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Abstract. In this paper, we characterize the class of extremal points of the unit ball
of the Hessian-Schatten total variation (HTV) functional. The underlying motivation for
our work stems from a general representer theorem that characterizes the solution set of
regularized linear inverse problems in terms of the extremal points of the regularization
ball. Our analysis is mainly based on studying the class of continuous and piecewise linear
(CPWL) functions. In particular, we show that in dimension d = 2, CPWL functions are
dense in the unit ball of the HTV functional. Moreover, we prove that a CPWL function
is extremal if and only if its Hessian is minimally supported. For the converse, we prove
that the density result (which we have only proven for dimension d = 2) implies that the
closure of the CPWL extreme points contains all extremal points.
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1. Introduction

Broadly speaking, the goal of an inverse problem is to reconstruct an unknown signal
of interest from a collection of (possibly noisy) observations. Linear inverse problems, in
particular, are prevalent in various areas of signal processing, such as denoising, impaint-
ing, and image reconstruction. They are defined via the specification of three principal
components: (i) a hypothesis space F from which we aim to reconstruct the unknown
signal f ∗ ∈ F ; (ii) a linear forward operator ν : F → RM that models the data acquisition
process; and, (iii) the observed data that is stored in an array y ∈ RM with the implicit
assumption that y ≈ ν(f ∗). The task is then to (approximately) reconstruct the unknown
signal f ∗ from the observed data y. From a variational perspective, the problem can be
formulated as a minimization of the form

f ∗ ∈ argmin
f∈F

(E (ν(f),y) + λR(f)) , (1)

where E : RM ×RM → R is a convex loss function that measures the data discrepancy, R :
F → R is the regularization functional that enforces prior knowledge on the reconstructed
signal, and λ > 0 is a tunable parameter that adjusts the two terms.
The use of regularization for solving inverse problems dates back to the 1960s, when

Tikhonov proposed a quadratic (ℓ2-type) functional for solving finite-dimensional prob-
lems [Tik63]. More recently, Tikhonov regularization has been outperformed by ℓ1-type
functionals in various settings [Tib96, DE03]. This is largely due to the sparsity-promoting
effect of the latter, in the sense that the solution of an ℓ1-regularized inverse problem can be
typically written as the linear combination of a few predefined elements, known as atoms
[Don06b, BDE09]. Sparsity is a pivotal concept in modern signal processing and consti-
tutes the core of many celebrated methods. The most notable example is the framework
of compressed sensing [CRT06, Don06a, EK12], which has brought lots of attention in the
past decades.

In general, regularization enhances the stability of the problem and alleviates its inherent
ill-posedness, especially when the hypothesis space is much larger than M . While this can
happen in the discrete setting (e.g. when F = Rd with d≫M), it is inevitable in the con-
tinuum where F is an infinite-dimensional space of functions. Since naturally occurring
signals and images are usually indexed over the whole continuum, studying continuous-
domain problems is, therefore, undeniably important. It thus comes with no surprise to
see the rich literature on this class of optimization problems. Among the classical examples
are the smoothing splines for interpolation [Sch88, Rei67] and the celebrated framework of
learning over reproducing kernel Hilbert spaces [Wah90, SHS01]. Remarkably, the latter
laid the foundation of numerous kernel-based machine learning schemes such as support-
vector machines [EPP00]. The key theoretical result of these frameworks is a “representer
theorem” that provides a parametric form for their optimal solutions. While these ex-
amples formulate optimization problems over Hilbert spaces, the representer theorem has
been recently extended to cover generic convex optimization problems over Banach spaces
[BCDC+19, BC20, Uns21, UA22]. In simple terms, these abstract results characterize the
solution set of (1) in terms of the extreme points of the unit ball of the regularization
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functional BR = {f ∈ F : R(f) ≤ 1}. Hence, the original problem can be translated in
finding the extreme points of the unit ball BR.

In parallel, Osher-Rudin-Fatemi’s total-variation has been systematically explored in the
context of image restoration and denoising [ROF92, Cha04, Get12]. The total-variation of
a differentiable function f : Ω → R can be computed as

TV(f) =

ˆ
Ω

∥∇f(x)∥ℓ2dx. (2)

The notion can be extended to cover non-differentiable functions using the theory of func-
tions with bounded variation [AFP00, CDDD03]. In this case, the representer theorem
states that the solution can be written as the linear combination of some indicator func-
tions [BC20]. This adequately explains the so called “stair-case effect” of TV regulariza-
tion. Subsequently, higher-order generalizations of TV regularization have been proposed
by Bredies et al. [BKP10, BH14, BH20]. Particularly, the second-order TV has been used
in various applications [HS06, BP10, KBPS11]. By analogy with (2), the second-order TV
is defined over the space of functions with bounded Hessian [Dem84]. In particular, it can
be computed for twice-differentiable functions f : Ω → R as

TV(2)(f) =

ˆ
Ω

∥∇2f(x)∥Fdx, (3)

where ∥ · ∥F denotes the Frobenius norm of a matrix. Lefkimiatis et al. generalized the
notion by replacing the Frobenius norm with any Schatten-p norm for p ∈ [1,+∞] [LWU13,
LU13]. While this had been only defined for twice-differentiable functions, it has been
recently extended to the space of functions with bounded Hessian [ACU21]. The extended
seminorm—the Hessian-Schatten total variation (HTV)—has also been used for learning
continuous and piecewise linear (CPWL) mappings [CAU21, PGU22]. The motivation and
importance of the latter stems from the following observations:

(1) The CPWL family plays a significant role in deep learning. Indeed, it is known
that the input-output mapping of any deep neural networks (DNN) with rectified
linear unit (ReLU) activation functions is a CPWL function [MPCB14]. Conversely,
any CPWL mapping can be exactly represented by a DNN with ReLU activation
functions [ABMM18]. These results provide a one-to-one correspondence between
the CPWL family and the input-output mappings of commonly used DNNs.

(2) For one-dimensional problems (i.e., when Ω ⊆ R), the HTV seminorm coincides
with the second-order TV. Remarkably, the representer theorem in this case states
that the optimal solution can be achieved by a linear spline; that is, a univariate
CPWL function. The latter suggests the use of TV(2) regularization for learning
univariate functions [SESS19, Uns19, AGCU20, BCG+20, DDUF21, AU22].

(3) It is known from the literature on low-rank matrix recovery that the Schatten-
1 norm (also known as the nuclear norm) promotes low rank matrices [DR16].
Hence, by using the HTV seminorm with p = 1, one expects to obtain a mapping
whose Hessian has low rank at most points, with the extreme case being the CPWL
family whose Hessian is zero almost everywhere.
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The aim of this paper is to identify the solution set of linear inverse problems with HTV reg-
ularization. Motivated by recent general representer theorems (see, [BCDC+19, UA22], we
focus on the characterization of the extreme points of the unit ball of the HTV functional.
After recalling some preliminary concepts (Section 2), we study the HTV seminorm and
its associated native space from a mathematical perspective (Section 3). Next, we prove
our main theoretical result on density of CPWL functions in the unit ball of the HTV
seminorm (Theorem 21) in Section 4. Finally, we invoke a variant of the Krein-Milman
theorem to characterize the extreme points of the unit ball of the HTV seminorm (Section
5).

2. Preliminaries

Throughout the paper, we shall use fairly standard notations for various objects, such as
function spaces and sets. For example, Ln and Hk denote the Lebesgue and k-dimensional
Hausdorff measures on Rn, respectively. Below, we recall some of the concepts that are
foundational for this paper.

2.1. Schatten norms.

Definition 1 (Schatten norm). Let p ∈ [1,+∞]. If M ∈ Rn×n and s1(M), . . . , sn(M) ≥ 0
denote the singular values of M (counted with their multiplicity), we define the Schatten
p-norm of M by

|M |p := ∥(s1(M), . . . , sn(M))∥ℓp .

We recall that the scalar product between M,N ∈ Rn×n is defined by

M · N := tr
(
M tN

)
=

∑
i,j=1,...,n

Mi,jNi,j

and induces the Hilbert-Schmidt norm. Next, we enumerate several properties of the
Schatten norms that shall be used throughout the paper. We refer to standard books on
matrix analysis (such as [Bha97]) for the proof of these results.

Proposition 2. The family of Schatten norms satisfies the following properties.

(1) If M ∈ Rn×n is symmetric, then its singular values s1(M), . . . , sn(M) are equal
to |λ1(M)|, . . . , |λn(M)|, where λ1(M), . . . , λn(M) denote the eigenvalues of M
(counted with their multiplicity). Hence |M |p = ∥(λ1(M), . . . , λn(M))∥ℓp.

(2) If M ∈ Rn×n and N ∈ O(Rn), then |MN |p = |NM |p = |M |p.
(3) If M,N ∈ Rn×n, then |MN |p ≤ |M |p|N |p.
(4) If M ∈ Rn×n, then |M |p = supN M · N , where the supremum is taken among all

N ∈ Rn×n with |N |p∗ ≤ 1, for p∗ the conjugate exponent of p.
(5) If M has rank 1, then |M |p coincides with the Hilbert-Schmidt norm of M for every

p ∈ [1,+∞].
(6) If p ∈ (1,+∞), then the Schatten p-norm is strictly convex [AU21, Corollary 1].
(7) If M ∈ Rn×n, then |M |p ≤ C|M |q, where C = C(n, p, q) depends only on n, p and

q.



LINEAR INVERSE PROBLEMS WITH HESSIAN-SCHATTEN TOTAL VARIATION 5

Definition 3 (Lr-Schatten p-norm). Let p, r ∈ [1,+∞] and let M ∈ (Lr(Rn))n×n. We
define the Lr-Schatten p-norm of M as

∥M∥p,r := ∥|M |p∥Lr(Rn).

An analogous definition can be given when the reference measure for the Lr space is not
the Lebesgue measure.

2.2. Poincaré inequalities. We recall that for a Borel set A ⊆ Rn with Ln(A) > 0 and
f ∈ L1(A), then

−
ˆ
A

fdLn :=
1

Ln(A)

ˆ
A

fdLn.

Definition 4. Let A ⊆ Rn be an open domain. We say that A supports Poincaré inequal-
ities if for every q ∈ [1, n) there exists a constant C = C(A, q) depending on A and q such
that (

−
ˆ
A

∣∣∣f −−
ˆ
A

f
∣∣∣q∗dLn

)1/q∗

≤ C

(
−
ˆ
A

|∇f |qdLn

)1/q

for every f ∈ W 1,q(A),

where 1/q∗ = 1/q − 1/n.

We recall that any ball in Rn supports Poincaré inequalities [EG15, Theorem 4.9].

Remark 5. Let A be a bounded open domain supporting Poincaré inequalities. We recall
the following fact: if f ∈ W 1,1

loc (A) is such that
´
A
|∇f |qdLn < +∞, then f ∈ Lq∗(A),

where 1/q∗ = 1/q − 1/n. To show this, apply a Poincaré inequality to fm := (f ∧ m) ∨
−m ∈ W 1,q(A), with

´
A
|∇fm|qdLn ≤

´
A
|∇f |qdLn, and deduce that, for a constant cm :=

−́
A
fmdLn, it holds (

−
ˆ
A

|fm − cm|q
∗
dLn

)1/q∗

≤ C

(
−
ˆ
A

|∇f |qdLn

)1/q

.

Now, if B ⊆ A is a ball with B̄ ⊆ A, we have that ∥fm∥L1(B) ≤ ∥f∥L1(B) < +∞ and
∥fm−cm∥L1(B) is bounded in m, so that supm |cm| <∞. We also have that ∥fm−cm∥Lq∗ (A)

is uniformly bounded. Thus, we infer that ∥fm∥Lq∗ (A) is bounded in m, whence f ∈ Lq∗(A).
■

2.3. Distributions. We denote, as usual, D(Ω) = C∞
c (Ω) the space of test functions

and D′(Ω) its dual, i.e. the space of distributions [Sch57]. If T ∈ D′(Ω), we denote with
∇2T the distributional Hessian of T , i.e. the matrix of distributions {∂2i,jT}i,j∈1,...,n where

(∂2i,jT )(f) := T (∂i∂jf) for every f ∈ D(Ω). In a natural way, if F ∈ D(Ω)n×n, we denote

∇2T (F ) :=
∑

i,j=1...,n

∂2i,jT (Fi,j).

Remark 6. Let T be a distribution on Ω such that for every i = 1, . . . , n, ∂iT is a Radon
measure. Then T is induced by a BVloc(Ω) function.

The proof of this fact is classical. Here, we sketch it for the reader’s convenience.
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We let {ρk}k be a sequence of Friedrich mollifiers. Let B ⊆ Ω be a ball such that B̄ ⊆ Ω,
so that, if k is big enough (that we will implicitly assume in what follows), we have a
well defined distribution ρk ∗ T on B, which is induced by a C∞(B̄) function, say tk. It
is immediate to show that for every i = 1, . . . , n,

´
B
|∂itk|dLn are uniformly bounded in

k, as T has derivatives that are Radon measures. Therefore, using a Poincaré inequality
on B, we have that for some q∗ > 1, ∥tk − ck∥Lq∗ (B) is uniformly bounded in k, where

ck := −́
B
tkdLn. Hence, up to non-relabelled subsequences, tk − ck converges to an Lq∗(B)

function f in the weak topology of Lq∗(B) and then in the weak topology of D′(B). Also,
tk converges in the topology of D′(B) to T . Hence ck = tk− (tk− ck) converges in the weak
topology of D′(B) to T − f ∈ D′(B). This forces {ck}k ⊆ R to be bounded, so that also tk
was bounded in Lq∗(B) and hence T is induced by an Lq∗(B) function on B. A partition
of unity argument shows that T is induced by an L1

loc(Ω) function, whence the conclusion.
■

3. Hessian–Schatten Total Variation

In this section, we fix Ω ⊆ Rn to be an open set and p ∈ [1,+∞]. We let p∗ denote the
conjugate exponent of p. First, we recall the definition of the HTV seminorm, presented in
[ACU21], in the spirit of the classical theory of functions of bounded variation. Next, we
review some known results for the space of functions with bounded Hessian (see, [Dem84]),
proposing at the same time a few refinements and/or extensions.

3.1. Definitions and Basic Properties.

Definition 7 (Hessian–Schatten total variation). Let f ∈ L1
loc(Ω). For every A ⊆ Ω open

we define the Hessian-Schatten total variation of f as

|D2
pf |(A) := sup

F

ˆ
A

∑
i,j=1,...,n

f∂i∂jFi,jdLn, (4)

where the supremum runs among all F ∈ C∞
c (A)n×n with ∥F∥p∗,∞ ≤ 1. We say that f has

bounded p-Hessian–Schatten variation in Ω if |D2
pf |(Ω) <∞.

Remark 8. If f has bounded p-Hessian–Schatten variation in Ω, then the set function
defined in (4) is the restriction to open sets of a finite Borel measure, that we still call
|D2

pf |. This can be proved with a classical argument, building upon [DGL77] (see also
[AFP00, Theorem 1.53]).

By its very definition, the p-Hessian–Schatten variation is lower semicontinuous with
respect to L1

loc convergence. ■

For any couple p, q ∈ [1,+∞], f has bounded p-Hessian–Schatten variation if and only
if f has bounded q-Hessian–Schatten variation and moreover

C−1|D2
pf | ≤ |D2

qf | ≤ C|D2
pf |

for some constant C = C(p, q) depending only on p and q. Hence, the induced topology
is independent of the choice of p. For this reason, in what follows, we will often implicitly
take p = 1 (omitting thus to write p), and we will stress p when this choice plays a role.
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We prove now that having bounded Hessian–Schatten variation measure is equivalent
to membership in W 1,1

loc with gradient with bounded total variation. Also, we compare the
Hessian–Schatten variation measure to the total variation measure of the gradient. This
will be a key observation, as it will allow us to use the classical theory of functions of
bounded variation, see e.g. [AFP00].

Proposition 9. Let f ∈ L1
loc(Ω). Then the following are equivalent:

(1) f has bounded Hessian–Schatten variation in Ω,
(2) f ∈ W 1,1

loc (Ω) and ∇f ∈ BVloc(Ω) with |D∇f |(Ω) <∞.

If this is the case, then, as measures,

|D2
pf | =

∣∣∣∣ dD∇fd|D∇f |

∣∣∣∣
p

|D∇f |. (5)

In particular, there exists a constant C = C(n, p) depending only on n and p such that

C−1|D∇f | ≤ |D2
pf | ≤ C|D∇f |

as measures.

Proof. We divide the proof in two steps.

Step 1. We prove 1 ⇒ 2. Let T ∈ D′(Ω) denote the distribution induced by f ∈ L1
loc(Ω).

For i = 1, . . . , n, define Si := ∂iT ∈ D′(Ω). By the fact that f has bounded Hessian–
Schatten variation in Ω, we can apply Riesz Theorem and deduce that for every j =
1, . . . , n, ∂jSi is induced by a finite measure on Ω. Indeed, if φ ∈ C∞

c (Ω), it holds

∂jSi(φ) =

ˆ
Ω

f∂j∂iφ ≤ C∥φ∥∞,

where C is independent of φ. Then, by Remark 6, Si is induced by an L1
loc(Ω) function,

which proves the claim.

Step 2. We prove 2 ⇒ 1 and (5). First, we can write D∇f =Mµ, where |M(x)|p = 1 for
µ-a.e. x ∈ Ω. Namely,

M =
dD∇f
d|D∇f |

∣∣∣∣ dD∇fd|D∇f |

∣∣∣∣−1

p

and µ =

∣∣∣∣ dD∇fd|D∇f |

∣∣∣∣
p

|D∇f |.

This decomposition depends on p, but we will not make this dependence explicit.
Let A ⊆ Ω be open and let F ∈ C∞

c (A)n×n with ∥F∥p∗,∞ ≤ 1. Thenˆ
A

∑
i,j

f∂i∂jFi,j =

ˆ
A

∑
i,j

Mi,jFi,jdµ ≤ µ(A),

so that f has bounded p-Hessian-Schatten variation and |D2
pf | ≤ µ as measures on Ω.
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We show now that µ(Ω) ≤ |D2
pf |(Ω). Fix now ε > 0. By Lusin’s Theorem, we can find

a compact set K ⊆ Ω such that µ(Ω \K) < ε and the restriction of M to K is continuous.
Since

sup
|N |p∗≤1

M(x) · N = 1 for every x ∈ K,

by the continuity of M we can find a Borel function N with finitely many values such that
|N(x)|p∗ ≤ 1 for every x ∈ Ω and M · N ≥ 1 − ε on K. Now we take ψ ∈ C∞

c (Ω) with
∥ψ∥∞ ≤ 1 and we let {ρk}k be a sequence of Friedrich mollifiers. We consider (if k is big
enough) ψ(ρk ∗ N) ∈ C∞

c (Ω), which satisfies ∥ψ(ρk ∗ N)∥p∗,∞ ≤ 1 on Ω (by convexity of
the Schatten p∗-norm). Therefore,

|D2
pf |(Ω) ≥

ˆ
Ω

∑
i,j

Mi,jψ(ρk ∗Ni,j)dµ ≥
ˆ
K

∑
i,j

Mi,jψ(ρk ∗Ni,j)dµ− ε.

We let k → ∞, taking into account that x 7→ N(x) is continuous on K and we recall that
ψ was arbitrary to infer that

|D2
pf |(Ω) ≥

ˆ
K

∑
i,j

Mi,jNi,jdµ− ε ≥ (1− ε)µ(K)− ε ≥ (1− ε)µ(Ω)− 2ε.

As ε > 0 was arbitrary, the proof is concluded as we have shown that |D2
pf | = µ. □

Remark 10. One may wonder what happens if, instead of defining the Hessian–Schatten
total variation only on L1

loc functions, we define it on the bigger space of distributions,
extending, in a natural way, (4) to distributions, i.e. interpreting the right hand side as
supF

∑n
i,j=1 ∂i∂jT (Fi,j) = supF

∑n
i,j=1 T (∂i∂jFi,j).

It turns out that the difference is immaterial: distributions with bounded Hessian–
Schatten total variation are induced by L1

loc functions, and, of course, the two definitions
of p-Hessian–Schatten total variation coincide. This is proved exactly as in Step 1 of the
proof of Proposition 9, using Remark 6 once more. ■

The following proposition is basically taken from [Dem84] and is a density (in energy)
result akin to Meyers–Serrin Theorem.

Proposition 11. Let f ∈ L1
loc(Ω). Then, for every A ⊆ Ω open, it holds

|D2
pf |(A) = inf

{
lim inf

k

ˆ
A

|∇2fk|pdLn

}
where the infimum is taken among all sequences {fk}k ⊆ C∞(A) such that fk → f in
L1
loc(A). If moreover f ∈ L1(A), the convergence in L1

loc(A) above can be replaced by
convergence in L1(A).

Proof. The (≤) inequality is trivial by lower semicontinuity. The proof of the opposite
inequality is due to a Meyers–Serrin argument, and can be obtained adapting [Dem84,
Proposition 1.4] (we know that f ∈ W 1,1

loc (Ω) thanks to Proposition 9). Notice that in the
proof of [Dem84] Hilbert-Schmidt norms instead of Schatten norms are used. The proof
can be adapted with no effort to any norm. Alternatively, one may notice that the result
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with Hilbert-Schmidt norms implies the result for any other matrix norm, thanks to the
Reshetnyak continuity Theorem (see e.g. [AFP00, Theorem 2.39]), taking into account that
D∇fk → D∇f in the weak* topology and (5). □

Now we show that Hessian–Schatten total variations decrease under the effect of convo-
lutions, that is a a well-known property in the BV context.

Lemma 12. Let f ∈ L1
loc(Ω) with bounded Hessian–Schatten variation in Ω. Let also

A ⊆ Rn open and ε > 0 with Bε(A) ⊆ Ω. Then, if ρ ∈ Cc(Rn) is a convolution kernel with
supp ρ ⊆ Bε(0), it holds

|D2
p(ρ ∗ f)|(A) ≤ |D2

pf |(Bε(A)).

Proof. Let F ∈ C∞
c (A)n×n with ∥F∥p∗,∞ ≤ 1. We computeˆ

A

∑
i,j

(ρ ∗ f)∂i∂jFi,j =

ˆ
A

∑
i,j

f∂i∂j(ρ̌ ∗ Fi,j), (6)

where ρ̌(x) := ρ(−x). Notice that, defining the action of the mollification component-wise,
ρ̌ ∗ F ∈ C∞

c (Ω) (by the assumption on the support of ρ) with (by duality)

|(ρ̌ ∗ F )(x)|p = sup
M

M · (ρ̌ ∗ F )(x) = sup
M

(ρ̌ ∗ (M · F ))(x) ≤ (ρ̌ ∗ 1)(x) ≤ 1,

where the supremum is taken among all M ∈ Rn×n with |M |p∗ ≤ 1. Here we used that
|F |p∗(x) ≤ 1 for every x ∈ Ω. Hence ∥(ρ̌ ∗ F )∥p∗,∞ ≤ 1. Also, ρ̌ ∗ F is supported in Bε(A),
so that the right hand side of (6) is bounded by |D2

pf |(Bε(A)) and the proof is concluded
as F was arbitrary. □

In the following proposition we obtain an analogue of the classical Sobolev embedding
Theorems tailored for our situation. Recall Definition 4.

Proposition 13 (Sobolev embedding). Let f ∈ L1
loc(Ω) with bounded Hessian–Schatten

variation in Ω. Then

f ∈ L
n/(n−2)
loc (Ω) ∩W 1,n/(n−1)

loc (Ω) if n ≥ 3,

f ∈ L∞
loc(Ω) ∩W

1,2
loc (Ω) if n = 2,

f ∈ L∞
loc(Ω) ∩W

1,∞
loc (Ω) if n = 1

and, if n = 2, f has a continuous representative.
More explicitly, for every bounded domain A ⊆ Ω that supports Poincaré inequalities

and r ∈ [1,+∞), there an affine map g = g(A, f) such that, setting f̃ := f − g, it holds
that

∥f̃∥Ln/(n−2)(A) + ∥∇f̃∥Ln/(n−1)(A) ≤ C(A)|D2f |(A) if n ≥ 3, (7)

∥f̃∥Lr(A) + ∥∇f̃∥L2(A) ≤ C(A, r)|D2f |(A) if n = 2, (8)

∥f̃∥L∞(A) + ∥∇f̃∥L∞(A) ≤ C(A)|D2f |(A) if n = 1. (9)
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Proof. The case n = 1 is readily proved by direct computation (as, if a domain of R
supports Poincaré inequality has to be an interval) so that in the following we assume
n ≥ 2. Also, recall that Proposition 9 states that f ∈ W 1,1

loc (Ω) with ∇f ∈ BVloc(Ω).
Therefore we can apply [Dem84, Proposition 3.1] to have continuity of f in the case n = 2,
which also implies L∞

loc(Ω) membership.
As balls satisfy Poincaré inequalities, it is enough to establish the estimates of the second

part of the claim to conclude. Fix then A and r as in the second part of the statement.
Let now {fk}k be given by Proposition 11 for f on A. Iterating Poincaré inequalities,

taking into account Remark 5, we obtain affine maps gk so that, setting f̃k := fk − gk, f̃k
satisfies (7) or (8), depending on n. Arguing as for Remark 5, we see that gk is bounded in
L1(B) for any ball B ⊆ A. This implies that gk and ∇gk are bounded in L∞(A). Therefore,

up to extracting a further non relabelled subsequence, f̃k converges in L1
loc(A) to f − g, for

an affine function g. Lower semicontinuity of the norms at the left hand sides of (7) or (8)
allows us to conclude the proof. □

Remark 14 (Linear extension domains). Let n = 2, we keep the same notation as for
Proposition 13. Assume also that A has the following property: there exists an open set
V ⊆ R2 with Ā ⊆ V and a bounded linear map E : W 1,2(A) → W 1,2(V ) satisfying, for
every u with bounded Hessian–Schatten variation (hence u ∈ W 1,2(A) by Proposition 13):

(1) Eu = u a.e. on A,
(2) Eu is supported in V ,
(3) |D2Eu|(V ) ≤ C|D2u|(A) for some constant C.

Then we show that (8) can be improved to

∥f̃∥L∞(A) + ∥∇f̃∥L2(A) ≤ C|D2
pf |(A),

where we possibly modified the constant C.
First, by (8) it holds that ∥f̃∥W 1,2(A) ≤ C|D2f |(A). Now take ψ ∈ C∞

c (R2) with support
contained in V and such that ψ = 1 on A. Then we have

|D2(ψEf̃)|(V ) ≤ C
(
|D2(Ef̃)|(V ) + ∥Ef̃∥W 1,2(V )

)
≤ C|D2f̃ |(A).

Then we use the continuous representative of ψEf̃ as in [Dem84, Proposition 3.1] and,
from its very definition, the claim follows.

It is easy to see that (0, 1)2 is suitable for the above argument, see Lemma 17 below and
its proof. ■

The strict convexity of the Schatten p-norm, for p ∈ (1,+∞) has, as a consequence, the
following rigidity result.

Lemma 15 (Rigidity). Let f, g ∈ L1
loc(Ω) with bounded Hessian–Schatten variation and

assume that
|D2

p(f + g)|(Ω) = |D2
pf |(Ω) + |D2

pg|(Ω).
Then

|D2
p(f + g)| = |D2

pf |+ |D2
pg|
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as measures on Ω. If moreover, p ∈ (1,+∞), then

D∇f = ρfD∇(f + g) and D∇g = ρgD∇(f + g)

for a (unique) couple ρf , ρg ∈ L∞(|D∇(f + g)|) such that 0 ≤ ρf , ρg ≤ 1 |D∇(f + g)|-a.e.
and satisfying ρf + ρg = 1 |D∇(f + g)|-a.e. In particular, for every q ∈ [1,+∞],

|D2
q(f + g)| = |D2

qf |+ |D2
qg|

as measures on Ω.

Proof. The first claim follows from the triangle inequality and the equality in the assump-
tion. Now assume p ∈ (1,+∞). Take then ρf and ρg, the Radon–Nikodym derivatives:

|D2
pf | = ρf |D2

p(f + g)| and |D2
pg| = ρg|D2

p(f + g)|

as measures on Ω, where ρf +ρg = 1 |D2
p(f+g)|-a.e. We can apply Proposition 9 and write

the polar decompositions D∇f =Mp|D2
pf |, D∇g = Np|D2

pg| and D∇(f + g) = Op|D∇(f +

g)| where |Mp|p, |Np|p, |Op|p are identically equal to 1. Therefore D∇f =Mpρf |D2
p(f + g)|,

D∇g = Npρg|D2
p(f + g)| and D∇(f + g) = Op|D2

p(f + g)| and by linearity we obtain that

Mpρf |D2
p(f + g)|+Npρg|D2

p(f + g)| = Op|D2
p(f + g)|

which implies that ρfMp + ρgNp = Op |D2
p(f + g)|-a.e. Taking p-Schatten norms,

1 = |Op|p = |ρfMp + ρgNp|p ≤ ρf |Mp|p + ρg|Np|p = 1 |D2
p(f + g)|-a.e.

which implies the claim by strict convexity. The last assertion is due to Proposition 9. □

3.2. Boundary Extension. [Dem84, Theorem 2.2] provides us with an extension op-
erator for bounded domains with C2 boundary. However, we need the result for paral-
lelepipeds. This can be obtained following [Dem84, Remark 2.1]. However, we sketch the
argument as we are going also to need a slightly more refined result compared to the one
stated in [Dem84]. This extension result (namely, its corollary Proposition 18) will play a
key role in the proof of Theorem 21 below.

Lemma 16. Let Ω = (a0, a1) × Ω′ be a parallelepiped in Rn and let f ∈ L1
loc(Ω) with

bounded Hessian–Schatten variation in Ω. Then, if we set

Ω̃ := (a0 − (a1 − a0)/2, a1)× Ω′,

there exists f̃ ∈ L1
loc(Ω̃) with bounded Hessian–Schatten variation in Ω̃ such that f̃ = f

a.e. on Ω,

|D2f̃ |({a0} × Ω′) = 0 (10)

and

|D2f̃ |(Ω̃) ≤ C|D2f |(Ω), (11)

where C is a scale invariant constant that depends only on Ω (and Ω̃) but not on f .
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Proof. Up to a linear change of coordinates, we can assume that Ω = (0, 1)n. Set Ω1 = Ω
and Ω2 = (−1/2, 0)×(0, 1)n−1 =M(Ω), forM(x, y) := (−x/2, y), where we use coordinates
R× Rn−1 ∋ (x, y) for Rn. Set also

f̃(x, y) :=

{
f(x, y) if (x, y) ∈ Ω1,

3f(−x, y)− 2f(−2x, y) if (x, y) ∈ Ω2.

An application of the theory of traces ([AFP00, Theorem 3.87 and Corollary 3.89]) together

with Proposition 9 yields that |D∇f̃ |(∂Ω1 ∩ ∂Ω2) = 0, hence (10). Then, we compute

|D2f̃ |(Ω1 ∪ Ω2 ∪ (∂Ω1 ∩ ∂Ω2)) = |D2f̃ |(Ω1) + |D2f̃ |(Ω2) ≤ C|D2f |(Ω1),

where C is a constant, so that (11) follows. □

Lemma 17. Let Ω = (0, 1)n and let f ∈ L1
loc(Ω) with bounded Hessian–Schatten variation

in Ω. Then there exist a neighbourhood Ω̃ of Ω̄ and f̃ ∈ L1
loc(Ω̃) with bounded Hessian–

Schatten variation in Ω̃ such that f̃ = f a.e. on Ω,

|D2f̃ |(∂Ω) = 0 (12)

and

|D2f̃ |(Ω̃) ≤ C|D2f |(Ω), (13)

where C is a scale invariant constant that depends only on Ω (and Ω̃) but not on f .

Proof. Apply several times (a suitable variant) of Lemma 16, extending Ω along each side.
Notice that at each step, we are extending a parallelepiped which contains Ω. □

Proposition 18. Let Ω = (0, 1)n and let f ∈ L1
loc(Ω) with bounded Hessian–Schatten

variation in Ω. Then there exists a sequence {fk}k ⊆ C∞(Ω̃), where Ω̃ is a neighbourhood
of Ω̄ such that

fk → f in L1(Ω)

|D2
pfk|(Ω) → |D2

pf |(Ω)
(14)

for any p ∈ [1,+∞].

Proof. Take f̃ as in Lemma 17 and, if {ρk}k is a sequence of Friedrich mollifiers, set

fk := f̃ ∗ ρk. The claim follows from lower semicontinuity and Lemma 12. □

4. A Density Result for CPWL Functions

In this section, we study the density of CPWL functions in the unit ball of the HTV
functional. As usual, we let Ω ⊆ Rn open and p ∈ [1,+∞].
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4.1. Definitions and The Main Result.

Definition 19. We say that f ∈ C(Ω) belongs to CPWL(Ω) if there exists a decomposition
{Pk}k of Rn in n-dimensional convex polytopes (with convex polytope we mean the closed
convex hull of finitely many points), intersecting only at their boundaries (their intersection
being either empty or a common face) such that for every k, f|Pk∩Ω is affine and such that
for every ball B, only finitely many Pk intersect B.

Notice that CPWL functions defined on bounded sets have automatically finite Hessian–
Schatten variation, by Proposition 9.

In the particular case n = 2, we can and will assume that the convex polytopes {Pk}k
as in the definition of CPWL function are triangles.

Remark 20. Let f ∈ CPWL(Ω), where Ω ⊆ Rn is open. Notice that ∇f is constant on
each Pk, call this constant ak.

Thanks to Proposition 9, we can deal with |D2
pf | and |D∇f | exploiting the theory of

vector valued functions of bounded variation [AFP00]. In particular, |D∇f | will charge
only 1-codimensional faces of Pk. Then, take a non degenerate face σ = Pk ∩ Pk′ for
k ̸= k′ (i.e. σ is the common face of Pk and Pk′). Then the Gauss–Green Theorem gives
D∇f σ = (ak′ − ak)⊗ νHn−1 σ, where ν is the unit normal to σ going from Pk to Pk′

(hence (ak − ak′) ⊥ σ). Then,

|D2f | σ = |(ak′ − ak)⊗ ν|1Hn−1 σ = |ak′ − ak|Hn−1 σ, (15)

where, as usual, |ak′ − ak| denotes the Euclidean norm. Let us remark that (15) has also
been shown in [ACU21], directly relying on Definition 7, which paved the way of developing
numerical schemes for learning CPWL functions [CAU21, PGU22]. Since dD∇f

d|D∇f | has rank

one |D∇f |-a.e. we obtain also∣∣∣∣ dD∇fd|D∇f |

∣∣∣∣
p

=

∣∣∣∣ dD∇fd|D∇f |

∣∣∣∣ = 1 |D∇f |-a.e.

(we recall that the matrix norm | · | without any subscript denotes the Hilbert-Schmidt
norm). It follows from (5) that |D2

pf | = |D∇f | for every p ∈ [1,+∞], in particular, |D2
pf |

is independent of p.
Notice also that the rank one structure of D∇f is a particular case of the celebrated

Alberti’s theorem [Alb93], for vector-valued BV functions. According to this theorem the
rank one structure holds for the singular part of the distributional derivative. ■

The following theorem on the density of CPWL functions is the main theoretical result
of this paper. Its proof is deferred to Section 4.2. In view of it, notice that by Lemma 17
together with Proposition 13, if f ∈ L1

loc((0, 1)
2) has bounded Hessian–Schatten variation

in (0, 1)2, then f ∈ L∞((0, 1)2). Also, notice that the statement of the theorem is for p = 1
only. This will be discussed in the forthcoming Remark 22.
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Theorem 21. Let n = 2, let Ω = (0, 1)2 and let p = 1. Then CPWL(Ω) functions are
dense in energy |D2

1 · |(Ω) in{
f ∈ L1

loc(Ω) : f has bounded Hessian–Schatten variation
}

with respect to the L∞(Ω) topology. Namely, for any f ∈ L1
loc(Ω) with bounded Hessian-

Schatten variation in Ω there exist fk ∈ CPWL(Ω) convergent in L∞(Ω) to f with |D2
1fk|(Ω)

convergent to |D2
1f |(Ω).

Remark 22. Theorem 21 shows in particular density in energy |D2
1 · |(Ω) of CPWL(Ω)

functions with respect to the L1
loc(Ω) convergence. Notice that this conclusion is false if we

take instead the |D∇ · |(Ω) seminorm, and this provides one more theoretical justification
of the relevance of the Schatten 1-norm.

We now justify this claim. By Remark 20, it is easy to realize that the two seminorms
above coincide for CPWL(Ω) functions, but are, in general, different for arbitrary functions.

For example, take f((x, y)) := x2+y2

2
. Then |D2

1f | = 2L2, whereas |D∇f | =
√
2L2. Now

assume by contradiction that there exists a sequence {fk}k ⊆ CPWL(Ω) such that fk → f
in L1

loc(Ω) and |D∇fk|(Ω) → |D∇f |(Ω). Then
lim inf

k
|D∇fk|(Ω) = lim inf

k
|D2

1fk|(Ω) ≥ |D2
1f |(Ω) > |D∇f |(Ω),

which is absurd. This also gives the same conclusion for |D2
p · |, in the case p ∈ (1,+∞].

■

We conjecture that the result of Theorem 21 can be extended to arbitrary dimensions
(i.e. Ω = (0, 1)n ⊆ Rn). Notice that, in the general case n ≥ 3, the natural choice for the
topology is L1(Ω) (or Ln/(n−2)(Ω)), as any f ∈ L1

loc(Ω) with bounded Hessian–Schatten
variation in Ω belongs to Ln/(n−2)(Ω), see the discussion right before Theorem 21.

Conjecture 1. The density result of Theorem 21 remains valid when the input domain is
chosen to be any n-dimensional hypercube, Ω = (0, 1)n, provided that the L∞(Ω) topology
is replaced by the L1(Ω) topology. 1

4.2. Proof of Theorem 21. This whole section is devoted to the proof of Theorem 21.
Remarkably, our proof is constructive and provides an effective algorithm to build such
approximating sequence.

Take f ∈ L1
loc(Ω) with finite Hessian–Schatten variation. We remark again that indeed

f ∈ L∞(Ω). We notice that we can assume with no loss of generality that f is the restriction
to Ω of a C∞

c (R2) function. This is due to Proposition 18 (and its proof), a cut off argument
and and a diagonal argument. Still, we only have to bound Hessian–Schatten variations
only on Ω.

We want to find a sequence {fj}j ⊆ CPWL(Ω) such that fj → f in L∞(Ω) and
lim supj |D2

1fj|(Ω) ≤ |D2
1f |(Ω). This will suffice, by lower semicontinuity.

1During the revision process of this manuscript, the fist and third named author, tougher with S. Conti
([ABC23]), proved that this conjecture holds in any dimension.
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Overview. As the proof is rather long and involved, it is divided in ten steps. We start
with an overview, to explain the strategy of the proof and the main constructions that will
be detailed in the following steps.

Our approximating sequence as above will be obtained as a sequence of affine interpo-
lation of f on a suitable sequence of triangulations of Ω. In other words (Step 1), we
fix ε ∈ (0, 1) and we build a triangulation such that, if g is the affine interpolation of f
obtained using that triangulation, then g is ε-close to f and the Hessian–Schatten total
variation of g is ε-close to the one of f . The construction of the triangulation is carried
out in two main parts and the building blocks are two successive choice of grids (grids are
rigorously defined in Step 2).

In the first part, we consider GN , the dyadic subdivision of Ω in 22N squares of sidelength
2−N which will be called {QN

k }k (Step 3). The choice of N is fixed almost at the beginning
of the proof (Step 5), and depends morally on the modulus of continuity of the Hessian
of f : the guiding principle here is item (a) below.

(a) On each of the squares QN
k , the Hessian of f , read in suitable coordinates (these

coordinates depending on k), will be close enough to a diagonal matrix DN
k . See

Step 4.

Having fixed the parameter N , we suppress the superscript N for the sake of readability.
In the second part we want to further refine the grid, arguing on each of the squares Qk

separately, namely we are going to build, for each Qk, a second grid GK
k (Step 6). Here a

second parameter K enters into play (once that N has been fixed). The guiding principles,
in this refining procedures, are in item (b) and item (c) below.

(b) On Qk, we would like the grid GK
k to follow the coordinates that induce the matrix

Dk, i.e. reading the Hessian of f in the system of coordinates given by GK
k , we

want to recover a matrix that is very close to Dk. This is because, if we interpolate
on a grid (actually, we have to interpolate on a triangulation induced in the most
natural way by the grid), the optimal result, in terms of lowest Hessian–Schatten
total variation, is obtained when the sides of the grid are oriented as just described
(see the computations in Step 10).

The issue now is that different squares Qk have different associated systems of coordinates,
so we will have to carefully merge the triangulations to take into account of the different
rotations. Hence what follows.

(c) We want all the triangulations obtained starting from {GK
k }k to merge in a con-

trolled way at the boundaries of the squares {Qk}k, in particular, we want that all
the angles in the merged triangulations are bounded from below independently of
K, so that letting K → ∞ will not cause any problem. The reason is that, with
such property of the triangulations, we can control the Hessian–Schatten variation
on the merging regions in a way that does not deteriorate as K → ∞ (see the
computations in Step 9).

Notice that we still have to discuss the width of the grid GK
k , which will be called hKk . In

order to obtain such properties, we consider a grid GK
k that is almost the one as in item
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(b) above (i.e. the one inducing the matrix Dk), but is slightly tilted (in a quantitatively
controlled way) so that the smallest angle it forms with the x-axis has a non null rational
tangent. We centre the grid GK

k at a vertex of Qk (say the top left one) and we show that
it is possible to choose widths {hKk }k (with hKk → 0 as K → ∞) in such a way that the
intersections of the grid GK

k with the sides of the square Qk match the intersections of the
grid GK

h with the sides of the square Qh, whenever Qk and Qh are neighbouring squares
and moreover the vertices of Qk are also vertices of the grid GK

k . This is possible thanks
to the slight tilt that we made to the grid, see Step 6.

We conclude then by obtaining a triangulation of Qk starting from the grid GK
k (Step

7). In the region of Qk that is close to the boundary (this region shrinks as K → ∞)
we adopt a careful self-similar construction, taking into account the choice of the widths
{hKk }k, in order to ensure the compatibility condition of item (c) above. In the remaining
part of GK

k , we build the triangulation in the most natural way, i.e. considering also the
diagonals of the squares, in order to have a triangulation that is close to the one looked
for in item (b) above.

Then, if K is taken large enough, the interpolation along the just built triangulation
satisfies the requests made at the beginning of the proof and this is shown in Step 8.
Notice that the bulk of the proof is to show that the Hessian–Schatten total variation of
the interpolating function g is close to the one of f , as trivially g is close to f if K is large
enough (as hKk → 0 when K → ∞).

Step 1. Fix now ε > 0 arbitrarily. The proof will be concluded if we find g ∈ CPWL(Ω)
with ∥f − g∥L∞(Ω) ≤ ε and |D2

1g|(Ω) ≤ |D2
1f |(Ω) + Cfε, where Cf is a constant that

depends only on f (via its derivatives, even of second and third order) that still has to be
determined. In what follows we will allow Cf to vary from line to line.

Step 2. We add a bit of notation. Let v, w ∈ S1 with v ⊥ w, s ∈ R2 and h ∈ (0,∞). We
call G(v, w, s, h) the grid of R2

G(v, w, s, h) := {s+ tv + zhw : t ∈ R, z ∈ Z} ∪ {s+ zhv + tw : t ∈ R, z ∈ Z} .

The grid consist in boundaries of squares (open or closed) that are called squares of the
grid. Vertices of squares of the grid are called vertices of the grid and the same for edges.
Notice that G(v, w, s, h) contains a square with vertex s and whose squares have sides of
length h and are parallel either to v or to w.

Step 3. For N ∈ N, we consider the grid

GN := G((1, 0), (0, 1), 0, 2−N)

and we let QN
k denote the closed squares of this grid that are contained in Ω̄. Here

k = 1, . . . , 22N .

Step 4. For every N we find two collections of matrices {DN
k }k and {UN

k }k satisfying the
following properties, for every k:

(1) DN
k is diagonal.

(2) UN
k ∈ O(Q2) is a rotation matrix of angle θk ∈ (0, π/2), θk ̸= {π/4}.
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(3) It holds that

lim
N→∞

sup
k

sup
x∈QN

k

|(UN
k )t∇2f(x)UN

k −DN
k |1 → 0.

To build such sequences, first build {DN
k }k and {ŨN

k }k with DN
k diagonal and ŨN

k ∈ O(R2)
such that

(ŨN
k )t∇2f(xNk )Ũ

N
k = DN

k , (16)

where xNk is the centre of the square QN
k . We can do this thanks to the symmetry of

Hessians of smooth functions.
We denote Rθ the rotation matrix of angle θ. We set ÛN

k := ŨN
k Ak, where Ak is a matrix

of the type (
0 ±1
±1 0

)
or

(
±1 0
0 ±1

)
defined in such a way that ÛN

k = Rθ̂k
, for some θ̂k ∈ [0, π/2). Notice that (16) still holds

for ÛN
k in place of ŨN

k .
Now notice that points with rational coordinates are dense in S1 ⊆ R2, as a consequence

of the well known fact that the inverse of the stereographic projection maps Q into Q2.
Therefore we can find θk ∈ (0, π/2), θk ̸= π/4 so close to θ̂k so that |Rθk −Rθ̂k

|1 ≤ N−1 and

such that Rθk ∈ Q2×2. Then, set UN
k := Rθk . Items (1) and (2) hold by the construction

above, whereas item (3) can be proved taking into account also the smoothness of f .
We write

UN
k =

 | |
vNk wN

k

| |

 .

Notice that vNk ⊥ wN
k and vNk , w

N
k ∈ S1. Also, θk is the angle formed by the x-axis with

vNk so that tan(θk) = (vNk )2/(vNk )1 ∈ Q by (2).

Step 5. By item (3) of Step 4, we take N big enough so that

sup
k

sup
x∈QN

k

|(UN
k )t∇2f(x)UN

k −DN
k | ≤ ε. (17)

We suppress the dependence on N in what follows as from now N will be fixed. Also, we
can, and will, assume 2−N ≤ ε.

Step 6. We consider grids on Qk, for every k and depending on K ∈ N, free parameter.
We recall that Qk has been defined in Step 3. These grids will be called

GK
k := G(vk, wk, sk, h

K
k ),

where hKk will be determined in this step and sk is any of the vertices of Qk (the choice of
the vertex will not affect the grid).

For every k, we write

Q ∋ tan(θk) =
qk
pk
,
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where MCD(pk, qk) = 1. We can do this as we chose θk ∈ (0, π/2), θk ̸= π/4 satisfying
Rθk ∈ Q2×2, notice also that our choice implies, in particular, qk ̸= 0. We define also

hKk :=
1

2N
1

2K
1√

p2k + q2k
∏

h̸=k qh
.

Notice that

Uk =
1√

p2k + q2k

(
pk −qk
qk pk

)
,

and, as Uk is an orthogonal matrix, we have that√
p2k + q2kU

−1
k =

(
pk qk
−qk pk

)
∈ Z2×2.

This ensures that the vertices of Qk are also vertices of GK
k . Now notice that lines in GK

k

parallel to vk intersect the horizontal edges of Qk in points spaced hK
k /sin(θk) and also lines

in GK
k parallel to wk intersect the vertical edges of Qk in points spaced hK

k /sin(θk). We now
compute

hKk
sin(θk)

= hKk

√
1 + cot2(θk) =

1

2N2K
√
p2k + q2k

∏
h̸=k qh

√
1 +

p2k
q2k

=
1

2N
1

2K
1∏
h qh

and we notice that this quantity depends only on K (and on N) but not on k.

Step 7. Now we want to build a triangulation for the square Qk, such triangulation
will depend on the free parameter K and will be called ΓK

k . We will then glue all the
triangulations {ΓK

k }k to obtain ΓK , a triangulation for Ω̄. We call edges and vertices of
triangulation the edges and vertices of its triangles. We refer to Figure 1 for an illustration
of the proposed triangulation.

Fix for the moment k. By symmetry, we can reduce ourselves to the case of θk ∈
(π/4, π/2). Indeed, if θk ∈ (0, π/4), consider S to be the reflection against the axis passing
through the top left and bottom right vertex of Qk, let v

′
k := −Svk and w′

k := Swk, build
the triangulation (ΓK

k )
′ according to v′k and w′

k and finally set ΓK
k := S(ΓK

k )
′.

Our building block for the triangulation is the triangle T 0
u , which corresponds to the

starting case K = 0. The triangle T 0
u will be then suitably rotated to obtain also the

triangles T 0
r , T 0

d , T 0
l . Then, with a suitable rescaling, we will obtain the corresponding

elements for the successive steps K, i.e. T K
u , T K

r , T K
d , T K

l . We denote A,B,C,D the
vertices of the square Qk, with A corresponding to the top left vertex and the other named
clockwise. Let M,N,O, P denote the midpoints of AB,BC,CD,DA respectively. Then
T 0
u = ABE is the right triangle with hypotenuse AB and such that its angle in A is π/2−θk

and such that E lies inside Qk. We notice that E is a vertex of G0
k by what proved in Step

6. Now we consider the intersections of lines of G0
k parallel to vk with the hypotenuse of

T 0
u (these are not, in general, vertices of G0

k) and the vertices of G0
k that lie on the short

sides of T 0
u (it may be useful to recall that, by construction, the short sides of T 0

u are along
G0

k). Then we triangulate T 0
u in such a way that the vertices of the triangulation on the

sides T 0
u are exactly at the points just considered. Any finite triangulation is possible, but
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CD
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G

H

A B

CD
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N

O

P

Figure 1. An illustration of the proposed triangulation in the square Qk.

it has to be fixed. Now we rotate a copy of T 0
u (together with its triangulation) clockwise

by π/2 and we translate it so that the point corresponding to A moves to B. We thus
obtain a triangulated triangle T 0

r = BCF . By construction, the triangulation on T 0
r has

the following property: its vertices on the hypotenuse of T 0
u correspond to the intersection

points of lines of G0
k parallel to wk with the hypotenuse and its vertices on the short sides

are exactly the vertices of G0
k on the short sides. Then we continue in this fashion to obtain

four triangulated triangles, T 0
u , T 0

r , T 0
d , T 0

l , as in the left side of Figure 1 (we shaded T 0
u ).

Notice that T 0
u ∪ T 0

r ∪ T 0
d ∪ T 0

l , together with its triangulation is invariant by rotations of
π/2 with centre the centre of Qk. Notice also that Qk \

(
T 0
u ∪T 0

r ∪T 0
d ∪T 0

l

)
is formed by a

square which is itself a union of squares, each with sides parallel to vk or wk and of length
h0k. We triangulate Qk \

(
T 0
u ∪ T 0

r ∪ T 0
d ∪ T 0

l

)
in the standard way, where by standard

way we mean the triangulation obtained considering the grid GK
k (now K = 0) and, for

every square of the grid, the diagonal with direction (vk −wk)/
√
2. This is step 0 and this

triangulation will be called Γ0
k.

We show now how to build the triangulation at step K + 1, ΓK+1
k starting from the one

at step K, ΓK
k , see the right side of Figure 1 (we shaded T 1

u ). At step K we will have
T K
u , T K

r , T K
d , T K

l . Now T K+1
u will be union of two copies of T K

u scaled by a factor 1/2
but not rotated nor reflected, but translated so that the vertices corresponding to A will
correspond to A andM respectively. Also the triangulation of T K

u is scaled and maintained.
We do the same for T K

r , T K
d , T K

l , so that T K+1
u ∪ T K+1

r ∪ T K+1
d ∪ T K+1

l together with its
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triangulation is invariant by rotations of π/2 with centre the centre of Qk.
We triangulate Qk \

(
T K+1
u ∪ T K+1

r ∪ T K+1
d ∪ T K+1

l

)
using the standard triangulation,

with respect to GK+1
k . We remark that Qk \

(
T K+1
u ∪ T K+1

r ∪ T K+1
d ∪ T K+1

l

)
is formed by

union of squares, each with sides parallel to vk or wk and of length hK+1
k . Notice that if

σ is a segment that is part of the boundary of one of T K+1
u , T K+1

r , T K+1
d , T K+1

l and σ is
not contained in the boundary of Qk, then the vertices of the triangulations on σ coincide
exactly with vertices of GK+1

k on σ, so that we have a well defined triangulation, of Qk

that we call ΓK+1
k .

Now we define ΓK as the triangulation of Ω̄ obtained by considering all the triangulations
in {ΓK

k }k. Notice that, by Step 6, the triangulations in {ΓK
k }k can be joined, as their

vertices on the boundaries of {Qk}k match. Notice that for every K, T K
u ∪T K

r ∪T K
d ∪T K

l

is contained in a 2−N2−K neighbourhood of the lines of GN , and this neighbourhood (in
Ω) has vanishing area as K → ∞. Therefore, squares of the grid that are triangulated
by ΓK in the standard way and such that also their eight neighbours are triangulated in
the standard way by ΓK eventually cover monotonically Ω, up to the axes of the grid GN .
Notice also that triangles in ