Matlab Code for MRI Simulation and Reconstruction

Matthieu Guerquin-Kern

July 27, 2012

Contents
[I_Introduction| 1
1.1 Contents and Installation Instructions| 1
[1.2 Originofthecode|. 1
[1.3 Origin of the MRI Scanner Datal 1
[2° Demonstration Scripts| 2
B Code for MRI simulation] 9
4 Processing MRI Data Prior to Reconstruction| 4
5 G R "o Methods 5
[6_Wavelet-based reconstructionl S
6
i8_Under the Hood| 6
[A" The Gaussian Gridding Method| 7
........................... 7
[A.2 Choice of the parameters| 7

1 Introduction

1.1 Contents and Installation Instructions

This package contains a set of routines and functions for Matlab
providing the tools to simulate MRI experiments and reconstruct
images out of scanner data. Some functions have been written in
C++. Most of them have fall-back counterparts written in Matlab
language. To make sure that your machine takes advantage of the
C++ code, run make .m in Matlab’s command prompt. The pack-
age was developed and tested under Linux and MacOSX platforms
with Matlab R2011b. Partial testing demonstrated that the code
is mainly compatible with Octave 3.2. The package is completely
untested under Microsoft’s OS.

1.2 Origin of the code

Some parts of the code have not been written by the author of this
package. Please consider acknowledging the respective authors if
you use their code and publish results based on it. The following
pieces of code are affected:

o MEX files for wavelet transform by Cédric Vonesch,
2008. Publicly distributed at: http://bigwww.epfl.ch/
algorithms/mltldeconvolution/!

e MEX files for determining the points inside a polygon
Bruno Luong, 2010. Publicly distributed at: http://www.
mathworks.com/matlabcentral/fileexchange/
27840-2d-polygon-interior-detection/|

e Matlab code for n-dimensional n permute k prob-
lem by Matt Fig, 2009. Publicly distributed at
http://www.mathworks.com/matlabcentral/
fileexchange/11462-npermutek/

e Matlab functions for the computation of MRI data
with Bézier-defined phantoms by Laurent Leje-
une under the author’s supervision, 2010. See
http://bigwww.epfl.ch/teaching/projects/

abstracts/lejeune/index2.html,

In addition, Marcel Leutenegger’s instructions, publicly dis-
tributed at https://documents.epfl.ch/users/1/le/
leuteneg/www/MATLABToolbox/ErrorFunction.html,
have been followed in the C++/MEX multi-threaded code that
computes the error function of a complex variable.

Some parts of the code, have been written by the author of this
package from 2007 to 2011 for the work presented in [T}, 2} [3].
This code can obtained by the Biomedical Imaging Group mem-
bers from the SVN: https://username@svn.epfl.ch/svn/
guerquin-sources/projects. A specific case is the code
for analytical simulations which is publicly distributed at http:
//bigwww.epfl.ch/algorithms/mriphantom.

The matlab and MEX files for gridding and NUFT compu-
tation have been coded by the author during spring 2012,
inspired by [4] and a partial implementation publicly dis-
tributed at http://web.eecs.umich.edu/ fessler/irt/
irt/nufft/greengard/.

The rest of the code was written by the author of this package
in July 2012 for the Biomedical Imaging Group (EPFL, Lausanne,
Switzerland) and the Institute for Biomedical Engineering (Uni-
versity and ETH, Ziirich, Switzerland).

1.3 Origin of the MRI Scanner Data

The data were collected by Maximilian Haberlin, at ETH Ziirich,
on a 3T Achieva system (Philips Medical Systems, Best, The
Netherlands) and used in [1]]. A field camera with 12 probes was
used to monitor the actual k-space trajectory [5]]. An array of 8
head coils provided the measurements. Please contact Maximil-
ian before publishing any result based on these data. You can
currently contact him at haeberlin@biomed.ee.ethz.ch,

EPI data This dataset of the brain of a healthy volunteer was
acquired with a gradient echo EPI sequence with T2* contrast.

