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Abstract—In contrast to the vast amount of literature in
random matrices in the field of compressed sensing, the sulgeof
deterministic matrix design is at its early stages. Since thse deter-
ministic matrices are usually constructed using the polynmials
in finite Galois fields, the number of rows (number of samples)
is restricted to some specific integers such as prime powerfn
this paper, besides extending a previous matrix design badeon
the binary BCH codes to thep-ary codes, we introduce matrices
with wide variety of options for the number of rows. Simulation
results demonstrate that these matrices perform almost as el
as random matrices.

Index Terms—Compressed Sensingp-ary BCH codes, Coher-
ences.

I. INTRODUCTION

solution is to use a random matrix of i.i.d. elements with>
O(klogn) (we hereafter refer to this inequality as the bound in
the random theory); the Gaussian distribution is probalady t
first studied case [1], however, a large class of distrimsiare
investigated in [4]. The reconstruction challenge is toorer

the original vector from an under-determined system ofdine
equations » equations vsn unknowns) with the additional
sparsity constraint. This problem has a longer researcariis
as it also appears in the source separation problems. Ajthou
the mentioned problem is intractable in general [5], under
certain conditions, it is shown that minimization (basis
pursuit) can yield the desired result [2], [5]. Also the gige
algorithms such as matching pursuit and its variants, due
to their reasonable computational complexity, are amomeg th

The technique of compression while sampling, usually réll-known techniques in this field [6]. _ o
ferred to aCompressed Sensing, has been the center of atten- Although a realization of a random sensing matrix, with

tion for at least half a decade [1]-[3]. In fact, the compitass

high probability provides the possibility of perfect reeoy

ity of the discrete data associated with an analog signdi sUer all k-sparse vectors with small enough valuetothere is

as speech and image indicates that the sampling procedtitgently no polynomial-time algorithm to verify this pregy

is not as efficient as possible; i.e., instead of compressiag for a given matrix. The main benefit of deterministic designs
data after the sampling procedure, there should be a methoéft that stable recovery of sparse vectors can be guaranteed
combine these two tasks (sampling and compression) in ordéfhout any probabilistic arguments. Among other advaesag

to somehow decrease the rate.

of the deterministic designs is the storage issue; to store a

In the field of discrete compressed sensing, we are intetesfgalization of a random matrix, all the elements should be

in reconstructing &-sparsen x 1 source vector, namely,, 1,

kept in the memory and the process should be repeated each

from its linear projections onto am-dimensional subspacetime a new realization is generated, while in deterministic
(m < n) which constitute ann x 1 measurement vector designs, because of the special structure of the matriy; onl

(ymx1). The measurement process is theoretically assumedPifeW parameters should be stored. Furthermore, detetiainis

be linear in the form of,,x1 = PuxnXnx1, Where®,, ., is

matrices are likely (eg. the matrices introduced in thisguap

called the sensing matrix. Moreover, the vectois assumed 0 Provide simplicity in both sampling and reconstruction
to be k-sparse which means thathas a sparse representatioR"0C€SSES.

in a (known) unitary domain, namelk,,x1 = ¥, xnSnx1
wheres has at mosk nonzero elements and is a unitary
matrix. In this paper, we assume th#tis the identity matrix
or equivalently, we are considerirly instead of® W,

One of the main tools for investigating the suitability of a
given matrix as a sensing operator is the so called Restricte
Isometry Property (RIP) introduced in [2]: the matdXx,, .,
is said to satisfy the RIP of ordérwith constan) < §, < 1

The two main problems in the discrete compressed senslhfPr every k-sparse vectos, the following inequalities hold:

are the sampling and reconstruction tasks. The sampling par

consists of designing a proper sensing matdy, ., with

small enoughn (number of samples) that preserves the main

1®s|17,

sz,

Vsnx1 : k-sparse 1 — 6 < <1+6. (1)

information conveyed by the original signal. The commolt should be mentioned that RIP is only a necessary condition
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that guarantees recovery; there are examples where RiP-les
guarantees support special type of sensing matrices [0]-[1
The coherence of a matrix defined as

5 max |(ai,a;)] 7
i |lagll - [las]]

127N )

wherea;, a; are different columns oA, is one of the main
tools for establishing the RIP in deterministic matrices. |



. . . . TABLE |
plain words, matrices with normalized columns are guagahte perajLs oF THE CONSTRUCTEDN X n MATRICES IN THIS PAPER /i,

to satisfy an RIP order when the coherence is small [11],.[12bENOTES THE PROVEN UPPER BOUND ON THE COHERENCE WHIU- IS
There is a well-known lower bound on the coherence of afHE SPARSITY ORDER UP TO WHICH THE PERFECT RECONSTRUCTION IS

. G .
m x n (m < n) matrix A known as Welch bound [13]: VARANTEED
n m pl—1
ILLA 2 N (3) Tog,
m(n —m) n po(pa—r)—f—)
The above lower bound implies an upper bound on the fiuh . pl;TII
provable RIP order of a matrix through coherence arguments. p,lp P
: ) _ : kgr {— P +0.5J
Unfortunately, this upper bound is proportional $on while 2 -1
for the random matrices, the upper bound scaleslike.e., elements € forae{0,1,...,p—1}
there is inherently a gap between the RIP orders that are constraints 1<leN, 1<r<l—1andp prime
guaranteed for deterministic designs and the ones predicte _ Togp Fgr
by the random matrices. Inequality form || m < O(’fgv'(logp n) °Ep 198 For )

