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Introduction

Consider the problem of recovering some real original data ¢y from noisy real measurements:
m==Ecy+Db. (1)

The M x N matrix real E represents the linear forward model and b is the vector representing both model mismatch and
noise.

The original data and the measurements do not necessarily have the same size (i.e. the matrix E can be rectangular).

A popular way to define the solution ¢ of this inverse problem is:

¢ = arg min |[m — Ec|%. + A[Re[f, - (2)
The matrix R is often chosen as a differential operator: finite differences, wavelet analysis. The parameter A balances the
effect of the two terms: the fidelity to the data and to the a priori .

Quadratic regularization corresponds to p = 2 and leads to the linear solution: ¢ = (EHE + ARHR) EHm.
Non-linear solutions with p < 2 are often preferred when the reconstruction problem is severely ill-conditioned.
Here we study the Iteratively Reweighted Least-Squares (IRLS) method that solve such non-quadratic minimization problem.

For starters, let us rewrite the problem as
% = arg min [m — L% + A x| 3)

with L=ER™! and ¢ = R™X.

In the sequel, we define the cost function G(x) = [|m — Lx||% + A ||x||D, .

1 Quadratic upper-bound

The goal of this section is to define a quadratic upper-bound Q of C, adapted to a point x*. Here are the constraints we want
to impose:

1. Q is a quadratic term,

2. Same values at point x*: Q(x*) = C(x*),

3. Same gradients at point x*: VxQ(x*) = VxC(x*),

4. Q upper bounds C: ¥x #x* Q(x) > C(x)

Considering constraint 1, the data fidelity term ||m — Lx|% is kept. Only the regularization term |x||}, needs a local
quadratic approximation. To begin with, remark that:

2
I lEs = X" llp » (4)


http://www.cmla.ens-cachan.fr/fileadmin/Membres/nikolova/Courses.html

where [[x||py = (x, Mx) denotes a weighted {*>-norm and D is a diagonal positive-definite matrix whose elements are
i = i

Thus, we define Q as:
= |[m = Lxl A (e lixll, +B) - (5)

The conditions 2 and 3 impose o« = § and = (1 — 5) [|x*||}»

We have
Q%) = flm — Ll + 2 el +A (1= 2) I 5 (6)

Proposition 1. Ifp < 2, the function Q, as defined in Eq. 0, is an upper-bound of €. They join only at point x = x*.
Proof. Let note a; = x? and by = (x})2. We can write:

()~ = el +A (1= 2) I Al 7)
AZ[ 072 as+ (1 D)6/ — (ai)”?] (®)

If p < 2 then (a)P/? < B(b)P/2la+ (1—5)(b)P/? Va #b € R". Indeed, if p < 2 the function f : R" — R such that
f(a) = (a)P/? is stricly concave and upper-bounded by its tangent at every point b € R*: g(a) = f(b) + f'(b).(a — b) =
B(o)P/2 10+ (1- 5)(b)P/”.

As a consequence, if p < 2 we have Q*(x) > C(x) Vx # x*. O

2 Iterative minimization

In the previous section, we upper-bounded the cost function € with a well-suited function Q that mimics its local behaviour
at a point x*. The idea is now to iteratively update the upper-bound Q™) with the weights D™ depending on the current
estimate x(™).

The next estimate x(™*1) is defined as the minimizer of Q™). As the latter function is quadratic, we get the linear solution:

A T
x(H = (LML + 22D™M) LHm
The algorithm is defined as follows:
e Initialize x(9).
While convergence is not reached
e D™ = diag (]x(™P~2),
o x(n 1 = (LHL 4 2D M) LHm
End while
Proposition 2. Ifp > 1, the solution X is a fized-point of the algorithm.
Proof. If p > 1, € is differentiable and admits a unique minimizer X. We have the following property: VxC(x) = 0. This
yields 2LHLX — 2LHm + pD*x = 0, with D* = diag (x|P~2). The latter rewrites x = (LHL + %D*)TLHm. O

Proposition 3. Ifp < 2, as long as x™ Y £ x™  we have C(x(M+1)) < e(x(™)).

Proof. By definition of x("*1) | we have Q™) (x("*1) < Q™) (x(™)) From constraint 2, Q™) (x(™)) = €(x(™)). From constraint
4, we get C(x(M D) < Q) (x(n+1)y, O

Under the assumptions of Propositions 4 and 3 the serie x(™) is proven to converge to Xx. Consequently, if 1 < p < 2 the
IRLS method solves the minimization problem (3).



3 IRLS for wavelet regularization

Many natural-looking images, in particular the ones obtained through MRI scanners, have sparse approximations in the
wavelet domain. It is then logical to try to exploit this sparsity a priori to make the inverse problem better conditioned.

In this Section, we condider the particular case where the regularization operator is an orthonormal wavelet transform, i.e.
R =W and W ! = WH (W is a unitary matrix).

Proposition 4. If the matriz D is invertible, the image reconstruction matric W5 (LHL 4 }‘T‘DD)ALH presented in Section
2 can be rewritten:

A -1
<EHE + ;WHDW> 2 (9)
The algorithm can also be presented in the image domain:

e Initialize c(©).
While convergence is not reached

e D™ = diag (\Wc(“)\p”),

o clnt1 — (EME 4 22W- DM W) 'Elim,
End while
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