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Introduction

Consider the problem of recovering some real original data c0 from noisy real measurements:

m = Ec0 + b. (1)

The M ×N matrix real E represents the linear forward model and b is the vector representing both model mismatch and
noise.

The original data and the measurements do not necessarily have the same size (i.e. the matrix E can be rectangular).

A popular way to define the solution c̃ of this inverse problem is:

c̃ = arg min
c
‖m − Ec‖2

`2 + λ ‖Rc‖p`p . (2)

The matrix R is often chosen as a differential operator: finite differences, wavelet analysis. The parameter λ balances the
effect of the two terms: the fidelity to the data and to the a priori .

Quadratic regularization corresponds to p = 2 and leads to the linear solution: c̃ = (EHE + λRHR)
†
EHm.

Non-linear solutions with p 6 2 are often preferred when the reconstruction problem is severely ill-conditioned.

Here we study the Iteratively Reweighted Least-Squares (IRLS) method that solve such non-quadratic minimization problem.

For starters, let us rewrite the problem as

x̃ = arg min
x
‖m − Lx‖2

`2 + λ ‖x‖p`p , (3)

with L = ER−1 and c̃ = R−1x̃.

In the sequel, we define the cost function C(x) = ‖m − Lx‖2
`2 + λ ‖x‖p`p .

1 Quadratic upper-bound

The goal of this section is to define a quadratic upper-bound Q of C, adapted to a point x∗. Here are the constraints we want
to impose:

1. Q is a quadratic term,

2. Same values at point x∗: Q(x∗) = C(x∗),

3. Same gradients at point x∗: ∇xQ(x∗) = ∇xC(x∗),

4. Q upper bounds C: ∀x 6= x∗ Q(x) > C(x)

Considering constraint 1, the data fidelity term ‖m − Lx‖2
`2 is kept. Only the regularization term ‖x‖p`p needs a local

quadratic approximation. To begin with, remark that:

‖x∗‖p`p = ‖x∗‖2
D , (4)
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where ‖x‖M = 〈x , Mx〉 denotes a weighted `2-norm and D is a diagonal positive-definite matrix whose elements are
di = |x∗i |

p−2.

Thus, we define Q as:
Q(x) = ‖m − Lx‖2

`2 + λ
(
α ‖x‖2

D + β
)
. (5)

The conditions 2 and 3 impose α = p
2 and β = (1 − p

2 ) ‖x∗‖p`p .

We have
Q(x) = ‖m − Lx‖2

`2 +
λp

2
‖x‖2

D + λ
(
1 −

p

2

)
‖x∗‖p`p . (6)

Proposition 1. If p < 2, the function Q, as defined in Eq. 6, is an upper-bound of C. They join only at point x = x∗.

Proof. Let note ai = x2
i and bi = (x∗i )

2. We can write:

Q∗(x) − C(x) =
λp

2
‖x‖2

D + λ
(
1 −

p

2

)
‖x∗‖p`p − λ ‖x‖p`p (7)

= λ
∑
i

[p
2 (bi)

p/2−1ai + (1 −
p

2 )(bi)
p/2 − (ai)

p/2
]

(8)

If p < 2 then (a)p/2 < p
2 (b)p/2−1a + (1 − p

2 )(b)p/2 ∀a 6= b ∈ R+. Indeed, if p < 2 the function f : R+ → R+ such that
f(a) = (a)p/2 is stricly concave and upper-bounded by its tangent at every point b ∈ R+: g(a) = f(b) + f ′(b).(a − b) =
p
2 (b)p/2−1a+ (1 − p

2 )(b)p/2.

As a consequence, if p < 2 we have Q∗(x) > C(x) ∀x 6= x∗.

2 Iterative minimization

In the previous section, we upper-bounded the cost function C with a well-suited function Q that mimics its local behaviour
at a point x∗. The idea is now to iteratively update the upper-bound Q(n) with the weights D(n) depending on the current
estimate x(n).

The next estimate x(n+1) is defined as the minimizer of Q(n). As the latter function is quadratic, we get the linear solution:
x(n+1) = (LHL + λp

2 D(n))
†
LHm.

The algorithm is defined as follows:

• Initialize x(0).

While convergence is not reached

• D(n) = diag
(
|x(n)|p−2),

• x(n+1) = (LHL + λp
2 D(n))

†
LHm.

End while

Proposition 2. If p > 1, the solution x̃ is a fixed-point of the algorithm.

Proof. If p > 1, C is differentiable and admits a unique minimizer x̃. We have the following property: ∇xC(x̃) = 0. This
yields 2LHLx̃ − 2LHm + pD∗x̃ = 0, with D∗ = diag (|x̃|p−2). The latter rewrites x̃ = (LHL + λp

2 D∗)
†
LHm.

Proposition 3. If p < 2, as long as x(n+1) 6= x(n), we have C(x(n+1)) < C(x(n)).

Proof. By definition of x(n+1), we have Q(n)(x(n+1)) 6 Q(n)(x(n)). From constraint 2, Q(n)(x(n)) = C(x(n)). From constraint
4, we get C(x(n+1)) < Q(n)(x(n+1)).

Under the assumptions of Propositions 4 and 3 the serie x(n) is proven to converge to x̃. Consequently, if 1 < p < 2 the
IRLS method solves the minimization problem (3).
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3 IRLS for wavelet regularization

Many natural-looking images, in particular the ones obtained through MRI scanners, have sparse approximations in the
wavelet domain. It is then logical to try to exploit this sparsity a priori to make the inverse problem better conditioned.

In this Section, we condider the particular case where the regularization operator is an orthonormal wavelet transform, i.e.
R = W and W−1 = WH (W is a unitary matrix).

Proposition 4. If the matrix D is invertible, the image reconstruction matrix WH(LHL + λp
2 D)

−1
LH presented in Section

2 can be rewritten: (
EHE +

λp

2 WHDW

)−1
EH (9)

The algorithm can also be presented in the image domain:

• Initialize c(0).

While convergence is not reached

• D(n) = diag
(
|Wc(n)|p−2),

• c(n+1) = (EHE + λp
2 W−1D(n)W)

†
EHm.

End while
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