (Montufar *NIPS* 2014)
 CPWL \Rightarrow Deep ReLU network (Wang-Sun *IEEE-IT* 2005)

Feedforward deep neural network

- Layers: $\ell = 1, \dots, L$
- Deep structure descriptor: (N_0, N_1, \cdots, N_L)
- Neuron or node index: $(n, \ell), n = 1, \cdots, N_{\ell}$
- Activations functions: $\sigma_{n,\ell} : \mathbb{R} \to \mathbb{R}$
- Linear step: $\mathbb{R}^{N_{\ell-1}} \to \mathbb{R}^{N_{\ell}}$ $f_{\ell}: x \mapsto f_{\ell}(x) = \mathbf{W}_{\ell}x + \mathbf{b}_{\ell}$
- Nonlinear step: $\mathbb{R}^{N_{\ell}} \to \mathbb{R}^{N_{\ell}}$ $\boldsymbol{\sigma}_{\ell} : \boldsymbol{x} \mapsto \boldsymbol{\sigma}_{\ell}(\boldsymbol{x}) = (\sigma_{1,\ell}(x_1), \dots, \sigma_{N_{\ell},\ell}(x_{N_{\ell}}))$

Conventional design: $\sigma_{n,\ell} = \sigma$

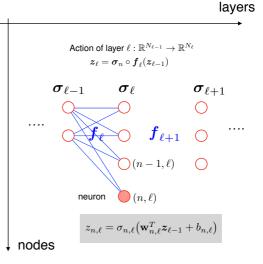


35

Deep neural net with optimized activations

 $\mathbf{f}_{\text{deep}}(\boldsymbol{x}) = (\boldsymbol{\sigma}_{L} \circ \boldsymbol{f}_{L} \circ \boldsymbol{\sigma}_{L-1} \circ \cdots \circ \boldsymbol{\sigma}_{2} \circ \boldsymbol{f}_{2} \circ \boldsymbol{\sigma}_{1} \circ \boldsymbol{f}_{1}) (\boldsymbol{x})$

- Layers: $\ell = 1, \ldots, L$
- Deep structure descriptor: (N_0, N_1, \cdots, N_L)
- Neuron or node index: $(n, \ell), n = 1, \cdots, N_{\ell}$
- Activations functions: $\sigma_{n,\ell} : \mathbb{R} \to \mathbb{R}$
- Linear step: $\mathbb{R}^{N_{\ell-1}} o \mathbb{R}^{N_{\ell}}$ $\boldsymbol{f}_{\ell}: \boldsymbol{x} \mapsto \boldsymbol{f}_{\ell}(\boldsymbol{x}) = \mathbf{W}_{\ell} \boldsymbol{x} + \mathbf{b}_{\ell}$
- Nonlinear step: $\mathbb{R}^{N_{\ell}} \to \mathbb{R}^{N_{\ell}}$ $\boldsymbol{\sigma}_{\ell} : \boldsymbol{x} \mapsto \boldsymbol{\sigma}_{\ell}(\boldsymbol{x}) = (\sigma_{1,\ell}(x_1), \dots, \sigma_{N_{\ell},\ell}(x_{N_{\ell}}))$



New adaptive design: $x \mapsto \sigma_{n,\ell}(x)$ s.t. $\mathrm{TV}^{(2)}(\sigma_{n,\ell})$ minimum

$$\mathbf{f}_{ ext{deep}}(oldsymbol{x}) = (oldsymbol{\sigma}_L \circ oldsymbol{f}_L \circ oldsymbol{\sigma}_{L-1} \circ \cdots \circ oldsymbol{\sigma}_2 \circ oldsymbol{f}_2 \circ oldsymbol{\sigma}_1 \circ oldsymbol{f}_1) (oldsymbol{x})$$

New representer theorem for deep neural networks

(Unser, arXiv:1802.09210, Feb 2018)

Theorem $(TV^{(2)}$ -optimality of deep spline networks)

