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Abstract— From the very beginning of digital image pro-
cessing, resampling has been a necessary proces to con-
vert images to a different lattice. Simple algorithms using
nearest-neighbor interpolation or bilinear interpolation are
common practice and might suggest that it is an easy part
of the image processing system. Unfortunately, the appear-
ance of artifacts due to resampling, i.e., moiré patterns in
printing, are often noticed and prove the necessity of pro-
viding sufficient attention to the image resampling stage.

A good resampling algorithm needs to take into account
the properties of the original and the new lattice. In this
paper, we present an extension of the classical spline models
to two-dimensional non-separable lattices. Next, we use this
new model, which can be used to represent images on both
rectangular and hexagonal lattices, to derive a least-squares
interpolation function. The result is a convolution-based
resampling algorithm. Experimental results for a practi-
cal printing application show that the interpolation function
combines edge-preservation and moiré-suppression.

Keywords— Image resampling, Moiré patterns, Edge-
preservation, Convolution-based resampling

I. Introduction

PROBABLY the best known theorem in digital signal
processing is the Whittaker-Shannon sampling theo-

rem [1]. This theorem states that in order to be able to re-
construct a continuous function out of uniform samples, the
sampling rate must be at least twice the highest frequency
present in the original signal. If this requirement is not
satisfied, a phenomenon frequently referred to as aliasing,
prevents the signal from being (completely) reconstructed.
The range of allowable frequencies are contained into the
so-called Nyquist range.

Although this theorem suggest that one must take into
account the Nyquist range of the new lattice when resam-
pling, typical and widespread resampling techniques for im-
age processing, such as nearest-neighbor interpolation and
bilinear interpolation, do not take into account the target
lattice. Therefore, artifacts due to aliasing, such as unde-
sirable moiré patterns (especially in printing) might arise.
Further on, the advent of high-quality scanners and digi-
tal photography, with their high resolutions, increases the
possibility that these artifacts appear.

The reasons of the popular usage of these interpolation
functions are for one thing their ease of implementation,
but for another the difficulties associated with the solution
suggested by the sampling theorem itself. Indeed, the “op-
timal” interpolation function, corresponding to the ideal
filter of the Nyquist range, has an unlimited support. Its
sharp cut-off in the frequency domain brings about ring-
ing artifacts, and an approximation on a limited support is
difficult due to the slow decay of the sinc-function.
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An elegant solution was proposed by Unser et al. [2, 3]
for one-dimensional signals. Using two spline signal mod-
els, one suitable for the original lattice, another for the
new lattice, they derived the interpolation function which
realizes the minimal error between both representations in
a least-squares sense. In this paper, we present an exten-
sion of the spline model for two-dimensional non-separable
lattices (which cannot be treated by the tensor-product ex-
tension of Unser et al.). Next, we derive the least-squares
solution according to these new models. Finally, we will
show some experimental results for a printing application
which demonstrate the feasibility of the proposed approach.

II. Generalized spline signal model

A continuous/discrete model allows us to construct a
“smooth” signal based on the samples. Splines are a fam-
ily of basis functions, which have a limited size of support,
and expands as the order of the spline model increases.
One of the most important spline families are the B-splines:
piecewise polynomial functions which are symmetric. They
are not orthogonal, but they form a Riesz basis and sat-
isfy the partition of unity condition. It is also interesting
to mention the convolution property, which enables us to
construct splines of the next order by convolving the spline
with the first-order spline. Note that first-order spline in-
terpolation is better known as “nearest neighbor” interpo-
lation; second-order spline interpolation as bilinear inter-
polation.

These models are appropriate for one-dimensional sig-
nals and can be extended to two-dimensional rectangular
lattices by means of the tensor-product. We propose to
construct a spline basis suitable for general periodic lat-
tices. As an illustration, let’s consider a regular hexagonal
lattice. Since we are especially interested in preserving the
convolution property (because it plays an important role in
the derivation of the least-squares approximation) we ap-
ply it as a construction rule. As such, we first define the
first-order hexagonal spline as the indicator function of the
Voronoi cell of the lattice. For example, Fig. 1 (a) shows
the first-order hexagonal spline. Note that it fills up the
two-dimensional space if it is copied upon each lattice site
(i.e., the partition of unity condition is fulfilled). A convo-
lution of this spline with itself (and a proper normalization)
results into the second-order spline, shown in Fig. 1 (b).
We have proven that this spline family fulfills the neces-
sary conditions to be a sensible continuous/discrete model.
Additionally, the order of approximation corresponds to
the nomenclature we introduced. An analytical expression
was derived up to and including the third-order hexagonal
spline.
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Fig. 1. (a) The first-order spline function for a hexagonal lattice. (b) The second-order spline function for a hexagonal lattice. (c) The least-
squares interpolation function based on the first-order spline model for resampling from an orthogonal to a hexagonal lattice. (d) The
second-order least-squares interpolation function. (e) Original test image. (f) Test image after halftoning using bilinear interpolation.
(g) Test image after halftoning using first-order least-squares interpolation. (h) Test image after halftoning using second-order least-
squares interpolation.

III. Least-squares resampling

The continuous/discrete model can now be used to re-
construct a continuous “surface” using the samples given
on the lattice. Consider an original rectangular lattice (for
which we can obtain a model using the same principle as ex-
plained before) and a new hexagonal lattice. The interpola-
tion function we have derived minimizes the squared error
between the representations implied by the signal models
on both lattices. The order of both models can be chosen
freely.

If we prefer first-order models, we obtain the interpola-
tion function given in Fig. 1 (c). This most simple least-
squares approach corresponds to “surface projection”: the
contribution of a sample value on the original lattice to
a sample on a new lattice site corresponds to the rela-
tive overlap of their Voronoi cell’s surface area. Note the
difference with classical first-order interpolation (nearest-
neighbor interpolation), which would simply assign the
value of the sample of the nearest original lattice site.

From the second-order models, the least-squares interpo-
lation functions do not have a theoretical unlimited size of
support anymore. However, Fig. 1 (d) shows that the decay
is much faster than sinc-like functions, making an approx-
imation practical. We have also shown by the frequency
analysis of the interpolation function, that these functions
incorporate the Nyquist range of the new lattice. Current
research investigates if it possible to implement this ap-
proach using recursive filters to get around the unlimited
support problem.

IV. Some experimental results

Allmost all printing devices are bi-level, i.e., they are
only able to produce black and white, they must use
halftoning techniques to represent a continuous tone im-
age (contone) by a bi-level image (halftone). When such a
halftone is viewed by a human observer, the human visual
system integrates the small bi-level features and creates the
illusion of the original contone. The most popular halfton-
ing technique is amplitude modulation: dots of varying
sizes are placed on a periodic lattice. Resampling is re-
quired to obtain samples on this new lattice.

To demonstrate the feasibility of our least-squares resam-
pling approach, we consider the image shown in Fig. 1 (e),
which is resampled to the hexagonal lattice used by the
halftoning proces. Figure 1 (f) shows the result after re-
sampling by bilinear interpolation. Clearly, annoying moiré
patterns appear in the shirt. The result after first-order
least-squares resampling in (g) has already less moiré ar-
tifacts. Finally, the second-order least-squares resampling
in (h) also preserves edges very well.
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