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Abstract

It is well-known that spatial averaging can be realized (in space or frequency domain) using

algorithms whose complexity does not scale with the size or shape of the filter. These fast algorithms

are generally referred to as constant-time or O(1) algorithms in the image processing literature.

Along with the spatial filter, the edge-preserving bilateral filter [1] involves an additional range

kernel. This is used to restrict the averaging to those neighborhood pixels whose intensity are

similar or close to that of the pixel of interest. The range kernel operates by acting on the pixel

intensities. This makes the averaging process non-linear and computationally intensive, especially

when the spatial filter is large. In this paper, we show how the O(1) averaging algorithms can be

leveraged for realizing the bilateral filter in constant-time, by using trigonometric range kernels.

This is done by generalizing the idea in [2] of using polynomial kernels. The class of trigonometric

kernels turns out to be sufficiently rich, allowing for the approximation of the standard Gaussian

bilateral filter. The attractive feature of our approach is that, for a fixed number of terms, the

quality of approximation achieved using trigonometric kernels is much superior to that obtained

in [2] using polynomials.
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Fast O(1) bilateral filtering using

trigonometric range kernels

I. INTRODUCTION

The bilateral filtering of an image f (x) in the general setting is given by

f̃ (x) = η−1
∫

w(x , y) φ( f (x), f (y)) f (y) d y

where

η=
∫

w(x , y) φ( f (x), f (y)) d y.

In this formula, w(x , y) measures the geometric proximity between the pixel of interest x and a

nearby pixel y. Its role is to localize the averaging to a neighborhood of x . On the other hand, the

function φ(u, v) measures the similarity between the intensity of the pixel of interest f (x) and its

neighbor f (y). The normalizing factor η is used to preserve constants, and in particular the local

mean.

In this paper, we consider the so-called unbiased form of the bilateral filter [1], where w(x , y)

is translation-invariant, that is, w(x , y) = w(x − y), and where the range filter is symmetric and

depends on the difference of intensity, φ( f (x), f (y)) = φ( f (x)− f (y)). In this case, the filter is

given by

f̃ (x) = η−1
∫

Ω
w(y)φ( f (x − y)− f (x)) f (x − y) d y (1)

where

η=
∫

Ω
w(y)φ( f (x − y)− f (x)) d y. (2)

We call w(x) the spatial kernel, and φ(s ) the range kernel. The local support Ω of the spatial kernel

specifies the neighborhood over which the averaging takes place. A popular form of the bilateral

filter is one where both w(x) and φ(s) are Gaussian [1], [2], [3], [4].

The edge-preserving bilateral filter was originally introduced by Tomasi et al. in [1] as a simple,

non-iterative alternative to anisotropic diffusion [5]. This was motivated by the observation that

while standard spatial averaging performs well in regions with homogenous intensities, it tends to

performs poorly in the vicinity of sharp transitions, such as edges. For the bilateral filter in (1), the

difference f (x−y)− f (x) is close to zero in homogenous regions, and hence φ( f (x−y)− f (x))≈ 1.

In this case, (1) simply results in the averaging of pixels in the neighborhood of the pixel of interest.

On the other hand, if the pixel of interest x is in the vicinity of an edge, φ( f (x − y)− f (x)) is

large when x − y belongs to the same side of the edge as x , and is small when x − y is on the
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other side of the edge. As a result, the averaging is restricted to neighborhood pixels that are on the

same side of the edge as the pixel of interest. This is the basic idea which allows one to perform

smoothing while preserving edges at the same time. Since its inception, the bilateral filter has found

widespread use in several image processing, computer graphics, and computer vision applications.

This includes denoising [6], video abstraction [7], demosaicing [8], optical-flow estimation [9],

and stereo matching [10], to name a few. More recently, the bilateral filter has been extended by

Baudes et al. [3] to realize the popular non-local neighborhood filter, where the similarity between

pixels is measured using patches centered around the pixels.

The direct implementation of (1) turns out to be rather computationally intensive for real time

applications. Several efficient numerical schemes have been proposed in the past for implementing

the filter in real time, even at video rates [11], [12], [13], [14]. These algorithms (with the

exception of [11]), however, do not scale well with the size of the spatial kernel, and this limits

their usage in high resolution applications. A significant advance was obtained when Porikli [2]

proposed a constant-time implementation of the bilateral filter (for arbitrary spatial kernels) using

polynomial range kernels. The O(1) algorithm was also extended to include Gaussian φ(s) by

locally approximating it using polynomials. More recently, Yang et al. [4] have proposed a O(1)

algorithm for arbitrary range and spatial kernels by extending the bilateral filtering method of

Durand et al. [11]. Their algorithm is based on a piecewise-linear approximation of the bilateral

filter obtained by quantizing φ(s).

In this paper, we extend the O(1) algorithm of Porikli to provide an exact implementation of the

bilateral filter, using trigonometric range kernels. Our main observation that trigonometric functions

share a common property of polynomials which allows one to “linearize” the otherwise non-linear

bilateral filter. The common property is that the translate of a polynomial (resp. trigonometric

function) is again a polynomial (resp. trigonometric function), and importantly, of the same degree.

By fixing φ(s) to be a trigonometric function, we show how this self-shiftable property can be

used to (locally) linearize the bilateral filter. This is the crux of the idea that was used for deriving

the O(1) algorithm for polynomial φ(s) in [2].

II. CONSTANT-TIME BILATERAL FILTER

A. The main idea

It is the presence of the term φ( f (x − y)− f (x)) in (1) that makes the filter non-linear. In the

absence of this term, that is, when φ(s) is constant, the filter is simply given by the averaging

f (x) =
∫

Ω
w(y) f (x − y) d y, (3)

where we assume w(x) to have a total mass of unity. It is well-known that (3) can be implemented

in constant-time, irrespective of the size and shape of the filter, using the convolution-multiplication
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property of the (fast) Fourier transform. The number of computations required per pixel, however,

depends on the size of the image in this case [15]. On the other hand, it is known that (3) can

be realized at the cost of a constant number of operations per pixel (independent of the size of

the image and the filter) using recursive algorithms. These O(1) recursive algorithms are based on

specialized kernels, such as the box and the hat function [16], [17], [18], and the more general

class of Gaussian-like box splines [19].

Our present idea is to leverage these fast averaging algorithms by expressing (1) in terms of (3),

where the averaging is performed on the image and its simple pointwise transforms. Our observation

is that we can do so if the range kernel is of the form

φ(s) = cos(γ s) (−T ≤ s ≤ T ). (4)

By plugging (4) into (1), we can write the integral as

cos(γ f (x))
∫

Ω
w(y)cos(γ f (x − y)) f (x − y) d y + sin(γ f (x))

∫

Ω
w(y) sin(γ f (x − y)) f (x − y) d y.

This is clearly seen to be the linear combination of two spatial averages, performed on the images

cos(γ f (x)) f (x) and sin(γ f (x)) f (x). Similarly, we can write the integral in (2) as

cos(γ f (x))
∫

Ω
w(y)cos(γ f (x − y)) d y + sin(γ f (x))

∫

Ω
w(y) sin(γ f (x − y)) d y.

In this case, the averaging is on the images cos(γ f (x)) and sin(γ f (x)). This is the trick that allows

us to express (1) in terms of linear convolution filters applied to pointwise transforms of the image.

Note that the domain of φ(s ) is [−T ,T ] in (4). We assume here (without loss of generality) that

the dynamic range of the image is within [0,T ]. The maximum of | f (x)− f (y)| over all x and y

such that x − y ∈Ω is within T in this case. Therefore, by letting γ =π/2T , we can guarantee the

argument γ s of the cosine function to be within the range [−π/2,π/2]. The crucial point here is

that the cosine function is oscillating and can assume negative values over (−∞,∞). However, its

restriction over the half-period [−π/2,π/2] has two essential properties of a range kernel—it is

non-negative and has a bump shape (cf. the outermost curve in Figure 1). Note that, in practice,

the bound on the local variations of intensity could be much lower than T .