http://bigwww.epfl.ch/algorithms/mltldeconvolution/
http://bigwww.epfl.ch/algorithms/mltldeconvolution/
http://www.mathworks.com/matlabcentral/fileexchange/27840-2d-polygon-interior-detection/
http://www.mathworks.com/matlabcentral/fileexchange/27840-2d-polygon-interior-detection/
http://www.mathworks.com/matlabcentral/fileexchange/27840-2d-polygon-interior-detection/
http://www.mathworks.com/matlabcentral/fileexchange/11462-npermutek/
http://www.mathworks.com/matlabcentral/fileexchange/11462-npermutek/
http://bigwww.epfl.ch/teaching/projects/abstracts/lejeune/index2.html
http://bigwww.epfl.ch/teaching/projects/abstracts/lejeune/index2.html
https://documents.epfl.ch/users/l/le/leuteneg/www/MATLABToolbox/ErrorFunction.html
https://documents.epfl.ch/users/l/le/leuteneg/www/MATLABToolbox/ErrorFunction.html
https://username@svn.epfl.ch/svn/guerquin-sources/projects
https://username@svn.epfl.ch/svn/guerquin-sources/projects
http://bigwww.epfl.ch/algorithms/mriphantom
http://bigwww.epfl.ch/algorithms/mriphantom
http://web.eecs.umich.edu/~fessler/irt/irt/nufft/greengard/
http://web.eecs.umich.edu/~fessler/irt/irt/nufft/greengard/
haeberlin@biomed.ee.ethz.ch

The data was acquired with the following parameters: exci-
tation slice thickness of 4mm, TE=35ms, TR=900ms, flip an-
gle of 80 degrees, and trajectory composed of 13 interleaves,
supporting a 200 X 200 reconstruction matrix with resolution
1.18mmx1.18mm. The oversampling ratio along the readout di-
rection was 1.62.

Spiral data This dataset of the brain of a healthy volunteer was
acquired with parameters TR = 1000 ms and TE = 30 ms. The ex-
citation slice thickness was 3 mm with a flip angle of 30 degrees.
The trajectory was designed for a FOV of 25 cm with a resolu-
tion of 1.5 mm. It was composed of 100 spiral interleaves. The
distance between neighboring interleaves for the highest sampled
frequencies defined a fraction of the Nyquist sampling density (R
=0.9).

2 Demonstration Scripts

DemoSimuAndRecon.m This script defines a parallel MRI
experiment setting, with analytically defined phantoms (see
(a)(b)(c) in Figure . Simulation can be performed in two differ-
ent ways and the resulting data is corrupted by noise. This syn-
thetic scanner data is prepared for reconstruction. Finally, several
reconstruction methods are performed and the resulting recon-
structions are compared to the reference image. Note that even in
a very favorable pMRI setting, reconstruction will not be perfect
because of the Gibb’s phenomenon which reflects the mismatch
between the continuous nature of the MRI physics and the dis-
crete nature of the model used for reconstruction [3].

DemoBrainEPI.m This script loads real scanner data from an
Echo Planar Imaging experiment (Cartesian k-space sampling)
and precomputed receiving coil sensitivity maps. The full dataset
is first processed and a reference image is reconstructed out of it
(see (d) in Figure . Then, a reduced dataset is loaded and a
more challenging reconstruction takes place. The resulting image
is compared to the reference. Note that the processing of the data
includes a modulation such that our convention that defines the
origin at the upper left corner of the image is satisfied. Results
using this dataset were presented in [[1].

Note that undersampled k-space reconstructions from this
dataset suffer from artifacts that might be caused by a non ho-
mogeneous static field.

DemoBrainSpiral.m This script loads real scanner data from a
spiral MRI experiment. By default, precomputed receiving coil
sensitivity maps are loaded but the code to compute them can be
uncommented. The full dataset is first processed and a reference
image is reconstructed out of it (see (e) in Figure . Then, a
reduced dataset is loaded and a more challenging reconstruction
takes place. The resulting image is compared to the reference.
Note that the processing of the data includes a modulation such
that our convention that defines the origin at the upper left corner
of the image is satisfied. Results using this dataset were presented
in [[].

3 Code for MRI simulation

This set of routines provides MRI simulation tools in 2D.
The data-formation model for the parallel magnetic resonance
imaging data is

m(k) = f S(r)p(r)e” 2™ dr,

where S is the receiving coil sensitivity map, k is the k-space posi-
tion that evolves during the acquisition, and p is the signal that is
to be imaged.

During the scan, a finite number M of k-space measurements is
performed. With a receiving coil array of N, channels, the corre-
sponding measurements form a M N, x 1 vector. The correspond-
ing 2D k-space positions are stored in a M X 2 array k.

Note that both the object under investigation p and the coil
sensitivity maps are continuous and complex-valued functions of
space.

In general, the k-space trajectory is defined for a rectangu-
lar field of view (FOV) that includes the support of p, meaning
that neighboring k-space samples are in average less distant than
1/FOV. An other crucial parameter of k-space trajectories the
highest k-space frequencies sampled that determine the finer res-
olution (or pixel size) achievable after reconstruction.

GenerateCartesianTraj.m Generates a Cartesian k-space trajec-
tory.

Inputs:

e field of view in meters (can be 2 x 1 vector)

e resolution (Nyquist distance) in meters (can be 2 x 1 vector)

e undersampling factor along frequency encoding direction
(normalized units, positive, may be lower than one)

e undersampling factor along phase encoding direction (nor-
malized units, positive, may be lower than one)

Output:

e M x 2 array of k-space trajectory points (in rad/meters)

GenerateRadialTraj.m Generates a radial k-space trajectory.
Inputs:
o field of view in meters

e resolution (Nyquist distance) in meters

e undersampling factor along frequency encoding direction
(normalized units, positive, may be lower than one)

e undersampling factor in high frequencies(normalized units,
positive, may be lower than one)

Output:

e M x 2 array of k-space trajectory points (in rad/meters)

Figure 1: Analytical phantoms and real data reference images: (a) realistic analytical brain phantom, (b) simplified analytical brain
phantom, (c) analytical Shepp-Logan phantom, (d) reference image of the in vivo brain EPI dataset, and (e) reference image of the in
vivo brain spiral dataset.

GenerateSpiralTraj.m Generates a spiral k-space trajectory
with a method adapted from [|6] (the paper is a bit buggy). . —
Inputs: :

e field of view in meters

e resolution (Nyquist distance) in meters
FOV,
e undersampling factor along frequency encoding direction
(normalized units, positive, may be lower than one)
|
e undersampling factor (normalized units, positive, may be | i Fovy |
lower than one)
res,
e number of interleaves <>
. { res,

e variable density factor (a in [6]) AR\
e maximum field gradient amplitude (in T/m) Figure 2: Coil array setup for the generation of sensitivity maps.
e maximum field gradient slew rate (in T/m/s)
e resampling the trajectory (true or false) SensFitting.m Function that fits a given discrete sensitivity map

by a 2D polynomial of a given degree or a linear combination of
e analysis option (true or false) complex sinusoids. These models are defined in [3]]. This function

allows parametric continuous representations of the coil sensitiv-
Output: .

ities.
e M x 2 array of k-space trajectory points (in rad/meters) Inputs:

GenerateSensitivityMap.m Generates a set of 2D discrete sen- * Ny XN, complex-valued sensitivity map array

sitivity maps that are simulated with the Biot-Savart law. The coils
are circular, with centers which are equidistant to the origin, and
their axis are, by default, uniformly distributed radii. See the il-
lustration of the setup in Figure

e string that is either ‘polynomial’ or ‘sinusoidal’
o parameter of the model (polynomial degree or bandwith)

Inputs: e support (optional): mask for the sensitivity fitting

field of view in meters (can be 2 x 1 vector) Outputs:

e resolution (pixel size) in meters (can be 2 x 1 vector) .) o ;
o structure defining the continuous sensitivity profile

number of coils OR vector of the desired angles (in radians)

) o ¢ normalized root mean square fitting error
radius of coils in meters

e signal to error ratio of the fit

distance from the coils centers to the origin in meters

Output: e maximal error of fit inside the support
e N, X N, x N, array of complex-valued sensitivity maps with e condition number of the matrix to be inverted (gives an indi-
N, and N, are the number of pixels in the two directions. cation of the accuracy of the results)

MRDataAnalytical.m Function that returns the MR data corre-
sponding to the given phantom that is weighted by a sensitivity
profile, for the given k-space samples. Using the analytical phan-
tom computations described in [3]].

