
Genetic Algorithm Optimization for a Surgical
Ultrasonic Transducer

Daniel Porto , Aurélien Bourquard and Yves Perriard
Integrated Actuators Laboratory (LAI)

École Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne, Switzerland

Emails: daniel.porto@epfl.ch, yves.perriard@epfl.ch

Fig. 1. Spinal Disc Segment and Disc Removal System

Abstract—An ultrasonic piezoelectric transducer to cut the
human tissue or to remove the spinal disc is envisioned to
improve efficiency and facilitate the surgeons work. Three genetic
algorithms have been developed. The first one is based on
conditional genetic operators, the second one is based on a specific
crossover operator definition with a local search method, and the
third is a combination of both the previous algorithms. The third
algorithm is used to optimize the piezoelectric transducer. In less
than 5000 simulations the optimizations give an amplitude of the
cutting tip of about 4.8 microns.

I. INTRODUCTION

Nowadays everyone knows someone who suffers from back

pain. In most cases a surgical intervention has to be done

and different manual methods are already used to cut the

human tissue or to remove the spinal disc. Nevertheless, the

surgeons are not always fully satisfied due to the tedious, time

consuming and taxing of the existing devices. One interesting

solution is the development of an ultrasonic piezoelectric

transducer that could have an improved efficiency and facilitate

the surgeons work.

II. GENETIC ALGORITHMS

Genetic algorithms (GA) repeatedly modify during succes-

sive generations a population of different sub-optimal solutions

of a given problem. The selection process consists in keeping a

number of individuals of the current generation, depending on

some criteria, and produces children for the next generation.

Over successive generations, the population evolves toward

an optimal solution. The fitness function evaluates, for a given

solution, its optimality degree; the evaluation of this function

is essential to the selection process.

Interestingly enough that GA can be applied to particular

optimization problems, in which some discontinuity or differ-

entiability problems could appear.

A. Conditional genetic Operators

The working principle of conditional genetic operators [1]

is to avoid using hard to find probabilistic parameters, and

instead use conditioned operators by an objective measure of

the population diversity, the difference-degree di.

A minimal difference-degree Ds ∈]0; 1[is imposed at the

beginning, that avoids a premature convergence and ensures

some exploration of the domain search. The imposed diversity

reduces progressively during the generations, that allows a

more and more local search, however controlled.

The algorithm upgr1 based on [1] is presented:

Step 1 Generate a population of N individuals and evaluate

their fitness. Define a minimal Ds to impose.

Step 2 Select N ′
2 pairs of parents (N ′ ≤ N , N ′ even) with a

selection method (as tournament). A same parent can

be selected twice.

Step 3 Evaluate the difference-degree di between the two

parents, for each pair i of parents.

Step 4 If di < Ds for a given pair, the two parents suffer

each one a mutation, and return to Step 3. Otherwise,

continue to next step.

Step 5 Generate N ′ children from N ′
2 pairs of parents by

crossover (always applied). No more mutation opera-

tor is applied.

Step 6 Evaluate the fitness of the children.

Step 7 Reverse replacement: the best R · 100% children re-

place the worst individuals of the current population.

Step 8 Relax the diversity constraint, with Ds = μDs and

the cooling ratio μ ∈]0; 1[. Return to Step 2.

One difficulty resides in the fact that [1] uses a binary

representation for the individuals, and then the mutation,

the crossover operators and difference-degree between two

individuals are specifically defined for that representation.

Considering that we decide to keep the individuals represen-

tation with real values, the operators and the difference-degree
measure defined in [1] are modified; and thus are not the same

as defined in [1].

The difference-degree di ∈]0; 1[between two individuals

X1 and X2 (p the number of alleles, parameters or variables

of an individual, and a and b the lower and upper boundaries

of X) is:

di =
1
p

p∑
i=1

X1,i −X2,i

ai − bi
(1)

The crossover operator used (as in [1]) is the two-point
crossover consisting in the reversal of the alleles of the two

individuals (with real values and not a single bit) between

randomly chosen positions.

The mutation operator is chosen nearby of its binary coun-

terpart (the simple random); thus, the following random value

X ′
i is added to one of the real variables i of the considered

individual:

X ′
i = Xi + τ · (ai − bi) · 2−�r·z� (2)

with τ that can equiprobable be ±1, r a random value in

[0, 1[and z the accuracy (in power of two) that each real value

is supposed to be (binary representation analogy).