B. General trigonometric kernels

The above idea can easily be extended to more general trigonometric functions of the form

φ(s ) = a0+ a1 cos(γ s )+ · · ·+ aN cos(Nγ s ). This is most conveniently done by writing φ(s ) in terms

of complex exponentials, namely as

φ(s) =
∑

|n|≤N

cn exp
�

j nγ s
�

. (5)
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Fig. 1. The family of raised cosines g (s ) = [cos(γ s )]N over the dynamic range −T ≤ s ≤ T as N goes from 1 to 5 (outer

to inner curves). We set T = 255 corresponding to the maximum dynamic range of a grayscale image, and γ =π/2T . They

satisfy the two essential properties required to qualify as a valid range kernel of the bilateral filter—non-negativity and

monotonicity (decay). Moreover, they have the remarkable property that they converge to a Gaussian (after appropriate

normalization) as N gets large; see (7).

The coefficients cn must be real and symmetric, since φ(s ) is real and symmetric. Now, using the

addition-multiplication property of exponentials, we can write

φ( f (x − y)− f (x)) =
∑

|n|≤N

dn(x) exp
�

j nγ f (x − y)
�

where dn(x) = cn exp
�

− j nγ f (x)
�

. Plugging this into (1), we immediately see that

f̃ (x) =

∑

|n|≤N dn(x) gn(x)
∑

|n|≤N dn(x) hn(x)
(6)

where hn(x) = exp
�

j nγ f (x)
�

, and gn(x) = f (x)hn(x). We refer to hn(x) and gn(x) as the auxiliary

images, and N as the degree of the kernel.

The above analysis gives us the following O(1) algorithm for the bilateral filter: We first set up

the auxiliary images and the coefficients dn(x) from the input image. We then average each of the

auxiliary images using a O(1) algorithm (this can be done in parallel). The samples of the filtered

image is then given by the simple sum and division in (6). In particular, for an image of size M ×M ,

we can compute the spatial averages for any arbitrary w(x) at the cost of O(M 2 log2 M ) operations
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Fig. 2. Approximation of the Gaussian exp(−x2/2σ2) (dashed black curve) over the interval [−255,255] using the

Taylor polynomial (solid red curve) and the raised cosine (solid blue curve). We set σ = 80, and use N = 4 for the raised

cosine in (7). The raised cosine is of the form a0+ a1 cos(2θ)+ a2 cos(4θ) in this case. We use a 3-term Taylor polynomial

of the form b0+ b1 x2+ b2 x4. It is clear that the raised cosine offers a much better approximation than its polynomial

counterpart. In particular, note how the polynomial blows up beyond |x|> 100.

using the Fourier transform. As mentioned earlier, this can further be reduced to a total of O(M 2)

operations using specialized spatial kernels [16], [17], [19].

C. Raised cosines

We now address the fact that φ(s ) must have some additional properties to qualify as a valid range

kernel (besides being symmetric). Namely, φ(s ) must be non-negative, and must be monotonic in

that φ(s1)≤φ(s2) whenever |s1|> |s2|. In particular, it must have a peak at the origin. This ensures

that large differences in intensity gets more penalized than small differences, and that (1) behaves

purely as a spatial filter in a region having uniform intensity. Moreover, one must also have some

control on the variance (effective width) of φ(s). We now address these design problems in order.

The properties of symmetry, non-negativity, and monotonicity are simultaneously enjoyed by

the family of raised cosines of the form

φ(s) =
�

cos(γ s)
�N (−T ≤ s ≤ T ).
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Writing cosθ= (e jθ+ e− jθ)/2, and applying the binomial theorem, we see that

φ(s) =
N
∑

n=0

2−N
�N

n

�

exp
�

j (2n−N )γ s
�

.

This expresses the raised cosines as in (5), though we have used a slightly different summation. Since

φ(s ) has a total of (N + 1) terms, this gives a total of 2(N + 1) auxiliary images in (6). The central

term n =N/2 is constant when N is even, and we have one less auxiliary image to process in this

case.

