Iteratively Reweighted Least-Squares solutions for non-linear reconstruction

Matthieu Guerquin-Kern

April 5, 2009

As a main reference: positive form of the half-quadratic minimization in Optimisation course of Mila Nikolova. First works on half-quadratic minimization: D. Geman and C. Yang, Nonlinear image recovery with half-quadratic regularization, *IEEE Transactions on Image Processing*, IP-4 (1995), pp. 932–946.

Introduction

Consider the problem of recovering some real original data c_0 from noisy real measurements:

$$\mathbf{m} = \mathbf{E}\mathbf{c}_0 + \mathbf{b}. \tag{1}$$

The $M \times N$ matrix real E represents the linear forward model and b is the vector representing both model mismatch and noise.

The original data and the measurements do not necessarily have the same size (i.e. the matrix E can be rectangular).

A popular way to define the solution $\tilde{\mathbf{c}}$ of this inverse problem is:

$$\widetilde{c} = \arg\min_{c} \|\mathbf{m} - \mathbf{E}\mathbf{c}\|_{\ell^{2}}^{2} + \lambda \|\mathbf{R}\mathbf{c}\|_{\ell^{p}}^{p}. \tag{2}$$

The matrix \mathbf{R} is often chosen as a differential operator: finite differences, wavelet analysis. The parameter λ balances the effect of the two terms: the fidelity to the data and to the *a priori*.

Quadratic regularization corresponds to $\mathfrak{p}=2$ and leads to the linear solution: $\widetilde{\mathfrak{c}}=(\mathsf{E}^H\mathsf{E}+\lambda\mathsf{R}^H\mathsf{R})^\dagger\mathsf{E}^H\mathsf{m}.$

Non-linear solutions with $p \leq 2$ are often preferred when the reconstruction problem is severely ill-conditioned.

Here we study the Iteratively Reweighted Least-Squares (IRLS) method that solve such non-quadratic minimization problem.

For starters, let us rewrite the problem as

$$\widetilde{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}} \|\boldsymbol{m} - \boldsymbol{L}\boldsymbol{x}\|_{\ell^2}^2 + \lambda \|\boldsymbol{x}\|_{\ell^p}^p , \qquad (3)$$

with $\mathbf{L} = \mathbf{E} \mathbf{R}^{-1}$ and $\widetilde{\mathbf{c}} = \mathbf{R}^{-1} \widetilde{\mathbf{x}}$.

In the sequel, we define the cost function $\mathfrak{C}(x) = \|m - Lx\|_{\ell^2}^2 + \lambda \|x\|_{\ell^p}^p$.

1 Quadratic upper-bound

The goal of this section is to define a quadratic upper-bound Q of C, adapted to a point \mathbf{x}^* . Here are the constraints we want to impose:

- 1. Q is a quadratic term,
- 2. Same values at point \mathbf{x}^* : $Q(\mathbf{x}^*) = \mathcal{C}(\mathbf{x}^*)$,
- 3. Same gradients at point \mathbf{x}^* : $\nabla_{\mathbf{x}} \Omega(\mathbf{x}^*) = \nabla_{\mathbf{x}} \mathcal{C}(\mathbf{x}^*)$,
- 4. Q upper bounds $\mathcal{C}: \forall \mathbf{x} \neq \mathbf{x}^* \quad \mathcal{Q}(\mathbf{x}) > \mathcal{C}(\mathbf{x})$

Considering constraint 1, the data fidelity term $\|\mathbf{m} - \mathbf{L}\mathbf{x}\|_{\ell^2}^2$ is kept. Only the regularization term $\|\mathbf{x}\|_{\ell^p}^p$ needs a local quadratic approximation. To begin with, remark that:

$$\|\mathbf{x}^*\|_{\ell_P}^p = \|\mathbf{x}^*\|_{\mathbf{D}}^2,$$
 (4)

where $\|\mathbf{x}\|_{\mathbf{M}} = \langle \mathbf{x}, \mathbf{M}\mathbf{x} \rangle$ denotes a weighted ℓ^2 -norm and \mathbf{D} is a diagonal positive-definite matrix whose elements are $d_i = |\mathbf{x}_i^*|^{p-2}$.