In [11], using the coherence arguments, DeVore has pro-
posedp? x p"t! binary matrices with coherendethat satisfy
the RIP of ordef: whenkr < p. Exploiting the hash functions coherence of the BCH-based matrices in [12] is relativedgel
and extractor graphs, another class of binary matrices withthe Welch bound. However, the number of rows (n these
m — k20(oglogn)® (m x n matrix with RIP of orderk) matrices are restricted to the forms — 1 (there are more
has been introduced in [14]; herB is a constant larger Options in Devore’s design). In this paper, we generalize th
than 1 which is involved in the construction of the extractogtilization of the binary BCH codes to the usefiry codes
graphs (the best known guaranteefis= 2). In addition to (Wherep is a prime integer) and obtain x n complex-valued
the extractor graphsy expander graphs are also shown toSB@Sing matrices; the details of these matrices are shown in
useful for sensing purposes [7], [15]. The authors in [16jeha Table I (the matrices in [12] are special cases when 2).
established a connection between Compressed Sensing (6§ generalization, not only increases the possible optio
and coding theory, specifically the second order Reed-Mull®r m, but also results in matrices with a coherence closer
codes and have proposed a category of bipalax 2°=" to the Welch bound ap increases. We further broaden the

deterministic sensing matrices; however, no lower bound @ghievable range of options by introducing two techniques
the RIP order of these matrices is proved. Somex m? for combining matrices with small coherence. The first is the
complex-valued matrices have been investigated in [17] Kyonecker productwhich is of special interest for changhrey
taking advantage of chirp functions; although there is rd@/mber of rows. In the second method, we combine a binary
guarantee for the RIP order of these matrices, in [18], TBatrx with fixed column weight and (_';\nother matrix with fixed
relaxed version of the RIP known as Statistical RIP (StRIg  absolute value of the elements. This technique increages th
shown to hold. In fact, a more general class of StRIP matricBdmber of columns in the binary matrix without increasing
are introduced in [18]: it is shown that if 1) the rows of dh€ number of rows or the coherence. _

matrix A, ., are orthogonal and all the row sums are zero, The rest_of the paper is organlze_d as follows: in Sec.
2) the columns of the matrix form a group under point-wis We explain how block codes, specially-ary codes, can
multiplication, and 3) the absolute value of the column suni@'™M sensing matrices with small coherence. Here we briefly
except the all-one column, are upper boundedrby 0-57 review the concepts of the plqary design in [12] and _h|ghl|gh
for n > 0.5, then the inequalities in (1) hold with highthe challenges for generalizing f@-ary codes. Section Il

probability over allk-sparse vectors for the matrbi= A when describes @-ary code design suitable for generating sensing
m matrices. The method is completely deterministic (no dearc

1
k<1+(n—1)pandm > (fklogn)" for some constant. s required) and is based on the generalized BCH codes. Due
In [12], using coherence arguments and based on BGhlihe use ofp-ary BCH codes, the number of rows in these
codes, we have recently introducéf — 1) x 20(2“7”1“7]) matrices are restricted to the forph — 1 for some integet;
bipolar matrices withy < 2;]:11_ Although, the use of BCH in Sec. IV, we show that by using the Kronecker product of
codes in compressed sensing and dimensionality reductisn these matrices, we can achieve matrices with more options on
been already investigated (e.g., [18], [19]), the approamoth the number of rows. Other than the Kronecker product, we
results in [12] which are generalized in this paper, areedéffit present a technique for combining binary gndry matrices
in that, there is no randomness involved, neither in the imatwhich increases the number of columns without changing the
nor in the type of recovery guarantees. number of rows. The simulation results in Sec. V confirm that
Unlike the Devore’s matrices for which the coherence e BCH-based matrices perform almost similar to the random
lower bounded by Johnson’s bound (see [20] or [12] for th®atrices; here we consider different scenarios includes r
explanation of the bound) rather than the Welch bound, ti®ages. Finally, Sec. VI concludes the paper.

lin the case of StRIP, for a given and fixed matrix, the inedealiin Il. COMPLEX MATRICES VIA p-ARY LINEAR CODES

(1) hold with high probability if the support of the-sparse vector is drawn . . . .
uniformly at random from all theé’;) possible ways and the non-zero elements In this section, we EXpl‘?"n how _bIOCk f:odes, Spec@,‘y
follow an independent and identical Gaussian distribution ary codes, can form sensing matrices with small coherence.