D. Approximation of Gaussian kernels

Figure 1 shows the raised cosines of degree N = 1 to N = 5. It is seen that φ(s) become more

Gaussian-like over the half-period [−π,π] with the increase in N . The fact, however, is that φ(s)

converges pointwise to zero at all points as N gets large, excepting for the node points 0,±π,±2π, . . ..

This problem can nevertheless be addressed by suitably scaling the raised coinse. The precise result

is given by the following pointwise convergence:

lim
N−→∞

�

cos

�

γ s
p

N

��N

= exp

�

−
γ 2 s2

2

�

. (7)

Proof: Note that Taylor’s theorem with remainder tells us that if f (x) is sufficiently smooth, then

f (x) =
∑m−1

k=0 xk f (k)(0)/k!+ x m f (m)(θ)/m!, where θ is some number between 0 and x. Applied to

the cosine function, we have cos(x) = 1−x2/2+x4 cosθ/24. In other words, cos(x) = 1−x2/2+ r (x),

where |r (x)|® x4 (we write f (x)® g (x) to signify that f (x)≤C g (x) for some absolute constant

C , where C is independent of x). Using this estimate, along with the binomial theorem, we can

write
�

cos

�

γ s
p

N

��N

=
�

1−
γ 2 s2

2N

�N

+
N
∑

k=1

�N

k

�

r (s ,N )k
�

1−
γ 2 s2

2N

�N−k

,

where |r (s ,N )|® s4/N 2. We are almost done since it is well-known that (1+ x/N )N approaches

exp(x) as N gets large. To establish (7), all we need to show is that, for any fixed s , the residual

terms can be made negiligibly small simply by setting N large.

Now note that if |s |®N 1/2, then the magnitude of (1− γ 2 s2/2N ) is within unity, and, on the

other hand, s4/N < 1 when |s |<N 1/4. Thus, given any fixed s , we set N to be large enough so

that s satisfies the above bounds. Then, following the trivial inequality
�N

k

�

<N k , we see that the

modulus of the residual is

®
N
∑

k=1

N k

�

s4

N 2

�k

®N
�

s4

N

�N

®
1

N
,

provided that |s | < LN = (N
1−2/N )1/4. This can clearly be achieved by increasing N , since LN is

monotonic in N .
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We have seen that raised cosines of sufficiently large order provide arbitrarily close approximations

of the Gaussian. The crucial feature about (7) is that the rate of convergence is much faster than

that of Taylor polynomials, which were used to approximate the Gaussian range kernel in [2]. In

particular, we can obtain an approximation comparable to that achieved using polynomials using

fewer number of terms. This is important from the practical standpoint. In Figure 2, we consider

the target Gaussian kernel exp(−s2/2σ2), where σ = 80. We approximate this using the raised

cosine of degree 4, which has 3 terms. We also plot the polynomial corresponding to the 3-term

Taylor expansion of the Gaussian, which is used in for approximating the Gaussian in [2]. It is

clear that the approximation quality of the raised cosine is superior to that offered by a Taylor

polynomial having equal number of terms. In particular, note that the Taylor approximation does

not automatically offer the crucial monotonic property.

TABLE I

N0 IS THE MINIMUM DEGREE OF THE RAISED COSINE REQUIRED TO APPROXIMATE A GAUSSIAN OF STANDARD

DEVIATION σ ON THE INTERVAL [−255,255]. THE ESTIMATE d(γσ)−2e IS ALSO SHOWN.

σ 200 150 100 80 60 50 40

N0 1 2 3 4 5 7 9

d(γσ)−2e 1 2 3 5 8 11 17

E. Control of the width of range kernel

The approximation in (7) also suggests a means of controlling the variance of the raised cosine,

namely, by controlling the variance of the target Gaussian. The target Gaussian (with normalization)

has a fixed variance of γ−2. This can be increased simply by rescaling the argument of the cosine in

(7) by some ρ> 1. In particular, for sufficiently large N ,


cos

 

γ s

ρ
p

N

!



