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1 Theoretical Formulations

1.1 Shortest Path with the Viterbi Algorithm

The Viterbi algorithm is a widely-used dynamic programming (DP) algorithm for solving the problem of finding the shortest path between a source and
a target point. It relies on a trellis graph G composed of the set of nodes

{(ν, xν)|1 ≤ ν ≤ N, xν ∈ X} ∪ {σ, τ}, (1)

where σ is the source node, τ the target node, and xν the state of node ν, which belong to the set of labels X of size L. The resulting graph is therefore
composed of NL+ 2 vertices, as illustrated in Figure 1a. Edges can be described by the set

{((ν, xν),(ν + 1, xν+1))|1 ≤ ν ≤ N, xν ∈ X} ∪ {(σ, (1, x1))|x1 ∈ X} ∪ {((N, xN ), τ)|xN ∈ X}. (2)

We denote the full state vector for the complete graph as x = {xν : 1 ≤ ν ≤ N}.
The energy function associated to the graph is composed of two types of elements: θν(xν), the cost for assigning the label xν to node ν, and

θν,ν+1(xν , xν+1), the cost for assigning labels xν and xν+1 to the two neighboring nodes ν and ν+1, respectively. For 1 ≤ ν < N , going from node
(ν, xν) to (ν +1, xν+1) costs θν+1(xν+1) + θν,ν+1(xν , xν+1). Then, going from σ to (1, x1) costs θ1(x1), and from (N, xN ) to τ costs nothing.
The shortest path problem can then be expressed as an energy minimization task with the objective

min
x
E(x) = min

x

N∑
ν=1

θν(xν) +

N−1∑
ν=1

θν,ν+1(xν , xν+1). (3)

To run DP, one successively computes the cost of optimal solutions of subproblems of increasing size. Whenever a node ν knows the cost from its
incoming edge, it can compute its own energy Eν(x) for the first ν nodes in the sequence. The global solution is therefore obtained by solving smaller
subproblems. The corresponding recursive equations are given by

E1(x) = θ1(x1), (4)

Eν(x) = θν(xν) + min
xν−1

[θν−1,ν(xν−1, xν) + Eν−1(x)] (5)

for 2 ≤ ν ≤ N . Once the intermediate energies Eν(x) have been computed for all ν, the optimal solution of the global problem is obtained by taking
x∗τ = argminxτ Eτ (x) at the target node τ and backtracking down the graph until the source node σ following

x∗ν = argmin
xν

[
θν,ν+1(xν , x

∗
ν+1) + Eν(x)

]
. (6)
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(a) (b)

Fig. 1. Example for N = 3 and L = 3 of (a) the standard Viterbi algorithm graph G, and (b) the resulting two-layers graph G̃ for solving M-shortest paths. The source node is denoted
by σ and the target node by τ .

1.2 Diverse M -Shortest Paths

To search for diverseM -shortest paths with the Viterbi algorithm, we construct an auxiliary graph that holds the original graph (which we denote as layer
α), a second copy (layer β), and additional edges to jump between layers. This allows us to find a collection of M -best solutions obeying a user-defined
diversity constraint, which is encoded in the potentials of the layer-jump-edges. The more general formulation of our approach is presented in (Haubold
et al., 2017). Here, we focus on the subcase covering the particular class of shortest path applications we are interested in.

Let x∗ be the best solution (i.e., the shortest path) x∗ = argminx E(x) in graph G. We create the new layered graph G̃ from G with nodes

{(να, xνα ), (νβ , xνβ )|1 ≤ ν ≤ N, xν ∈ X} ∪ {σ, τ}, (7)

and edges

{((να, xνα ), (να + 1, xνα+1)), ((νβ , xνβ ), (νβ + 1, xνβ+1))|1 ≤ ν ≤ N, xν ∈ X} (8)

∪ {(σ, (1α, x1α )), ((Nβ , xNβ
), τ)} (9)

∪ {((να, xνα ), (νβ , xνβ ))|1 ≤ ν ≤ N}. (10)

Note that (7), (8) and (9) are simply duplicated nodes and edges from G, and that (10) corresponds to the inclusion of the layer jump edges. An example
of resulting two-layers graph is illustrated in Figure 1b.

The potentials θ̃ are conserved for the nodes and edges duplicates. Within each layer, they are hence defined as

θ̃να := θν , θ̃νβ := θν , (11)

for 1 ≤ ν ≤ N , and as
θ̃να,να+1 := θν,ν+1, θ̃νβ ,νβ+1 := θν,ν+1 (12)

for 1 ≤ ν < N . Between the two layers, new potentials are introduced as

θ̃να,νβ (xνα , xνβ ) :=


∞ if xνα 6= xνβ

∞ if d(xνα , x
∗
ν) < D

0 otherwise

(13)

for 1 ≤ ν ≤ N , where d represents a distance to the previous solution x∗, for instance d(xνα , x
∗
ν) = |xνβ − x∗ν |.

In the two-layers graph, the DP rules are modified as

E1α (x) = θ1α (x1α ), (14)

E1β (x) = E1α (x) + θ̃1α,1β (x1α , x1β ), (15)

Eνα (x) = θ̃να (xνα ) + min
xνα−1

[
θ̃να−1,να (xνα−1, xνα ) + Eνα−1(x)

]
(16)

Eνβ (x) = min

(
Eνα (x) + θ̃να,νβ (xνα , xνβ ), θ̃νβ (xνβ ) + min

xνβ−1

[
θ̃νβ−1,νβ (xνβ−1, xνβ ) + Eνβ−1(x)

])
. (17)

The modification can be easily explained as follows. In the second layer β, an initial layer jump cost is first added (15). Then, the best path up to node
νβ is given by (17), which simply selects the shortest between paths jumping from the bottom layer α and paths already coming from layer β. The
layer-jump-edges availability can then modulated based on the distance of a solution to the previous ones.
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Fig. 2. Example of a diversity map for the introduction of diversity accumulation constraint in theM-shortest paths problem.

1.2.1 Diversity accumulation
So far, our formulation allows to modulate the layer-jump-edges availability based on the distance of a solution to the previous ones. A possible refinement
is to not only enforce that the new solution is at least at one point distant enough from the previous one, but that it accumulates a given amount of diversity.

To do so, we introduce an additional map on the lower layer α that integrates over diversity, which is computed from a (possibly user-defined) image
or metrics. A possible diversity map is shown in Figure 2. The availability of layer-jump-edges is now conditioned on the amount of collected diversity.
In other words, a layer jump is allowed only when the summed diversity over the path exceeds a threshold.

Under this constraint, the optimization problem becomes

min
x
E(x) = min

x

N∑
ν=1

θν(xν) +

N−1∑
ν=1

θν,ν+1(xν , xν+1) (18)

s. t.
N∑
ν=1

δν(xν) +

N−1∑
ν=1

δν,ν+1(xν , xν+1) > T, (19)

and the modified DP update rules are given by

E1α (x) = θ1α (x1α ), (20)

E1β (x) = E1α (x) + θ̃1α,1β (x1α , x1β ) + c(x1), (21)

Eνα (x) = θ̃να (xνα ) + min
xνα−1

[
θ̃να−1,να (xνα−1, xνα ) + Eνα−1(x)

]
(22)

Eνβ (x) = min

(
c(xν) + Eνα (x) + θ̃να,νβ (xνα , xνβ ), θ̃νβ (xνβ ) + min

xνβ−1

[
θ̃νβ−1,νβ (xνβ−1, xνβ ) + Eνβ−1(x)

])
, (23)

where c is a constraint function of the form

c(xν) =

0 if
ν∑
n=1

δn(xn) +
ν−1∑
n=1

δn,n+1(xn, xn+1) > T

∞ otherwise
. (24)

2 Software
DiversePathsJ, ourM -shortest path plugin for ImageJ (Abràmoff et al., 2004) and Fiji (Schindelin et al., 2012), requires the specification of the following
inputs parameters through its GUI (Figure 3).

1. Number of diverse paths. Number M of diverse paths to be computed.
2. Size of exclusion corridor. Distance (in pixels) that any valid new solution must have to all previous ones, at least at one point.
3. Accumulated diversity threshold. Minimal amount of diversity (in pixels) that any new solution must accumulate with respect to all previous ones.
4. Target type. Type of object on which the shortest paths have to be searched (bright on dark background or dark on bright background).
5. Processing filter. Options for processing the input image and highlight features of interest prior to shortest path search. The options are none (no

processing), EDM (Euclidean distance map, highlights the centerline of objects), edge filter (highlights edges), ridge filter (highlights ridges), and
external (custom processing).
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Fig. 4. Phase-contrast microscope image of mycobacteria. Image courtesy of the Laboratory of Microbiology and Microsystems (UPKIN), EPFL, Switzerland.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5. Incorrect (a) first to (i) ninth shortest paths, and correct (j) tenth shortest path for the mycobacteria image.

3.2 Software Settings

3.2.1 Mycobacteria image
The images are courtesy of the Laboratory of Microbiology and Microsystems (UPKIN), EPFL, Switzerland.

• Image format: 115× 119 pixels 8-bits gray-scale .tif image (Figure 4)
• Endpoint coordinates: (28, 97)—(84, 41) (botton bacteria) and (29, 86)—(50, 21) (top bacteria)
• Number of diverse paths: 10
• Size of exclusion corridor: 1
• Accumulated diversity threshold: 10
• Target type: Dark on bright background
• Processing filter: Ridge filter
• Gaussian blur: 3

The medial axis of the bottom-most bacteria is found as the first shortest path between source point (28, 97) and target point (84, 41). The medial
axis of the top one is found as the tenth shortest path between source point (29, 86) and target point (50, 21) (Figures 5j). The first to ninth shortest
paths are wrong due to the low contrast between touching bacterias. Since the image resolution is quite poor (115× 119), the Viterbi paths gets trapped
in many local minima, as seen in Figures 5a to 5i. Since the desired path lies very close to the unwanted ones, relying on a too wide exclusion corridor
makes the algorithm miss the correct solution. Imposing a given amount of accumulated diversity however allows obtaining a proper medial axis. The
user can swiftly scan through the proposed solution using the arrow keys.
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Fig. 6. Brightfield microscope image of C. elegans worms. Image courtesy of M. Cornaglia, Laboratory of Microsystems (LMIS2), EPFL, Switzerland.

(a) (b) (c)

Fig. 7. Incorrect (a) first and (b) second shortest paths, and correct (c) third shortest path for the worms image.

3.2.2 C. elegans image
The images are courtesy of M. Cornaglia, Laboratory of Microsystems (LMIS2), EPFL, Switzerland.

• Image format: 400× 263 pixels 8-bits gray-scale .tif image (Figure 6)
• Endpoint coordinates: (31, 75)—(390, 147) (top worm) and (79, 240)—(286, 54) (bottom worm)
• Number of diverse paths: 10
• Size of exclusion corridor: 25
• Accumulated diversity threshold: 40
• Target type: Dark on bright background
• Processing filter: Ridge filter
• Gaussian blur: 6

The medial axis of the top-most worm is found as the first shortest path between source point (31, 75) and target point (390, 147). The medial axis
of the bottom one is found as the third shortest path between source point (79, 240) and target point (286, 54) (Figures 7c). The first and second shortest
paths are wrong due to neighboring worms, as seen in Figures 7a and 7b.
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