Since the approach is based on the one used for bipotdrthe code, all the vecto8; 1, Llix1,...,(p — 1)ax1 are
matrices introduced in [12], we briefly discuss the binarglso codewords. Similar to the binary case, for each two code

design concepts. vectorsajx; and bsx; With chix1 = a @ —b, one of the
Assume that we are given(a, k) linear binary codgwith ~ following statements holds

the minimum distance,;,, such that the all-one vectot £ ) 1) € = 07x1 OF iy OF ... OF (p — 1)ax1,

is a valid codeword; due to the linearity of the code, allezer 2y ¢ ¢ {0;,1,1541,..., (p — 1)ax1}; therefore

vector 0;x1) is always a codeword. Now for all pairs of code

vectors such as;x1, bixi With cixi 2 a @ b (@ denotes d(cix1,0m%x1) > domin

the bitwise XOR operation), one of the following statements d(Cix1, Lax1) = dmin )

is true: . )

1) cix1 =0sx1 OF L1,

2) Cix1 75 O»ﬁxl andcﬁxl 75 1;”(1, therefore: d(cﬁxh (p o l)ﬁX1) =z dmin

d(Chx1, Onx1) > drin which means that;; contains at mosk — d,,;,, from each
{ d(Chxis Lax1) > dmin (4 of {0,1,...,p—1}. Let N; (0 < i < p — 1) represent the
number of occurrences of the eleménin the vectorcy ;.
which means that;,, contains at leastl,,;, and at most The inequalitiesN; < 7 — dy;n together withy?_ ' N; = 7
i — dymin Nnumber of ones. In other worda, andb differ at result in:
least ind,,;, and at most ini — d,;,, bits. y
For a given codeword, the first case happens only when Vi =17 — D N == (p— 1) (i — dpin)- (6)
b = a or a @ 1;x1; thus, all the possible* codewords i#i
can be paireda with a @ 17;) into 2*~1 sets such that Hence
only the second case happens for two vectors from different
sets. Now assume that we form a matrix by selecting exactly n—(p—1)(n-— Jmin) < N; <7 — dymins @)
one vector from each set and putting them as the columns, —
and then converting all the zeros in the matrix intal
(A, 5i-1)- The columns ofA consist solely oft1 and each which is equivalent to

two columns differ by at least,,;, and at mosti — d,in ) _ )
. len + Nma:l) Nma:l) len
elements. Consequently, the absolute value of the innelugto \Ni - ) ] < 5 .
of each two distinct columns is upper boundediby 2d,,,;...
Hence, the coherence of the matrix when the columns Similarly, we divide the set of code vectors into subsets of
are normalized by the factog- (all the columns have the the form{a, a® 15x1,...,a® (p — 1)ax1} and pick exactly
same norm and thus, normalization is equivalent to scalingne vector from each subset. In fact, we are looking for the
is upper bounded by:=2d=i» Recalling a result from [6], fepresentatives of the elements of the quotient group fdrme
n 1 e g .
[12], we know that it is possible to perfectly recoverka by dividing the group of all code vectdrdy its subgroup
sparse vector from noiseless measurements obtained byOax1;:--;(P — 1)ax1}. The following theorem summarizes
sensing matrix with a coherence less thgh-. Thus, the the main results.

mentioned matrixA is guaranteed to recovérsparse vectors  Theorem 1: Let C(ii, k;p) be a linearp-ary code over
for k < % +0.5. GF(p) for a prime powelp with the minimum distancé,,,;,

(= 2dmin) esuch thatl;; is a valid codeword and leA ;. be the

To generalize the above results geary codes, there ar i ;
two difficulties: 1) the definition 0fi,;,, in p-ary codes just matrix generated by selecting exactly one vector from each
,a® (p—1)ax1}- If we construct

reveals the number of unequal locations in two codewords arfef Of {a,2 @ Lixy, .. ) ]
unlike the binary case, does not give useful informationuabo® 7 xy+-1 oM A according to the following rule:

the differences and 2) to have a matrix with low inner product ~ 1 oo

among its columns, we need a transformation on the elements A =[auglap=A=— [eJTlcﬂa P 9)
such as replacement of the zeros-by in the binary case. To Vi 7

solve the latter, We_lntrodl_Jce complex r_nat_rlces_ by cormgrti the coherence will be upper bounded gggq)ﬁjp?dmm_
the code elements into points on the unit circle in the comple 2n

plane while for the first challenge, instead of pairing thdeco

N7n1ﬂn Nmaac

(8)

vectors, we have to define larger sets. Proof. First note that the columns & all have unit norm:
LetC(n, l%;p) be a lineap-ary code ovelzF'(p) wherep is 1 gong PR
a power of a prime integer with the minimum distantg;,, lasll = ﬁ[e ps e =1 (10)

such thatl;«; is a valid code vector. Due to the linearity
Let a,,ag be two different columns oA and leta,,as
2In this paper, in order to avoid confusion between the compaameters pe the corresponding columns W with ¢ = a, @ —ag. In
in the CS field and coding theory, the associated parameitistive coding
field have been marked by the tilde sign; e®.tepresents the block length
in the coding theory while: denotes the number of elements in the source 3For p-ary codes is the mod p addition (element-wise).
vector. 4Algebraic group with respect to the operatign



addition, assume that the elemeérfo < i < p—1) is repeated
N; times inc. For the inner product ok, andag we have:

aa,ag)| = l|aj -as|= _|Z (@i,0— alg)|
n j;cl J_Z
- Ei:lﬁe ‘Z N )