Thus, we define Q as:

$$Q(\mathbf{x}) = \|\mathbf{m} - \mathbf{L}\mathbf{x}\|_{\ell^{2}}^{2} + \lambda \left(\alpha \|\mathbf{x}\|_{\mathbf{D}}^{2} + \beta\right). \tag{5}$$

The conditions 2 and 3 impose $\alpha = \frac{p}{2}$ and $\beta = (1 - \frac{p}{2}) \|\mathbf{x}^*\|_{\ell^p}^p$.

We have

$$Q(\mathbf{x}) = \|\mathbf{m} - \mathbf{L}\mathbf{x}\|_{\ell^{2}}^{2} + \frac{\lambda p}{2} \|\mathbf{x}\|_{\mathbf{D}}^{2} + \lambda \left(1 - \frac{p}{2}\right) \|\mathbf{x}^{*}\|_{\ell^{p}}^{p}.$$
(6)

Proposition 1. If p < 2, the function Q, as defined in Eq. 6, is an upper-bound of C. They join only at point $\mathbf{x} = \mathbf{x}^*$.

Proof. Let note $a_i = x_i^2$ and $b_i = (x_i^*)^2$. We can write:

$$Q^*(\mathbf{x}) - \mathcal{C}(\mathbf{x}) = \frac{\lambda p}{2} \|\mathbf{x}\|_{\mathbf{D}}^2 + \lambda \left(1 - \frac{p}{2}\right) \|\mathbf{x}^*\|_{\ell^p}^p - \lambda \|\mathbf{x}\|_{\ell^p}^p$$

$$(7)$$

$$= \lambda \sum_{i} \left[\frac{p}{2} (b_{i})^{p/2-1} a_{i} + (1 - \frac{p}{2}) (b_{i})^{p/2} - (a_{i})^{p/2} \right]$$
 (8)

If p < 2 then $(a)^{p/2} < \frac{p}{2}(b)^{p/2-1}a + (1-\frac{p}{2})(b)^{p/2} \quad \forall a \neq b \in \mathbb{R}^+$. Indeed, if p < 2 the function $f : \mathbb{R}^+ \to \mathbb{R}^+$ such that $f(a) = (a)^{p/2}$ is strictly concave and upper-bounded by its tangent at every point $b \in \mathbb{R}^+$: $g(a) = f(b) + f'(b) \cdot (a - b) = \frac{p}{2}(b)^{p/2-1}a + (1-\frac{p}{2})(b)^{p/2}$.

As a consequence, if
$$p < 2$$
 we have $Q^*(x) > C(x) \quad \forall x \neq x^*$.

2 Iterative minimization

In the previous section, we upper-bounded the cost function \mathcal{C} with a well-suited function \mathcal{Q} that mimics its local behaviour at a point \mathbf{x}^* . The idea is now to iteratively update the upper-bound $\mathcal{Q}^{(n)}$ with the weights $\mathbf{D}^{(n)}$ depending on the current estimate $\mathbf{x}^{(n)}$.

The next estimate $\mathbf{x}^{(n+1)}$ is defined as the minimizer of $Q^{(n)}$. As the latter function is quadratic, we get the linear solution: $\mathbf{x}^{(n+1)} = (\mathbf{L}^H \mathbf{L} + \frac{\lambda p}{2} \mathbf{D}^{(n)})^{\dagger} \mathbf{L}^H \mathbf{m}$.

The algorithm is defined as follows:

• Initialize $\mathbf{x}^{(0)}$.

While convergence is not reached

- $\mathbf{D}^{(n)} = \text{diag}(|\mathbf{x}^{(n)}|^{p-2}),$
- $\mathbf{x}^{(n+1)} = (\mathbf{L}^H \mathbf{L} + \frac{\lambda p}{2} \mathbf{D}^{(n)})^{\dagger} \mathbf{L}^H \mathbf{m}$.