Inputs:

e structure defining an analytical phantom. Predefined
phantoms are returned by DefineBrain.m (see Fig-
ure [1] (a)), DefineSimpleBrain.m (see Figure [I] (b)), or
DefineSL.m (see Figure[1] (c)).

o structure defining a parametrized sensitivity profile as re-
turned by SensFitting.m

o M x 2 array of k-space trajectory points (in rad/meters)
Output:
e simulated MRI measurements in a M X 1 complex-valued vec-

tor

MRDataRasterized.m A script performing the simulation of an
MRI experiment from rasterized image and sensitivities. The dis-
crete non-uniform Fourier transform is performed using FFT and
our own MEX implementation of Greengard’s fast Gaussian grid-
ding algorithm [4]. See Appendix [A] for more details. The same
code is used for reconstruction. It is highly recommended to use
a much finer resolution for simulation than for reconstruction in
order to avoid inverse crime biases (see [3]] for illustration).
Inputs:

e ground truth image (preferably at a much finer resolu-
tion than what is used for reconstruction), possibly already
weighted by a sensitivity map at the same resolution

e M x 2 array of k-space trajectory points (in rad/meters)
e field of view in meters (can be 2 x 1 vector)
Outputs:

e simulated MRI measurements in a M X 1 complex-valued vec-
tor

SimulateNoise.m A script generating noise to corrupt MRI data.
The noise power is computed relatively to the average power in
the highest frequencies sampled.

Inputs:

e M x 1 vector of k-space measurements

e M x 2 array of k-space sampling points (in whatever unit)
o SNR for the highest frequencies

e analysis option (true of false)

Outputs:

e simulated noise (M x N, complex-valued matrix)

4 Processing MRI Data Prior to Recon-
struction

In this section, we present the tools that prepare MRI data to be
used with the problem-agnostic reconstruction tools presented in
next section.

The MRI inverse problem is posed as follows: m = Ex + n,
with m the M N, x 1 measurements vector, E the MN, x N SENSE
encoding matrix that possibly includes the coil sensitivities [[7], x
the N, N, x 1 vector of the unknown pixel values of the image,
and n a MN, x 1 noise perturbation vector.

TrajInGridUnits.m A function computing the k-space sampling
positions in grid units. Optionally proposes a matrix size for re-
construction (experimental).

Inputs:

e M x 2 array of k-space trajectory points (in rad/meters)

e FOV in meters (can be 2 x 1 vector)

e 2 x 1 vector of desired reconstruction matrix size (optional)
Outputs:

e M x 2 array of k-space trajectory points in grid units

e proposed matrix size [Nx,Ny] for reconstruction (2 X 1 vec-

tor)

EstimateCovarianceMatrix.m Estimates the cross-channel co-
variance matrix out of noise only data. Returns the More-Penrose
pseudoinverse of this covariance matrix that is to be used to
whiten the noise.

Inputs:

e noise-only measurements (M’ x N, complex-valued matrix)
Output:

e pseudoinverse of the noise covariance matrix: N, X N,
Hermitian-symmetric, positive-definite, and complex-valued
matrix.

Prepare4Recon.m This function prepares data for reconstruc-
tion. The idea is that the back-projected image a = E"'Vm, where
V is the pseudoinverse of the noise correlation matrix, and the
Hermitian symmetric and positive-definite matrix A = E'VE are
sufficient to perform reconstruction. Indeed, for reconstruction,
one generally wants to find an image x that keeps the following
quantity as small as possible:

|lm — Ex| [}, = [|m][§, + ||x|[— 2Re(a, x).
Inputs:
e M x 1 vector of k-space measurements m
e M x 2 array of k-space sampling points (in grid units)
e N, XN, X N, sensitivity maps array

e support to be used for reconstruction

e N, x N, noise-whitening matrix
Outputs:

o back-projected measurements image a (complex-valued N, X
N, matrix)

e function handle that performs the linear operation y = Ax

e real positive valued N, X N, matrix of the root sum of square

sensitivities (used for preconditioning).

5 Generic Reconstruction Methods

The reconstruction methods presented in this section are designed
to achieve image reconstruction from linear inverse problems.
They rely on a image a and a matrix A, ensuring a problem-
agnostic reconstruction as long as the reconstructed image x is
required to maintain the quantity ||x||i — 2Re(a,x) as small as
possible.