N

≈ exp

�

−
s2

2ρ2γ−2

�

. (8)

The variance of the target Gaussian (again with normalization) has now increased to ρ2γ−2. A fairly

accurate estimate of the variance of the raised cosine is therefore σ2 ≈ ρ2γ−2. In particular, we can

increase the variance simply by setting ρ= γσ for all σ > γ−2, provided N is large enough.

Bringing down the variance below γ−2, on the other hand, is more subtle. This cannot be achieved

simply by rescaling with ρ < 1 on account of the oscillatory nature of the cosine. For instance,

setting ρ< 1 can cause φ(s) to become non-negative, or loose its monotonicity. The only way of

doing so is by increasing the degree of the cosine (cf. Figure 1). In particular, N must be large

enough so that the argument of cos(·) is within [−π/2,π/2] for all −T ≤ s ≤ T . This is the case if

N ≥ ρ−2 ≈ (γσ)−2.
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In other words, to approximate a Gaussian having a small variance σ , N must at least be as large

as N0 ≈ (γσ)−2. The bound is quite tight for large σ , but is loose when σ is small. We empirically

determined N0 for certain values of σ for the case T = 255, some of which are given in Table I. It

turned out to be much lower than the estimate (γσ)−2 when σ is small. For a fixed setting of T

(e.g., for grayscale images), this suggests the use of a lookup table for determining N0 for small σ

on-the-fly.

The above analysis leads us to an O(1) algorithm for approximating the Gaussian bilateral filtering,

where both the spatial and range filters are Gaussians. The steps are summarized in Algorithm 1.

Algorithm 1 Fast O(1) bilateral filtering for the Gaussian kernel
Input: Image f (x), dynamic range [−T ,T ], σ2

s and σ2
r for the spatial and range filters.

1. Set γ =π/2T , and ρ= γσr .

2. If σr > γ
−2, pick any large N . Else, set N = (γσr )

−2, or use a look-up table to fix N .

3. For 0≤ n ≤N , set up the images hn(x) = exp
�

jγ (2n−N ) f (x)/ρ
p

N
�

and gn(x) = f (x)hn(x),

and the coefficients dn(x) = 2−N�N
n

�

exp
�

− jγ (2n−N ) f (x)/ρ
p

N
�

.

4. Use an O(1) algorithm to filter hn(x) and gn(x) with a Gaussian of variance σ2
s to get hn(x)

and gn(x).

5. Set f̃ (x) as the ratio of
∑N

n=0 dn(x)gn(x) and
∑N

n=0 dn(x)hn(x).

Return: Filtered image f̃ (x).

III. EXPERIMENTS

We implemented the proposed algorithm for Gaussian bilateral filtering in Java on a Mac OS X

2× Quad core 2.66 GHz machine, as an ImageJ plugin. We used multi-threading for computing

the spatial averages of the auxiliary images in parallel. A recursive O(1) algorithm was used for

implementing the Gaussian filter in space domain [15]. The average times required for processing a

720× 540 grayscale image using our algorithm are shown in Table II. We repeated the experiment

for different variances of the Gaussian range kernel, and at different spatial variances. As seen from

the table, the processing time is quite fast compared to a direct implementation of the bilateral

filter, which requires considerable time depending on the size of the spatial filter. For instance, a

direct implementation of the filter on a 512× 512 image required 4 seconds for σs as low as 3 on

our machine (using discretized Gaussians supported on [−3σ , 3σ]2), and this climbed up to almost

10 seconds for σs = 10. As is seen from Table II, the processing time of our algorithm, however,

suddenly shoots up for narrow Gaussians with σr < 15. This is due to the large N required to

approximate the Gaussian in this regime (cf. Table I). We have figured out an approximation scheme
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for further accelerating the processing for very small σr , without appreciably degarding the final

output. Discussion of this method is however beyond the present scope of the paper.