- neural network $\mathbf{f} : \mathbb{R}^{N_0} \to \mathbb{R}^{N_L}$ with deep structure (N_0, N_1, \dots, N_L) $\boldsymbol{x} \mapsto \mathbf{f}(\boldsymbol{x}) = (\boldsymbol{\sigma}_L \circ \boldsymbol{\ell}_L \circ \boldsymbol{\sigma}_{L-1} \circ \dots \circ \boldsymbol{\ell}_2 \circ \boldsymbol{\sigma}_1 \circ \boldsymbol{\ell}_1) (\boldsymbol{x})$
- **normalized** linear transformations $\ell_{\ell} : \mathbb{R}^{N_{\ell-1}} \to \mathbb{R}^{N_{\ell}}, x \mapsto \mathbf{U}_{\ell}x$ with weights $\mathbf{U}_{\ell} = [\mathbf{u}_{1,\ell} \cdots \mathbf{u}_{N_{\ell},\ell}]^T \in \mathbb{R}^{N_{\ell} \times N_{\ell-1}}$ such that $\|\mathbf{u}_{n,\ell}\| = 1$
- free-form activations $\boldsymbol{\sigma}_{\ell} = (\sigma_{1,\ell}, \dots, \sigma_{N_{\ell},\ell}) : \mathbb{R}^{N_{\ell}} \to \mathbb{R}^{N_{\ell}}$ with $\sigma_{1,\ell}, \dots, \sigma_{N_{\ell},\ell} \in \mathrm{BV}^{(2)}(\mathbb{R})$

Given a series of M data points $\boldsymbol{y}_m \approx \mathbf{f}(\boldsymbol{x}_m)$, we then define the training problem

$$\arg\min_{(\mathbf{U}_{\ell}),(\sigma_{n,\ell}\in \mathrm{BV}^{(2)}(\mathbb{R}))} \left(\sum_{m=1}^{M} E(\boldsymbol{y}_{m},\mathbf{f}(\boldsymbol{x}_{m})) + \mu \sum_{\ell=1}^{N} R_{\ell}(\mathbf{U}_{\ell}) + \lambda \sum_{\ell=1,\ n=1}^{L} \sum_{n=1}^{N_{\ell}} \mathrm{TV}^{(2)}(\sigma_{n,\ell}) \right)$$
(1)

- $E: \mathbb{R}^{N_L} \times \mathbb{R}^{N_L} \to \mathbb{R}^+$: arbitrary convex error function
- $R_{\ell}: \mathbb{R}^{N_{\ell} \times N_{\ell}} \to \mathbb{R}^+$: convex cost

If solution of (1) exists, then it is achieved by a deep spline network with activations of the form

$$\sigma_{n,\ell}(x) = b_{1,n,\ell} + b_{2,n,\ell}x + \sum_{k=1}^{K_{n,\ell}} a_{k,n,\ell}(x - \tau_{k,n,\ell})_+,$$

with adaptive parameters $K_{n,\ell} \leq M-2$, $\tau_{1,n,\ell}, \ldots, \tau_{K_{n,\ell},n,\ell} \in \mathbb{R}$, and $b_{1,n,\ell}, b_{2,n,\ell}, a_{1,n,\ell}, \ldots, a_{K_{n,\ell},n,\ell} \in \mathbb{R}$.

37

Outcome of representer theorem

Each neuron (fixed index (n, ℓ)) is characterized by

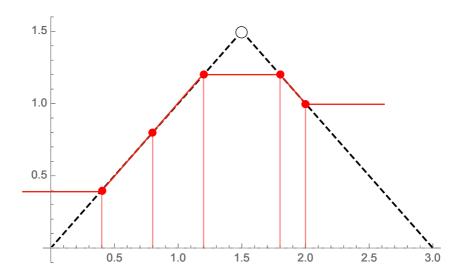
- its number $0 \le K = K_{n,\ell}$ of knots (ideally, much smaller than M);
- the location $\{\tau_k = \tau_{k,n,\ell}\}_{k=1}^{K_{n,\ell}}$ of these knots (ReLU biases);
- the expansion coefficients $\mathbf{b}_{n,\ell} = (b_{1,n,\ell}, b_{2,n,\ell}) \in \mathbb{R}^2$, $\boldsymbol{a}_{n,\ell} = (a_{1,n,\ell}, \dots, a_{K,n,\ell}) \in \mathbb{R}^K$.

These parameters (including the number of knots) are **data-dependent** and need to be adjusted automatically during **training**.