CGRecon.m This function implements the Conjugate Gradient
method [7] to solve the linear system Ax = a, with A a Hermi-
tian symmetric and positive-definite matrix. A typical Tikhonov
regularization for MRI would correspond to a = Ef'Vm and A =
EMEE + AL

Optionally, a real-valued image representing a diagonal matrix
P can be used for preconditioning such that the following system
is solved Mu = b, with M = PAP, x = Pu and b = Pa.

Inputs:

e back-projected measurements N, X N, image a

e function handle performing y = Ax

N, X N, image used as a starting point

number of iterations to be performed

e N, x N, real-valued array used for preconditioning
Outputs:

e reconstructed image (N, X N, complex-valued matrix)
e computation time vector

e residual vector

TVRecon.m This function implements Total Variation penalized
reconstruction trying to solve the linear system Ax = a, with A a
Hermitian symmetric and positive-definite matrix. For MRI recon-
struction, one would typically impose a = E"Vm and A = E'VE.

Optionally, a real-valued image representing a diagonal matrix
P can be used for preconditioning such that the following system
is solved Mu = b, with M = PAP, x = Pu and b = Pa.

The Total Variation term considered is the £; norm of the pixel-
wise £, norm of the image gradient (isotropic TV). The algorithm
used to perform the reconstruction is the Iteratively Reweighted
Least-Squares algorithm [8].

Inputs:

e back-projected measurements N, x N, image a

e function handle performing y = Ax

e regularization parameter

e N, X N, image used as a starting point

e number of iterations of IRLS

e number of iterations for internal CG

® N, x N, real-valued array used for preconditioning
Outputs:

e reconstructed image (N, X N, complex-valued matrix)
e computation time vector

e residual vector

6 Wavelet-based reconstruction

In this section we present the functions that implement the fast
wavelet-based reconstruction described in [[I]]. As in the previous
section, the reconstruction is designed to be problem-agnostic.

Two families of transforms are available: discrete wavelet trans-
forms (used in JPEG2000) and block discrete cosine transforms
(used in JPEG).

@BlockDCT Defining a block discrete cosine transform as an ob-
ject that mimics the corresponding matrix using overloaded func-
tions.

Input:
e size of the blocks
Output:
e BlockDCT object
@DWT Defining a discrete wavelet transform that mimics the

corresponding matrix using overloaded functions.
Inputs:

e number of decomposition levels
e size of the images to be transformed (2 x 1 vector)

e use decimation (true or false). If decimated the transform is
orthonormal. If undecimated, the transform is shift-invariant

e wavelet family (‘haar’, ‘daubl’, ‘daub2’, ‘daub4’, ‘sym4’,
‘splinel’, ‘vspline2’, ‘spline3’, ‘spline4’, ‘spline5’, ‘splinet’,
‘sym8’, ‘sinc’, ‘shannon’, v97’, ‘9/7’, or ‘espline’)

Output:

e DWT object

PowerlIteration.m Computes the greatest absolute eigenvalue o
of a square matrix M such that for all x, | Mx]|, < a||x]||,. If M is
positive definite and expressed as M = AYA, we have, for all x,
[|Ax||> < al|x||?, and a can be seen as the Lipschitz constant of
the function f(x) = Ax.

Inputs:

e a matrix or function handle performing y = Mx

e an initial non-all-zero vector or image

Outputs:

o the greatest absolute eigenvalue

o the associated eigen-vector/image
PowerlterationWav.m Computes the vector of wavelet subband
bounds a of a square matrix M such that for all set of wavelet

coefficients w, ||Mw/||, <= ||diag(a)w]||,. See [[1]] for more details.
Inputs:

e a function handle performing w = Mw

e an initial non-all-zero set of wavelet coefficients

Outputs:

o the vector of wavelet subband bounds
ReconWavFISTA.m Performs wavelet-regularized reconstruc-
tion [[1]] trying to solve the linear system Ax = a, with A a Hermi-
tian symmetric and positive-definite matrix. For MRI reconstruc-
tion, one would typically impose a = E'Vm and A = E"'VE.

The DWT or DCT object W provided for regularization should
perform an orthogonal transform.