We next tried a visual comparisonof the ouput of our algorithm with the algorithm in [2]. In

Figure 3, we compare the outputs of the two algorithms with the direct implementation, on a

natural grayscale image. As is clearly seen from the processed images, our result resembles the exact

output very closely. The result obtained using the polynomial kernel, on the other hand, shows

strange artifacts. The difference is also clear from the standard deviation of the error between the

exact output and the approximations. We note, however, that the execution time of the polynomial

method is slightly lower than that of our method, since it requires half the number of auxiliary

images for a given degree.

We also tested our implementation of the Gaussian bilateral filter on color (RGB) images. We

tried a naive processing, where each of the three color channels were processed independently. The

results on a couple of images are shown in Figure 4. The Java source code can be downloaded from

the web at http://bigwww.epfl.ch/algorithms/bilateral-filter.

TABLE II

THE TIME IN MILLISECONDS REQUIRED FOR PROCESSING A GRAYSCALE IMAGE OF SIZE 720× 540 PIXELS USING

OUR ALGORITHM. THE PROCESSING WAS DONE ON A MAC OS X, 2× QUAD CORE 2.66 GHZ MACHINE, USING

MULTITHREADING.

σr → 10 20 30 40 50 60 70 80 90 100

σs = 10 3604 452 195 120 74 61 49 34 32 27

σs = 100 3755 482 217 127 89 69 54 43 37 28

IV. DISCUSSION

We presented a general method of computing the bilateral filter in constant-time using trigono-

metric range kernels. Within this framework, we showed how feasible range kernels can be realized

using the family of raised cosines. The highlights of our approach are the following:

• Accuracy. Our method is exact, at least for the family of raised cosines. It does not require the

quantization of the range kernel, as is the case in [11], [4]. Moreover, note that the auxiliary images

in (6) have the same dynamic range as the input image irrespective of the degree N . This is unlike

the situation in [2], where the dynamic range of the auxiliary images grow exponentially with the

N . This makes the computations susceptible to numerical errors for large N .

• Speed. Besides having O(1) complexity, our algorithm can also be implemented in parallel. This

allows us to further accelerate its speed.
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Fig. 3. Comparison of various implementations of the Gaussian bilateral filter on the grayscale image Isha of size

600× 512. The filter settings are σs = 15 and σr = 80. (a) Original image; (b) Direct implementation of the bilateral filter;

(c) Output obtained using polynomial kernel [2]; and (d) Output of our algorithm. Note the strange artifacts in (c),

particularly around the right eye (see zoomed insets). This is on account of the distortion caused by the polynomial

approximation shown in Figure 2. The standard deviation of the error between (b) and (c) is 6.5, while that between (b)

and (d) is 1.2.

• Approximation property. Trigonometric functions yield better (local) approximation of Gaussians

than polynomials. In particular, we showed that by using a particular class of raised cosines, we can

obtain much better approximations of the Gaussian range kernel than that offered by the Taylor

polynomials in [2]. The final output is artifact-free and resembles the true output very closely. The

only flip side of our approach (this is also the case with [2], as noted in [4]) is that a large number

of terms are required to approximate very narrow Gaussians over large intervals.

• Space-variant extension. The spatial kernel in (1) can be changed from point-to-point within

the image to control the amount of smoothing (particularly in homogenous regions), while the
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Fig. 4. Results on the color images Greekdome and Tulip, using our implementation of the Gaussian bilateral filter. The

original image is on the left, and the processed image is on the right. In either case, the red, green, and blue channels

were processed independently. We used σs = 10 and σr = 20 for Greekdome, and σs = 20 and σr = 60 for Tulip. (Images

courtsey of Sylvain Paris and Frédo Durand).

range kernel is kept fixed. Thanks to (6), this can be done simply by computing the space-variant

averages of each auxiliary image. The good news is that this can also be realized for a M ×M image

at the cost of O(M 2) operations, using particular spatial kernels. This includes the two-dimensional

box and hat filter [16], [17], and the more general class of Gaussian-like box splines in [19].
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