Link with ℓ_1 minimization techniques

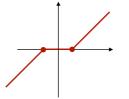
$$\mathrm{TV}^{(2)}\{\sigma_{n,\ell}\} = \sum_{k=1}^{K_{n,\ell}} |a_{k,n,\ell}| = \|\mathbf{a}_{n,\ell}\|_1$$

Comparison of linear interpolators



Deep spline networks: Discussion

- Global optimality achieved with spline activations
- State-of-the-art ReLU networks $(K_{n,\ell} = 1, b_{n,\ell} = 0)$
 - No need to normalize: $(\mathbf{w}_{n,\ell}^T \boldsymbol{x} - z_{n,\ell})_+ = (a_{n,\ell} \mathbf{u}_{n,\ell}^T \boldsymbol{x} - z_{n,\ell})_+ = a_{n,\ell} (\mathbf{u}_{n,\ell}^T \boldsymbol{x} - \tau_{n,\ell})_+$
- Key features
 - Produces a global mapping $x\mapsto f(x)$ that is **continuous** and **piecewise-linear**
 - Direct control of complexity (number of knots): adjustment of λ
 - Ability to suppress unnecessary layers
- Backward compatibility
 - Linear regression: $\lambda \to \infty \Rightarrow K_{n,\ell} = 0$
 - \blacksquare Compressed sensing / ℓ_1 minimization



42

SUMMARY: Controlling smoothness vs. sparsity

- New findings resonate with what is known in discrete setting
 - *l*₂ solution lives in a **fixed** subspace of dimension *M*
 - Tikhonov solution is intrinsically "blurred"
 - Minimization of *l*₁ favors sparse solutions (independently of sensing matrix)
- Specificities of continuous-domain formulation
 - Functional model: class of signals + physics
 - Smoothing-splines: minimum "spline" energy
 - L-splines = signals with "sparsest" innovation
- Practical implications
 - Infinite-dimensional optimization is feasible (parametric form of solution)
 - gTV regularization favors sparse innovations with adaptive knots
 - Non-uniform L-splines: universal solutions of linear inverse problems
 - and deep neural networks ...

Acknowledgments

Many thanks to (former) members of EPFL's Biomedical Imaging Group

- Dr. Pouya Tafti
- Prof. Arash Amini
- Dr. Emrah Bostan
- Dr. Masih Nilchian
- Dr. Ulugbek Kamilov
- Dr. Cédric Vonesch
- **.**...

and collaborators ...

- Prof. Demetri Psaltis
- Prof. Marco Stampanoni
- Prof. Carlos-Oscar Sorzano
- Dr. Arne Seitz

Preprints and demos:

http://bigwww.epfl.ch/

 $\mathcal{L}\{s_{\text{sparse}}\} = \sum_{k=1}^{K} a_k \delta(\cdot - \boldsymbol{x}_k)$

41

 $s \mapsto \mathbf{z} = \mathbf{H}\{s\}$

 $s \in \mathcal{X}$

 $(\mathrm{L}^*\mathrm{L})\{s_{\mathrm{smooth}}\} = \sum_{m=1}^M a_m h_m$

References

Theoretical results on sparsity-promoting regularization

- M. Unser, J. Fageot, H. Gupta, "Representer Theorems for Sparsity-Promoting ℓ₁ Regularization," *IEEE Trans. Information Theory*, Vol. 62, No. 9, pp. 5167-5180.
- M. Unser, J. Fageot, J.P. Ward, "Splines Are Universal Solutions of Linear Inverse Problems with Generalized-TV Regularization," *SIAM Review*, vol. 59, No. 4, pp. 769-793, 2017.

Theory of sparse stochastic processes

- M. Unser and P. Tafti, *An Introduction to Sparse Stochastic Processes*, Cambridge University Press, 2014.
 Preprint, available at http://www.sparseprocesses.org.
- For splines: see chapter 6
- E. Bostan, U.S. Kamilov, M. Nilchian, M. Unser, "Sparse Stochastic Processes and Discretization of Linear Inverse Problems," *IEEE Trans. Image Processing*, vol. 22, no. 7, pp. 2699-2710, 2013.

Deep neural networks

- K.H. Jin, M.T. McCann, E. Froustey, M. Unser, "Deep Convolutional Neural Network for Inverse Problems in Imaging," *IEEE Trans. Image Processing*, vol. 26, no. 9, pp. 4509-4522, Sep. 2017.
- M.T. McCann, K.H. Jin, M. Unser, "Convolutional Neural Networks for Inverse Problems in Imaging—A Review," IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 85-95, Nov. 2017.
- M. Unser, "A representer theorem for deep neural networks," preprint, Feb 2018, arXiv:1802.09210.