Sincee’ s the root of1 +z+---+2P1, for all values

of v we have:

ZNeJ |—|Z

where we used the triangle inequality for the last part. Reca,
ing inequalities (7) and (8) and by setting= mintNmes
we get:

p—1
— T <D IN =] (12)
=0

p—1
s Nma;ﬂ - Nmzn
>N <
, 2
=0
—1)n— 2d~min
_ plp )n2 P . a3)
which demonstrates the following upper bound on the coher-
ence ofA:
p(p—1)n — pzczmin
a < — : 14
(@ a9)] — (14)
|

Remark 1. The best choice ofy in (12) which yields the

least upper bound for the inner product is the median of t
N;’s, not necessarily the mean value used in (13); however, the
median is not a fixed value and thus, no deterministic upper

bound will be derived.
Remark 2: To guarante@ia < 5 (a sufficient condition

for perfect recovery ok-sparse signals [6], [12]) by using the

upper bound in Theorem 1, we should have:

4

p—1 2 p—1
|

> - > 1—
p p*(2k - 1) P (

dmin

n

Hence,d,,;, should be close t@;—lﬁ; i.e., for large values of

D, dmin is almost the same as This implies that in order to
increase the sparsity ordér we need to increasé,,i,,. The

existence and design of such matrices frprary codes will

be shown in the next section.

I11. p-ARY CODE DESIGN

Due to the existence of a lower bound on the minimum

distance of the BCH codes, we focus on the generalizagy

BCH codes with large minimum distances. The BCH codes are —

a subclass of linear cyclic codes (sums and circular shiiftse

code-words are also valid code-words) where the elements offo find

the code vectors are taken from a finite field, nan@ly(p)

coefficients). In this way, @-ary n x 1 vector is a valid code-
word if its corresponding polynomial is divisible by a fixed
polynomialg(x) € GFp[z] referred to as the code generating
polynomial. In order to have the cyclic property in the code,
it is necessary and sufficient thatr) is a divisor ofz™ — 1
[21]. Recalling a result from the Galois theory, we know [21]

I1

rGGF(pm)
r#0

(x—r)= AL

(16)

Thus, g(z), which is a divisor ofz?" ~! — 1, should be equal
to the product of a subset ¢f — r)'s for r € GF(p™); i.e.,
g(z) can be decomposed into linear factors in this field. This
feature is helpful in designing the polynomial by determ@i
8ts roots.

Let « be a primitive root ol F(p™); hence, all the nonzero
elements of the field can be written in the fowh, wherel
iS a honnegative integer number. An important result in BCH
codes is that i o', ..., a%} is a subset of the roots gfx)
such thatiq, ..., ig form an arithmetic progression, we have
dmin > d + 1 [21]; if the vector 1, - .,cq])T is a nonzero
codeword, we should havgz)| Y7, ¢;2/~" and therefore

aOXil alXil (’71—1))(7;1

« C1
aOXiz alXiz a(’ﬁ—l))(ig 02
. = 0d><1- (17)
aOXid alXid a(’ﬁ—l)Xid C»ﬁ
Haixn
ince {i1,...,iq} form an arithmetic progression, eadhx

sub matrlx ofH is a Vandermonde matrix; thus, eadh
selection of the columns are linearly independent whichmaea
that at least/+ 1 elements inc, ..., cz]? should be nonzero
(the lower bound on the minimum distance).
In our code design approach we chog$e) such that the
Polppiolyy gl 1+2

set {a” , a?” =2} is a subset
of its roots for an mteget < m. Hence there exists at least
an arithmetic progression of lengg® — p™—1 — ’;l%ll -2
among the powers ofv in the roots ofg(x). Consequently,
we have

. - . l_
min Z pm_pm—l_p 1_1
p—1
m—1 1
" p p—1 )
p— —1 1— — p—
( )< pm—=1 (pm-1)(p-1)
~<p_1 pl+1_1 >
= n — —
p plp— 1™ -1)
d~min - 1
> P 1(1— p -1 ) (18)
pm—1)

p (p = 1)%(
such a generating polynomial, we construct a
polynomialh(z) € GF,[x] (parity check polynomial) without

(p is the field size and should be a prime power), and ttegy repeated root such that the rootsi4f) form a subset of

length of the code-words are = p™ — 1 for some integer

7711

T ={a"al,....a" =1 ). Now g(z) 2 ””pyh(* )‘1 satis-

. Instead of the vector representation, BCH code-words gs all the above requirements for the generating polynbmia

usually regarded as polynomials of degfeel over the Galois

field (elements in the vector are considered as the polyriomie x|y implies y is divisible by .



Except for the trivial cases, the polynomﬁm 1( — o) representation df satisfies the required conditionshﬁ?q’”,
does not belong t@7F,[z], which shows that the set of thel = o is one of the roots ofa(x) which implies that

roots is often a strict subset @f. The following lemma is a
helpful tool for |dent|fy|ng the roots oh(z).
Lemma 1: Let Hseq

leastrn — [ — 1 zeros in between. Furthermore, Véﬁ? be the
set of all decimal numbers for which the bgseepresentation
coincides with a sequence 'MQZZ’”. Now, we have:

Hffll) g {0717"'5 m= 1_|_P_1}
(19)
Hz‘eH@(I a') € GF,lx]
Proof. Let B be an element dﬁseq with the basep repre-
sentation ab,;,—1 - . . bo),. Since the sequenc¢és,—1, . . ., by)
(77171)

is a member ofHse; ', each of the;’s is either( or 1. There

are two cases:
1) bs_1 =0, therefore

(bp—1...bo)p < (011...1),
prh—l
=~ gpm/1+-————(2m
2) bsm—1 = 1, therefore, the followingn — l — 1 digits
should be zerob;_2=---=b,=0
(bs1..-b0)p < (T0...01...0),
m—l-1 1
1
- -1
- pm71+p_1. (21)
Thus, we have!) € {0,1,...,p" ! + L _1
In addition, for the same3, we have
pB = (bm,1 SN boO)p
bmflpm + (bm,Q . .boO)p
= bj_1+ (bm_g .. .boO)p (modpﬁl - 1)
= (bm_g e bobm_l)p (mod prh — 1) (22)
According to the circular property ofb-1,...,bo), B =

(bm—2 - . . bobsm—1), should be also included ifh(f%), hence

’
B

pB _

o S {ah}he’}-{(f)’

= {ozB,ozpB,asz,...,apmilB} C {a” (23)

}heHﬁ.fL)

In fact, the set o a?' B}, is the set of conjugates of® with
respect to the field7F(p), therefore

[[@—a'?) e GRylal,

i

(24)

which finally results in[], eH® (z — ') € GFplx]. [ |

be the set of all binary sequences of
length /. such that each twa's are circularly spaced by at

ged(g(x), —1) = 1. Due to the definition ofy(z), we know
)z —1=(@-1)A+z+ - +2"1)

ged(g(z) , z—1) =1
x)‘l—i—x—i—-u—i-a:ﬁ_l, (26)

which confirms thafl;; is a valid codeword. The other issue
which should be considered is to choose the representatives
from each of the setéa, a® 1;x1,...a®(p — 1)7x1}. Since
p t n, in each of these sets, the polynomial representation
of exactly one of the codewords is divisible by — 1.
Hence, if instead ofj(x), we use(x — 1)g(x) all the desired
conditions are fulfilled. In addition, by this choice of thede
generating polynomial, the cyclic property of the originatle
is preserved which is a useful tool for reducing the compjexi
of the reconstruction method [12]. Also, the additionaltéec
of x — 1 increases the lower bound on the minimum distance
of the code byi. Table Il summarizes the matrix design steps.
To find the final size of the constructed sensing matrix, we
should calculate the value similar to the discussions in [12],
this value is equal to the size of the §e£n It is shown in
[12] that [H)| = O(y'*') where~ is the largest root of
a™~!=1 _ 2 — 1. Thus, for them x n constructed sensing
matrix using this code, we have:

m = ph—1

l
log,n = [Hy)|=0 (”1) . @
b 2 gy 2 B s

where kg, represents the threshold for the sparsity order of
the sparse vector, up to which we can guarantee the perfect

In (m—1—1

reconstruction. Using the inequality v > ————=

m

(see
logp, kgr

[12]) we can showy'sr 1oz Fsr > p. Therefore, we have:

m< O (kgr(logp n) ) .

Obviously, the upper bound fom in the random matrices
(m < O(kgrlog,n)) is much stronger than what we have
proved here; not only is the power bfg, n greater than one

in our case, but also it increases as the desijgdncreases. To
the best of our knowledge, no deterministic design is abldla
yet which by means of RIP guarantees a fixed valusich
that m < O(kyr(logn)©). Since, the design principle in our
matrices is coherence, it is logical to compare the regyltin
coherence with the Welch bound (3). For this purpose, we
have reported the ratio of the achieved coherence to thehwelc
bound M) for some special BCH-based matrices in Table
Ill. We have used the special casef= 2[, which results

in (p? —1) x p* matrices; in fact, for each we haveH

logp kgr
Togp, logp Fgr

(28)

The above lemma Conflrms that the following constructiory}  {pi P2E LU {piti 4 pi =L, The results in Table ||| show
i=

for h(z) fulfills all the required conditions:

hz) 2 ] (z-a") e GF(p)lal.

heHY

(25)

that the achieved coherence tends to the Welch bound as
increases.

IV. MATRIX RESIZING

One of the important conditions to be verified is whether In this section, we introduce two methods to change the
17:x1 belongs to the set of codewords. Since the hasesize of the previously discussed matrices. In the first natho



TABLE Il TABLE IV
MATRIX DESIGN STEPS SUMMARY OF THE RESIZING TECHNIQUES

. ] ] | I Kronecker | Binary-Mixing |
or a given prime powep, =
N _ puts A xng: B Amgxng, B
1) Choose the positive integei and setm = p™ — 1. Output X Tha ) Tp X A

i < < m - 1L
2) Choose lsirlmj?tggeﬂ < 1l < m — 1. The value Coherence || iic < max(fia, u5) 7ic < max(pa. f5)
P__—2 is an upper bound for the coheren

@ ) A is binary with column-

of the final matrix. Constraints — weight m; and elements oB

3) Form the setHﬁZ;"” by finding all binary sequences have similar absolute value.
of length m such that each twd’s are circularly
spaced by at leash — [ — 1 zeros. LetHgL) be the
decimal numbers for which the baperepresentation
is a sequence ift{7,".

4) Define:

C(mamb)x(”a"b) Cmax(”a”lb)

(0]

h(z) = H (z—a”), A=

ren\ {0}

wherea is one of the primitive elements ¢iF' (p™).

1
Also setn = p‘th) -1,
Put all the code vectors of the code defined/igy) B=

5

=

and g(z) = “’Tj)*l as different columns of the

matrix A, xn.

6) Define the final matrix as Fig. 1. The procedure of mixing with a binary matriA: is a binary matrix

1 o i with constant column weight and the elementsBhave the same absolute
Apmxn = T [6] P ], value.

wherea; ;'s are the elements of the matri.

Proof Here, we explicitly construc€ by mixing the two

- TABLEIIL al matrices. To form thé®" column of C, we first writel — 1 as
EBCH poR VARIOUSBCH-BASED (p* — 1) X p®" MATRICES.
rw B a-ng+f3, wherea € {0,1,...,n1—1}andg € {0,1,...,ny—
| [7=2 1 7=35=55="] 1} (in fact, « and 3 are the quotient and remainderief 1 by
=1 — 1863 | 11000 | L0709 no, respectively). Lety, ..., i,,, be the indices of the nonzero
=2 || 1.1296 | 1.0549 | 1.0198 | 1.0102 locations in the(a + 1)** column of the matrixA. Now the
=3 ] 1.0618 | 1.0184 | 1.0040 | 1.0015 elements of thé!” column inC are:
by employing the binary matrices, we increase the number of Ciy,l = b1,6+1/(TB\/wm)
columns () for fixed values ofn andk; however, this increase Cis,l = bz,ﬁ+1/(7’B \/wm)
does not change the order 6k logn). The second method : , (29)
is to change the number of rows (number of samples) which '
. . . ; = b rB+/W
provides us with more options on the number of samples. A ol v p1/ (78 "7) .
. . . Cs,l = 0 ) s ¢ {117 . 7Zwm}
summary of these methods is given in Table IV.
A. Mixing with Binary Matrices where [b1 g1, -+, bw,, g+1]7 is the (3 + 1)*" column of

The design of binary matrices with small coherence, ddé andrs is the absolute value of the elements Bf The
to the non-negative nature of the elements, is a difficu;tasSchematic diagram of the above procedure is shown in Fig. 1.
the inner product of two binary vectors consists merely of To show the coherence property Gf let u,,»1 andv,,x:
non-negative terms which demonstrates the main difficulbe thel!* andi" columns ofC, respectively, wheré — 1 =
in finding quasi-orthogonal binary vectors in relativelyam o - no 4+ 81 andly — 1 = s - no + Bs. It is trivial to check
dimensions. Hopefully, there are at least two known binatiat ||u|| = ||v|| = 1. To investigate the inner product of the
matrix structures: 1) Devore’s matrices [11] wifi¥ rows two vectors, we consider the following two cases:
where p is a prime power and the weight of each column
is p and 2) OOC-based matrices introduced in [12] for which 1) a1 # a2, which means thati, v are generated using

the number of rows has slightly larger range of options. different columns ofA and therefore, they have different
Lemma 2: Given a binary matrixA,,x,, whose columns patterns of nonzero elements. Since the inner product
each havew,, nonzero entries with coherenges, and a of different columns of the binary matriA are less
wy, X Ny Matrix B with coherenceug for which the elements thanpa (wmpa prior to column normalization), at most
have the same absolute value, there exists a deterministic wmpa Of the nonzero elements af coincide with
construction for anm x (ninz) matrix coherenceC with that of v. Moreover, the absolute value of the nonzero

i . e .
pe < max (MA, ,UB) and normalized columns. elements in botlu andv is Wi (normalized elements
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n 9 Fig. 3. The reconstruction SNR vs. sparsity order where ti®rrcompressed
Z |uv| —w 1 samples have SNR df5 dB. The matrice§ ar80 x 729 and the coherence
t 1Y mHUA \/m of the 3-ary BCH-based matrixy(= 3) is .

i=

= pa, (30)

2) a1 = ag, Which means that, v are generated using the Now the interesting result which can be achieved by the
same column ofA and therefore, their inner product isabove operation is the generation of matrices with small
the same as the inner product of the respective columegherence and arbitrary number of rows (number of samples).

IN

in B (columnspB; + 1 and B2 + 1): The method in [11] generates matrices with only prime power
(b b )| number of rows; however, using the Kronecker product, we
[{(u,v)| = M < up. (31) can obtain matrices with number of rows as any product of

"BWm the prime powers which obviously includes all the positive
Thus,C has normalized columns and its coherence is upp@tegers. The disadvantage of this method is the order dsere

bounded bymax (14, uB)- B of 12" for a fixed u or ky,:

Although this technique increases = niny (dimension)
for the same values af. (number of measurements) apd logne _ logna +logny
(and consequently,,), the order oflogn and consequently Me Mg My

l&n g not improved: 1 logna + 1 logny

(35)
mpy Mg Mg My

logn =logni +logne =

O(logn) = max {O(logni),O(logns)}. (32) Therefore, even ifA and B are random matrice#% and

lﬁ—b’“’ are close to a fixed multiple dﬁgj}), the guaranteed

B. Kronecker Product performance ofC is much worst than the random matrices;
e.g., 105% — 0 for large size values ofA and B, while
for random matrices that guarantee the recovery,pfsparse

Conomy xnony = A xn, @ By xny, (33) ve?tors with the same Iengtﬁ% is close to a multiple of

ko

where® denotes the Kronecker product of the two matrices?”
ie.

LetA,,, xn, andB,,, «», be two arbitrary matrices. Define:

V. SIMULATION RESULTS
Cn,o = Gy rbp 1, (34) . )

In this section, the performance of our proposed class of
wheren = (y—1)my+p, 0 = (T—1)ny+v, andy, 7, p,v are  sensing matrices based on thary BCH codes is compared
positive integers not exceeding,, na, msy, ny, respectively. to the performance of various types of sampling matrices
Figure 2 shows the schematic diagram of the above Kronech%uding those proposed in [17] based on the chirp funstion
product. random rows of the DFT matrix, and the realizations of

Lemma 3: AssumeC = A ® B. complex-valued Gaussian random matrices.
() If A and B have normalized columnsC has also  |n order to have a good performance evaluation for our
normalized columns. matrices, we have implemented the matrices for three difier

(i) pc =max{pa,p s} cases ofp (in the p-ary BCH codes); namelyy = 3,5,7.

(iii) If both A and B satisfy RIP of ordert with constants Moreover, to have a fair comparison, we have considered the
k.4 anddy g, respectively, matrixC also satisfies RIP same size(p* — 1) x p%, for the BCH-based matrices, matrices
of orderk with 6x,c < 6x,A0k,B + kA + 0k,B- formed by random DFT rows, complex random (independent

The proof of the first two statements can be found in [22]eal and imaginary parts) and chirp-based matrig@s<(729,

[23] and for the third, the reader is referred to [24]. 624 x 15625, and2400 x 117649 for p = 3,5, 7, respectively).
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Fig. 4. The reconstruction SNR vs. sparsity order for thesyygompressed Fig. 5.  The reconstruction SNR of 25-sparse signal from its noisy
samples with the SNR 080 dB. The matrices ar&24 x 15625 and the compressed samples for various input SNRs. The matrice80axe729 and
coherence of thé-ary BCH-based matrixy(= 5) is ﬁ. the coherence of thg-ary BCH-based matrixy(= 3) is é.

In the simulations, the originat-sparse vector is gener-obtained curves resemble linear trends between the inglit an
ated by first producing a realization of anx 1 vector of reconstruction SNRs for high enough input SNRs.
i.i.d. zero-mean complex-valued Gaussian random element$n another simulation scenario, we have evaluated the
(independent real and imaginary parts) with= 1 and then maximum sparsity order of the input signals for which the
settingn — k of its elements to zero; the location &fnon-  signal can be recovered almost perfectly from the noiseless
zero elements is chosen uniformly at random among 8l compressed measurements. Figures 6 and 7 show the recovery
possibilities. The compressed samples are generated by ﬂbﬁ:entage&’NRreconst > 100 dB) at different input sparsity
mentioned rectangular matrices and then, the samples bfe tders. The matrices in Fig. 6 are similar to those of Fig. 5
ject to Additive White Gaussian Noise (AWGN) with differentand 3; this figure shows a slight advantage of the BCH-based
variances; we refer to the sample to noise power ratio ad inpiatrices to their closest competitor, the matrices formgd b
SNR. Finally, the originalk-sparse vector is reconstructedandom rows of the DFT matrix. In Fig. 7 we have evaluated
from the noisy samples using Orthogonal Matching Pursyfie performance of the matrices formed by mixing techniques
(OMP); the SNR of the reconstructed signal with respect {g Sec. IV. As a representative of the binary mixing techeiqu
the original vector is referred to as the reconstruction SKR discussed in Sec. IV-A, we have combined é4e< 512 binary
is shown in [6], [12] that the family of Matching Pursuit (MP)matrix with column weigh8 using Devore’s design (field size
methods will perfectly recover the origindl-sparse vector 8) and the8 x 9 complex-valued matrix using ternary BCH
from the noiseless samples if the coherence of the sampligghes; the result is 64 x 4608 matrix with coherence.25.
matrix is less than;l—. Also, random matrices (complex-valued random matrix and
To have smooth curves, the results are averaged @@ random rows of the DFT matrix) of siz& x 4608 are used
different runs §00 runs for Fig. 4). It is worth mentioning that for this figure. Since the number of columns in the chirp-base
the coherence of th&0 x 729, 624 x 15625 and2400 x 117649 matrices can not exceed the square of the number of rows,
BCH-based matrices ark, 5; and %, respectively. the size64 x 4608 is not realizable in this design; therefore,
Figure 3 demonstrates the SNRs for the reconstructidn ofwe have considered thgs x 4608 chirp-based matrix with
sparse input signals of size= 729 wherek varies from1 to coherence1—3. For the Kronecker product technigue discussed
30 and the compressed samples are corrupted by AWGN withSec. IV—g, we have combined tifex 27 binary matrix with
SNR = 15 dB, while Fig. 4 shows similar curves for inputcolumn weight3 using Devore’s design (field sizB, and the
size n = 15625, where the sparsity order$0 < k& < 200 7 x 64 bipolar matrix using binary BCH codes; the result is
and inputSN R = 30 dB are considered. These figures show 63 x 1728 matrix with coherencé. Although the binary-
that the BCH-based matrices outperform all other desigmajxed matrix produces almost the same number of compressed
however, the difference between the performance of thesamples for the inputs &.5 times larger than the Kronecker-
matrices and those formed by random rows of the DFT matnmixed matrix, its performance which is close to the random
is negligible. matrices, is completely superior than the Kronecker-mixed
Figure 5 presents the reconstruction SNRs26fsparse one. Regarding the largest value for which the recovery
7291 input signals where the compressed samples are subjegfcentage is almost one, this matrix outperforms the €hirp
to varying noise powers resulting in input SNRs ranging frodased one as well.
0 to 100 dB. This figure again confirms that the BCH-based To justify our claim regarding the fast implementation of
matrices and those formed by random rows of the DFT mattitxe recovery algorithm when BCH-based matrices are used,
perform almost equally and better than the rest. Moreoker, twe have compared the required time for recovering the sparse
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Fig. 8. Comparison of the required time for retrieving spar§625 x 1
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Fig. 9. Comparison of utilizing different sampling matscén order to
compress &5 x 65 Lena image with sparsity 025%. All the employed
matrices are€400 x 4225; from the 7-ary 2400 x 117649 BCH-based matrix
which has the coherenc%, we have kept only the first225 columns.

vectors with and without employing the circular charactiri
of the columns in Fig. 8. This circular characteristic eeabl
us to employ the FFT algorithmn{-point FFT) for finding
the cross correlation of the samples’ vector and the columns
of the sensing matrix; for further details see [12]. Alsob-su
matrices of the DFT matrix, although do not have the circular
property in their columns, are special in that the required
correlations can be found by a singlepoint FFT operation. In
Fig. 8, we have utilized the circular property of the BCH-dxhs
matrices and compared the required time for reconstruttieg
source signal to the reconstruction time when complex rando
matrices and sub-matrices of the DFT matrix are utilized; th
results of this figure are obtained by consideririg25 x 1
original k-sparse vectors fot < k < 50. The curves for
the BCH-based matrix and sub-matrices of the DFT matrix
almost coincide while the curve for the simple OMP method
indicates a higher order of computational complexity. Ehes
curves reveal that fok = 45, the FFT-assisted methods are
approximatelyl6 times faster than the simple one, which is
remarkable.

In our last simulation, we use the Lena image of $ize 65.
The original signal has been made spar%e:( 0.25) using
Haar wavelet coefficients (discardifigr5 of the coefficients).
Figure 9 depicts the reconstructed images and their Peak Sig
nal to Noise Ratios (PSNR) with respect to the sparse image;
in this scenario, random matrices outperform the detestini
designs whiler-ary BCH-based matrix marginally outperform
the chirp-based matrix.

VI. CONCLUSION

A new design for matrices with small coherence is investi-
gated which results in complex-valued matrices (exceptifer
special case op = 2). The design is based on the previously
studied link between coding theory and compressed sensing.

signals utilizing a5-ary BCH-based matrix, complex-valued random matriced he considered codes are generalizealy BCH codes that

and random sub-matrices of the DFT matrix all of sl x 15625 vs.

sparsity order of the source signal.

provide large minimum distances among the code vectors.
The case ofp = 2 (special case of bipolar matrices) was
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previously investigated. Simulation results confirm thia¢ t [22] Y. Rivenson and A. Stern, “Compressed imaging with seipla sensing
performance of the new matrices has reached the bounds of operator”I[EEE Sg. Proc. Letters, vol. 16, no. 6, pp. 449-452, June

Compl_ex random C.Ompressed_slensmg while the_y OUtperf(_)fo] S. Jokar and V. Mehrmann, “Sparse solutions to underdened
the chirp-type matrices. In addition, we have studied twr-mi Kronecker product systemslinear Algebra and its Applications, vol.
ing techniques for combining matrices with small coherence _ 431, no. 12, pp. 2437-2447, Dec. 2009.

M ificall he K K d . idered [24] M. F. Duarte and R. G. Baraniuk, “Kronecker product ritats for
ore specifically, the Kronecker product Is considered as'a compressive sensing,” imternational Conference on Acoustics, Speech

tool for generating sensing matrices with desirable nunober and Signal Processing (ICASSP), 2010.
rows while the other technique can increase the achievable
number of columns.
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