B. Crossover and Local Search

The improvements (based on [2], with real values repre-

sentation) done here concern the definition of a particular

crossover operator, and the hybridization with a local search

method. According to [2], these improvements avoid a prema-

ture convergence and, on the other hand, avoid a convergence

too slow.

The upgr2 algorithm, based on algorithm GA(cr2, l) in [2]

(crossover rule n◦2 with local search), is the following:

Step 1 Generate a population of N individuals and evaluate

their fitness.

Step 2 Select N ′
2 triplets of parents (N ′ ≤ N , N ′ even) with

a tournament selection with 2 players. A same parent

can be selected twice in the same triplet.

Step 3 Generate N ′ children (N ′ even) from triplets of par-

ents with help of a crossover operator defined below

(always applied), each triplet of parents generates

two children. Each variable of N ′ children has a

probability Pm to be affected by the mutation operator.

Step 4 Evaluate the fitness of the children.

Step 5 Reverse replacement: the best R · 100% children re-

place the worst individuals of the current population.

Step 6 Local search (optional). Return to Step 2.

The crossover operator is defined, for each variable i, with

X1, X2 and X3 the three parents, X3 is the parent with the

worst fitness, and Y1 and Y2 the two children:

Y1,i =
X1,i + X2,i

2
+ σi

(
X1,i + X2,i

2
−X3,i

)
(3)

Y2,i = X1,i + Φi(X2,i −X3,i) (4)

with σi a uniform random number in [0; 1] and Φi a uniform

random number in [0.4; 1] for each i.
The mutation operator, for a given variable i, is defined at

generation k as:

X ′
i =

{
Xi + Δ(k, bi − xi) if τ = 0
Xi −Δ(k, xi − ai) if τ = 1 (5)

where τ is a random bit that can take either 0 or 1, and

Δ(k, y) = y
(
1− r(1−

k
T)b)

(6)

where r is a random number in [0, 1], T is the maximal

number of individual generations and b is a specified parameter

by the user that determines the non-uniformity degree in the

search domain (typically, b = 5).

Local search works as follows: select an individual Y , not

the best individual Xl, in the current population. Generate a

new testing individual Xn. If the new fitness Fn < fitness Fh

of the worst individual Xh, then Xh and Fh are replaced

respectively by Xn and Fn. Repeat the process lr (local

searches specified by user) times.

Each component of Xn is calculated as follows:

Xn,i = (1− γi)Xl,i − γiYi (7)

γi ∈ [−0.5, 1.5] uniform random numbers for each i.

C. Combination of Both Improvements

Given that the two improvements are of concern of each

separate part of the GA (the conditional operators application

rules, and the crossover operator with an added local search

strategy), the combination of the two improvements gives a

more efficient algorithm than the two improvements taken

separately. Moreover, that algorithm generalizes the selection

method in the sense that a method among others (tournament,

wheel, etc.) can be specified by the user.

Thus, the algorithm upg12 arises in the following manner:

Step 1 Generate a population of N individuals and evaluate

the fitness of each individual.

Step 2 Select N ′
2 triplets of parents (N ′ ≤ N , N ′ even) with

a chosen selection method (eg. tournament). A same

parent can be selected twice in the same triplet.

Step 3 Evaluate the triplets di,mean, defined as the mean

of the difference-degrees di,12, di,23 and di,31 of the

parents taken two by two of each triplet.

Step 4 If di,mean < Ds,mean for a given triplet , the three

parents suffer each one a mutation following Eq. (2)

(does not depend on any probabilistic parameter to be

specified) and back to Step 3. Else, next step.

Step 5 Generate N ′ children (N ′ even) from the triplets of

parents with the crossover operator (always applied)

defined by Eq. (3) & (4), each triplet of parents

generates two children. No more mutation operator is

any applied. Let us note that the crossover operator,

that needs the parents fitness as inputs, uses here the

fitness of the parents evaluated before any mutation at

Step 4; indeed, this approximation is useful to avoid

a very large number of objective function evaluations

and does not spoil the algorithm results in a significant

manner.

Step 6 Evaluate the children fitness.