End while

Proposition 2. If $\mathfrak{p} > 1$, the solution $\widetilde{\mathbf{x}}$ is a fixed-point of the algorithm.

Proof. If $\mathfrak{p} > 1$, \mathfrak{C} is differentiable and admits a unique minimizer $\widetilde{\mathbf{x}}$. We have the following property: $\nabla_{\mathbf{x}}\mathfrak{C}(\widetilde{\mathbf{x}}) = \mathbf{0}$. This yields $2\mathbf{L}^H\mathbf{L}\widetilde{\mathbf{x}} - 2\mathbf{L}^H\mathbf{m} + \mathfrak{p}\mathbf{D}^*\widetilde{\mathbf{x}} = \mathbf{0}$, with $\mathbf{D}^* = \operatorname{diag}(|\widetilde{\mathbf{x}}|^{\mathfrak{p}-2})$. The latter rewrites $\widetilde{\mathbf{x}} = (\mathbf{L}^H\mathbf{L} + \frac{\lambda \mathfrak{p}}{2}\mathbf{D}^*)^{\dagger}\mathbf{L}^H\mathbf{m}$.

Proposition 3. If p < 2, as long as $\mathbf{x}^{(n+1)} \neq \mathbf{x}^{(n)}$, we have $\mathcal{C}(\mathbf{x}^{(n+1)}) < \mathcal{C}(\mathbf{x}^{(n)})$.

Proof. By definition of $\mathbf{x}^{(n+1)}$, we have $Q^{(n)}(\mathbf{x}^{(n+1)}) \leq Q^{(n)}(\mathbf{x}^{(n)})$. From constraint 2, $Q^{(n)}(\mathbf{x}^{(n)}) = \mathcal{C}(\mathbf{x}^{(n)})$. From constraint 4, we get $\mathcal{C}(\mathbf{x}^{(n+1)}) < Q^{(n)}(\mathbf{x}^{(n+1)})$.

Under the assumptions of Propositions 4 and 3 the serie $\mathbf{x}^{(n)}$ is proven to converge to $\widetilde{\mathbf{x}}$. Consequently, if $1 < \mathfrak{p} < 2$ the IRLS method solves the minimization problem (3).

3 IRLS for wavelet regularization

Many natural-looking images, in particular the ones obtained through MRI scanners, have sparse approximations in the wavelet domain. It is then logical to try to exploit this sparsity a priori to make the inverse problem better conditioned.

In this Section, we condider the particular case where the regularization operator is an orthonormal wavelet transform, *i.e.* $\mathbf{R} = \mathbf{W}$ and $\mathbf{W}^{-1} = \mathbf{W}^{\mathrm{H}}$ (\mathbf{W} is a unitary matrix).

Proposition 4. If the matrix **D** is invertible, the image reconstruction matrix $\mathbf{W}^H(\mathbf{L}^H\mathbf{L} + \frac{\lambda \mathbf{p}}{2}\mathbf{D})^{-1}\mathbf{L}^H$ presented in Section 2 can be rewritten:

$$\left(\mathsf{E}^{\mathrm{H}}\mathsf{E} + \frac{\lambda \mathsf{p}}{2} \mathbf{W}^{\mathrm{H}} \mathsf{D} \mathbf{W}\right)^{-1} \mathsf{E}^{\mathrm{H}} \tag{9}$$

The algorithm can also be presented in the image domain:

• Initialize $\mathbf{c}^{(0)}$.

While convergence is not reached

- $\mathbf{D}^{(n)} = \operatorname{diag}(|\mathbf{W}\mathbf{c}^{(n)}|^{p-2}),$
- $\mathbf{c}^{(n+1)} = (\mathbf{E}^{\mathrm{H}}\mathbf{E} + \frac{\lambda p}{2}\mathbf{W}^{-1}\mathbf{D}^{(n)}\mathbf{W})^{\dagger}\mathbf{E}^{\mathrm{H}}\mathbf{m}.$

End while