See the classes DWT, DCT and WAVELET.
Inputs:

e back-projected measurements N, X N, image a
o function handle performing y = Ax

e regularization parameter

e DWT or DCT object

e scalar that is larger than the greatest eigenvalue of A (FISTA),
OR vector of scalars for each wavelet-subband (FWISTA [[1])

e N, x N, image used as a starting point

e number of iterations

o use random shifting technique (true or false)
Outputs:

e reconstructed image (N, X N, complex-valued matrix)
e time vector

e residual vector

7 Test Scripts

Several test scripts are provided to check the different modules
present in this package. They are included in the folder test/.
The function PerformTests .m runs the called test or all the tests
(default with no argument).

TestGeneratingTraj.m Generating the different kinds of trajec-
tories and scaling them to grid units for visualization.

TestGeneratingSens.m Computing the sensitivity maps for an
array of receiving coils. Fitting the complex maps with two para-
metric models and comparing the fitting errors.

TestNUFTaccuracy.m Testing the accuracy of several implemen-
tations of the matrix-vector multiplications m = Ex, y = E'm, and
z = Mx, where E is a particular non uniform discrete Fourier trans-
form matrix, E¥ is its Hermitian transpose and M = E"E (with a
specific implementation). The reference implementation does not
use gridding. We check the consistency of the operations using
the property

[|Ex||*> = (EMEx, x) = (Mx,x) > 0.

TestNUFTspeed.m Testing the speed of several implementations
of the matrix-vector multiplications m = Ex, y = E'm, and z =
Mzx, where F is a particular non uniform discrete Fourier transform
matrix, EY is its Hermitian transpose and M = EFE (with a specific
implementation).

TestNoise.m A random correlation matrix is made. A noise
draw is correlated accordingly. The evaluation of the correlation
matrix out of the noise data is checked.

TestSimulation.m In a typical single channel MRI setting, the
consistency of two different MRI data simulation methods is
checked in both k-space and reconstructed image domain.

TestDWT.m Checking the implementation of the DWT and
WAVELET classes. They mimic discrete wavelet transform ma-
trices and, respectively, vectors of wavelet coefficients thanks to
overloaded functions.

TestBlockDCT.m Checking the implementation of the BlockDCT
class. It mimics the block discrete cosine transform matrices
thanks to overloaded functions.

8 Under the Hood

In general, the functions that don’t need to be accessed directly by
the end-user of this package have been hidden in the private/
folder.

The scripts implementing the different validation tests are in-
cluded in the test/ folder.

The folders @DWT/, @BlockDCT/, and @wavelet/ implement
the classes for discrete wavelet transform objects, block discrete

cosine transform objects, and wavelet coefficients objects, respec-
tively. They contain the classes definitions and the overloaded
operations making these objects behave like matrices and vectors.
The functions implementing wavelets related operations, are in-
cluded in the folder waveletstuff/ that must be included in
your Matlab path in order to enable wavelet-based reconstruc-
tions.

The folder scannerdata/, if it is included in this package,
contains the real scanner data. Given the size of the data, this
folder will probably be distributed separately from the rest of the
package.

A The Gaussian Gridding Method

A.1 Principle

In this section, we describe the principle of Gaussian gridding in
1D, inspired by [4]]. Note that our conventions slightly differ.
The two operations to be performed are the sums

N-1
m; = %(2nk;/N) = Z x e 2imnki/N

n=0

€8]

and its adjoint operation

¥, = Z m; e2innk;/N 2)
Jj

for a set of arbitrary k-space points k; € [-N/2,N/2[and for
sequences X, and y, of N samples (0 < n < N).

When considering N samples m;, the summations and
have, a priori, a complexity ¢(N?). Gridding achieves the com-
putations with complexity (N log N), similar to what is possible
when the k; lie on a regular grid using FFT.

Equation is interpreted as the set of the Fourier coefficients
of the 27m-periodic function f(t) = 27 Zj m;6(t — 2mk;) corre-
sponding to 0 <n < N.

The principle of gridding is to smooth out f(t) using a con-
volution kernel. In our case, it is the Gaussian function g.(t) =
> e(t=270%/(4%) and we end up with the function

fo(O) = xg.(6) =Y myg.(t — 27k))
j

which is 27-periodic as well. The Fourier coefficients of f, for
0 <n <N are given by

1 " —int T 2
anz_ f(D)e™™dt =y,4/ —e .
T, T

Since f,. is smoothed by the Gaussian kernel, the Fourier coeffi-
cients ¢, decay rapidly. For 0 < n < N and provided that M > N,
the M-periodized version) pez Cn+pv APPrOXimates c, well. Thus,
one obtains a good approximation of the coefficients ¢, using the
DFT coefficients of a finely discretized version of f.

€))

1& ‘
Cy, ~ i Z f.(2np/M)e 2™ P/M for M > N.
p=0

4

Finally, the computation of (2] is performed with the steps

1. Compute the samples C, = Zj m;g.(2n(p/M —k;)) of f.,
2. Compute the inverse FFT of these coefficients,

3. Get c, as the first N coefficients,

4. Sety,=¢c, \/?e”‘z.

The adjoint operation, corresponding to the summation is
naturally performed with the steps:

1. Setc,=x, \/?emz,
2. Zero-pad the coefficients c, to length M,

3. Perform the FFT to obtain coefficients C,,

4. Set m; = 224:_01 C,8.2n(p/M —k;)).

A specificity of Greengard’s Gaussian gridding is to consider
centered discrete coordinates, namely —%J <n<]%J. For a
given set of parameters, this choice yields an improved accuracy.
These computations are related to the algorithm presented above
because

N+1
- |

my =22k /N)= Y (e 2) etk ()

/—_ N
nm=-5

and
. o) N N+1

A.2 Choice of the parameters

In practice, for each k-space sample, the Gaussian kernel convolu-
tion is limited to the nearest points, controlled by M, the number
of neighbors in each direction. In [4], it is reported that the choice
M = 4N, M, = 12, and 7 = nM,,/(M(M — N/2)), leads to an
accuracy of about le-14. We suggest these settings as the default
for accurate computations. For a faster version of gridding, we
suggest M = 3N, M, = 8, and T = nM,,/(M(M — N /2)).

References

[1] M. Guerquin-Kern, M. Héiberlin, K. P Pruessmann, and
M. Unser, “A fast wavelet-based reconstruction method for
magnetic resonance imaging,” IEEE Transactions on Medical
Imaging, vol. 30, no. 9, pp. 1649-1660, September 2011.

[2] M. Guerquin-Kern, J.-C. Baritaux, and M. Unser, “Efficient
image reconstruction under sparsity constraints with appli-
cation to MRI and bioluminescence tomography,” in Pro-
ceedings of the Thirty-Sixth IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP’11),

Prague, Czech Republic, May 22-27 2011, pp. 5760-5763.
(3]

M. Guerquin-Kern, L. Lejeune, K. P Pruessmann, and
M. Unser, “Realistic analytical phantoms for parallel mag-
netic resonance imaging,” IEEE Transactions on Medical

Imaging, vol. 31, no. 3, pp. 626-636, March 2012.

[4]

[5]

(8]

L. Greengard and J.-Y. Lee, ‘“Accelerating the nonuniform
fast Fourier transform,” SIAM Review, vol. 46, no. 3, pp.
443-454, 2004.

C. Barmet, N. De Zanche, B. J. Wilm, and K. P Pruessmann,
“A transmit/receive system for magnetic field monitoring of
in vivo MRL,” Magnetic Resonance in Medicine, vol. 62, no.
1, pp. 269-276, July 2009.

D.-H. Kim, E. Adalsteinsson, and D. M. Spielman, “Simple
analytic variable density spiral design,” Magnetic Resonance
in Medicine, vol. 50, no. 1, pp. 214-219, 2003.

K. P Pruessmann, M. Weiger, P Bornert, and P Boesiger,
“Advances in sensitivity encoding with arbitrary k-space
trajectories,” Magnetic Resonance in Medicine, vol. 46, no.
4, pp. 638-651, 2001.

B. Wohlberg and P Rodriguez, “An iteratively reweighted
norm algorithm for minimization of total variation func-
tionals,” IEEE Signal Processing Letters, vol. 14, no. 12, pp.
948-951, Dec. 2007.

	Introduction
	Contents and Installation Instructions
	Origin of the code
	Origin of the MRI Scanner Data

	Demonstration Scripts
	Code for MRI simulation
	Processing MRI Data Prior to Reconstruction
	Generic Reconstruction Methods
	Wavelet-based reconstruction
	Test Scripts
	Under the Hood
	The Gaussian Gridding Method
	Principle
	Choice of the parameters

