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Abstract

In this draft, we try to explain the common formulation of the signal in MRI. We start from the physics
and explain the assumptions and tricks that are necessary. As a reference, we suggest the book by Haacke
& Brown: MRI Physical Principles and Sequence Design

1 Original signal

We consider a distribution over space of rotating magnetization vectors M(r, t) that correspond to the Free
Induction Decay of an MR experiment. The z component that is along the static field is supposed to be
constant (the time of acquisition is small compared to T1). For a given location, the components in x and y
are sines in quadrature. We introduce a complex notation to represent them: M(r, t) = Mx(r, t) + jMy(r, t) =

M(r, 0)e−j
∫ t

0
ω(r,τ) dτ .

2 Physics: coil sensitivity

To measure a signal that is representative of the magnetization, we use a coil. We precessing magnetization will
produce a time-varying magnetic field and then an electromotive force (emf) in the coil.

Equivalent current First, the magnetization distribution admits an equivalent current distribution:

JM(r, t) =∇∇∇×M(r, t). (1)

Magnetic vector potential This current distribution generate a magnetic vector potential:

A(r, t) = µ0

4π

∫
R3

JM(r′, t)
‖r− r′‖

d3r′. (2)

Here, we choose the Coulomb gauge ( ∇∇∇ ·A = 0 ) and neglected propagation times (the propagation speed is
more or less the speed of light).
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http://en.wikipedia.org/wiki/Coulomb_gauge#Coulomb_gauge


2 PHYSICS: COIL SENSITIVITY

Magnetic field The magnetic field is then given by B(r, t) =∇∇∇×A(r, t).

Flux The flux of magnetic field through the coil surface Cγ is

Φγ(t) =
∫
Cγ

B(r, t) · d2S =
∮
∂Cγ

A(r, t) · dr, (3)

where we used Stokes’s theorem for the second term.

Using the relation∇∇∇×(av) = (∇∇∇a)×v+a∇∇∇×v, and the triple product rules, we can develop the flux expression:

Φγ(t) =
∮
∂Cγ

µ0

4π

∫
R3

JM(r′, t)
‖r− r′‖

d3r′ · dr = µ0

4π

∫
R3

∮
∂Cγ

∇∇∇r′ ×M(r′, t)
‖r− r′‖

· dr d3r′, (4)

= µ0

4π

∫
R3

∮
∂Cγ

(
∇∇∇r′ ×

M(r′, t)
‖r− r′‖

−
(
∇∇∇r′

1
‖r− r′‖

)
×M(r′, t)

)
· dr d3r′, (5)

= µ0

4π

∫
R3

∮
∂Cγ

((
−∇∇∇r′

1
‖r− r′‖

)
×M(r′, t) · dr

)
d3r′, (6)

= −µ0

4π

∫
R3

∮
∂Cγ

(
M(r′, t) · r− r′

‖r− r′‖3
× dr

)
d3r′, (7)

Φγ(t) =
∫

R3
M(r′, t) ·Bu

γ(r′) d3r′, (8)

where we define
Bu
γ(r′) = µ0

4π

∮
∂Cγ

dr× (r− r′)
‖r− r′‖3

, (9)

which corresponds exactly to the magnetic field that would be created at point r′ by an unit steady current
in the coil, according to the Biot-Savart law. The term ∇∇∇r′ × M(r′,t)

‖r−r′‖ disappears because the sample (which
is responsible for the magnetization) is assumed finite in space what allows to show that the integral over the
space annihilates (we suggest to use the curl form of the divergence theorem to show it).

Electromotive force The emf induced in the coil is

eγ(t) = − dΦγ
dt

(t) = − d
dt

∫
R3

(
Mx(r, t)Buγ,x(r) +My(r, t)Buγ,y(r) +Mz(r, t)Buγ,z(r)

)
d3r, (10)

We introduce the notation Sγ(r) = Buγ,x(r)− jBuγ,y(r). This is the so-called coil sensitivity.

Since the z component of the magnetization is supposed to be constant we have

eγ(t) ≈ − d
dt

∫
R3

(
Mx(r, t)Buγ,x(r) +My(r′, t)Buγ,y(r)

)
d3r (11)

≈ Re
(
− d

dt

∫
R3
M(r, t)Sγ(r) d3r

)
(12)

≈ Re
(

j
∫

R3
ω(r, t)M(r, 0)e−j

∫ t
0
ω(r,τ) dτ

Sγ(r) d3r
)

(13)

eγ(t) ≈ − Im
(
ω0

∫
R3
M(r, 0)e−j

∫ t
0
ω(r,τ) dτ

Sγ(r) d3r
)

(14)

(15)

We used the approximation ω(r, t) ≈ ω0, which is quite fair since ω0 is huge compared to the variations of
frequency1.

1for protons of gyroscopic ratio γ = 2.678e8rad.T1.s−1 with B0 = 1T, the Larmor frequency is f0 = 42.6MHz
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http://en.wikipedia.org/wiki/Stokes'_theorem
http://en.wikipedia.org/wiki/Triple_product
http://en.wikipedia.org/wiki/Biot-Savart_law
http://en.wikipedia.org/wiki/Divergence_theorem


4 ASSUMPTIONS SUMMARY

3 Signal processing: demodulation

The coil signal is not directly used. Since its frequency is concentrated around ω0, we would like to transpose
it in low-frequencies. This operation is the phase-sensitive demodulation and is analogeous to the receiver in
Quadrature Amplitude Modulation (QAM). We multiply the original signal by two sine at frequency Ω ≈ ω0
in quadrature and remove the high frequency components, thanks to an appropriate low-pass filtering. This
detection results in to signals sre(t) and sim(t) that can be seen as real and imaginary parts of a single complex-
valued signal sγ(t). Finally, the signal is linked with the magnetization

mγ(t) ≈ ω0

∫
R3
M(r, 0)e−j

∫ t
0

∆ω(r,τ) dτ
Sγ(r) d3r, (16)

where ∆ω(r, τ) = ω(r, τ)− ω0.

4 Assumptions summary

Description Formulae Comments
No propagation time for the magnetic field δt = FOV

c � 1 the sample has a small spatial extension
finite sample

∫
R3∇∇∇r′ × M(r′,t)

‖r−r′‖ d3r′ = 0 exact
static z component of the magnetization dMz

dt (r, t) ≈ 0 small acquisition time compared to T1

small variations in precessing frequency |1− ω(r,t)
ω0
| � 1 small bandwidth approximation

good demodulation carrier Ω ≈ ω0 fair
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http://en.wikipedia.org/wiki/Quadrature_amplitude_modulation#Receiver
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