Step 7 Reverse replacement: the R · 100% best children re-

place the worst individuals of the current population.

12

1

2

3

4
5 6

7 8 9 10 11

Fig. 2. 2D Axi-symmetric Ultrasonic Transducer Model

Step 8 Local search (optional). Return to Step 2.

In this algorithm, the imposed difference-degree Ds,mean

depends on other parameters than a constant factor multipli-

cation μ. Indeed, a correspondence between Ds,mean and the

mutation operator defined at Eq. (5) is set up. More precisely,

the imposed mean difference-degree di,mean in triplet of

parents has to be of the same order as a variable (or allele)

mutation of one of the three parents according to Eq. (5). Thus

Ds,mean is given by:

Ds,mean =
1
3p
·
(
1− 0.5(1− k

T)b)
,

with p the number of variables of an individual.

The present solution, although it seems to have a superfluous

complexity degree, reveals to be more efficient than other

possibilities considered with the difference-degree Ds evolving

with the cooling rate μ.

III. TRANSDUCER OPTIMIZATION

The GA optimization routines are developed with MATLAB

software combined with finite element (FE) simulations in

ANSYS used to maximize the vibrational displacement am-

plitude of the cutting tip at the resonance frequency fr and

the vibrational displacement along the actuator.

A. Transducer Model

An ultrasonic transducer model (Figure 2) composed of a

piezoelectric stack (3), eight mechanical transmission parts (1,

2, 4, 6, 8, 9, 10, 12) and three exponential horns (5, 7, 11) for

the movement amplification is defined.

B. Optimization Parameters

The transducer has eleven geometric parameters to be

optimized, that are diameters ODi or lengths Li , cf. values

in square brackets in Table I.

The materials for that case are chosen but could also

be optimized. The piezoelectric stack is composed by eight

discs of PZ-28 material. All other metal parts are made of

titanium TI-6Al-4V-STA. The resonance frequency fr is fixed

at 22.5 kHz and the applied voltage Va to the piezoelectric

stack is 100 V.

IV. RESULTS AND DISCUSSION

In less than 5000 function evaluations (ANSYS simula-

tions), at the resonant frequency fr of 22.5 kHz, the GA

optimizations give an amplitude of the cutting tip of about

4.8 μm and the total length of the transducer is about 340 mm.

The used algorithm is upg12.

TABLE I
PARAMETERS DIMENSIONS TO BE OPTIMIZED

i Li [mm] ODi [mm] IDi [mm] Material
1 [5; 50] 15 0 TI-6Al-4V-STA
2 L3 6 ID1 TI-6Al-4V-STA
3 24.9 OD1 7 PZ-28
4 [2; 50] OD3 ID2 TI-6Al-4V-STA
5 [5; 50] - ID4 TI-6Al-4V-STA
6 [5; 50] [OD8; OD4] ID5 TI-6Al-4V-STA
7 [5; 50] - ID6 TI-6Al-4V-STA
8 [5; 50] 6.35 ID7 TI-6Al-4V-STA
9 [5; 200] OD8 ID8 TI-6Al-4V-STA
10 [5; 50] OD9 ID9 TI-6Al-4V-STA
11 [5; 50] - ID10 TI-6Al-4V-STA
12 [5; 40] 3.4 ID11 TI-6Al-4V-STA

fr = 25 kHz ; Va = 100 V

Fig. 3. 3D View of the Optimized Transducer

0 500 1000 1500 2000
−5

−4

−3

−2

−1

0
x 10−6Ranked objective values for each generation (lin)

generation

ob
je

ct
iv

e
va

lu
e

0 500 1000 1500 2000
−8

−6

−4

−2

0
Diversity (average normalized metric distance, log)

generation

di
ve

rs
ity

 v
al

ue
 (l

og
10

 s
ca

le
)

Fig. 4. Diversity and Objective Values

A 3D view of the optimized transducer is shown in Figure 3

with the piezoelectric stack represented in green color.

The optimized transducer parameters are summarized in

Table II.

TABLE II
OPTIMIZED PARAMETERS RESULTS

L1 = 45.89 [mm] L4 = 9.49 [mm] L5 = 13.20 [mm]
L6 = 28.79 [mm] OD6 = 7.55 [mm] L7 = 38.86 [mm]
L8 = 31.23 [mm] L9 = 43.05 [mm] L10 = 35.20 [mm]
L11 = 30.94 [mm] L12 = 39.28 [mm]

The objective function, corresponding to the vibrational

amplitude displacement calculated in ANSYS, evolution and

the diversity through the generations are shown in Figure 4.

The number of generations (1663) depends on the specified

or desired parameters for each algorithm (number of parents,

children, local search), and is different from the number of

function evaluations (5000).

At the resonant frequency fr of 22.5 kHz, the harmonic

displacement in the transducer nodes in the y-axis direction is

shown in Figure 5. The amplitude of the cutting tip is about

4.8 μm.

The transducer has three nodes where there is no vibrational

amplitude and that are very useful to hold the transducer in

0 0.05 0.1 0.15 0.2 0.25 0.3
−5

−4

−3

−2

−1

0

1

2

Transducer Length [mm]

V
ib

ra
tio

na
l A

m
pl

itu
de

 (Y
−a

xi
s)

 [μ
m

]

Vibrational Amplitude vs. Length

ℜ UY

Fig. 5. Real Amplitude Displacement in Transducer Nodes

15 20 25 30
−5

−4

−3

−2

−1

0

1

2

3

4

5

Frequency [kHz]

V
ib

ra
tio

na
l A

m
pl

itu
de

 (Y
−a

xi
s)

 [μ
m

]

Vibrational Amplitude vs. Frequency

ℜ UY

Fig. 6. Harmonic Frequency Response

ones hands. The position of nodes in the transducer can only

be seen in Figure 5.

It is also relevant to verify the resonant modes of the

transducer near the resonant frequency to avoid disturbing

modes. The frequency analysis between 15 kHz and 30 kHz

is shown in Figure 6.

V. CONCLUSION

In this paper, three genetic algorithms have been presented.

An ultrasonic transducer model has been defined and opti-

mized with GA and FE simulations.

In a previous work [3], an optimization of a piezoelectric

transducer has been done with a pseudo-gradient method

based on an analytical developed model. When comparing the

vibration amplitude with the two methods (pseudo-gradient

and genetic algorithms), the results are almost the same. The

advantage of the GA resides in the low number of simulations

needed to obtain good results. Which makes optimizations of

full FE models truly envisioned.

REFERENCES

[1] R.-L. Wang and K. Okazaki, “An improved genetic algorithm with con-
ditional genetic operators and its application to set-covering problem,”
Soft Comput., vol. 11, pp. 687–694, 2007.

[2] M. Ali and P. Kaelo, “Integrated crossover rules in real coded genetic
algorithms,” Eur. J. Oper. Res., vol. 176, pp. 60–76, 2007.

[3] J. Murphy, D. Porto, and Y. Perriard, “Ultrasonic transducer model for
optimization of a spinal tissue ablation system,” in Industry Applications
Conference, 2006. 41st IAS Annual Meeting. Conference Record of the
2006 IEEE, vol. 1, Oct. 2006, pp. 379–384.

[4] A. Lemonge and H. Barbosa, “An adaptive penalty scheme for genetic
algorithms in structural optimization,” Int. J. Numer. Methods Eng.,
vol. 59, pp. 703–736, 2004.

[5] H. Maaranen, K. Miettinen, and A. Penttinen, “On initial populations of
a genetic algorithm for continuous optimization problems,” J. of Global
Optim., vol. 37, pp. 405–436, 2007.

[6] Matlab, Genetic Algorithm and Direct Search Toolbox 2, User’s Guide,
2007, www.mathworks.com.

[7] C. Moon, J. Kim, G. Choi, and Y. Seo, “An efficient genetic algorithm
for the traveling salesman problem with precedence constraints,” Eur. J.
Oper. Res., vol. 140, pp. 606–617, 2002.

[8] T. Schaffter, “Optimisation d’un moteur synchrone à l’aide d’algorithmes
génétiques,” 2007, projet de Semestre, EPFL.

[9] L. Snyder and M. Daskin, “A random-key genetic algorithm for the
generalized traveling salesman problem,” Eur. J. Oper. Res., vol. 174,
pp. 38–53, 2006.

[10] ANSYS Academic Research 11 version, ANSYS Inc., 2007.

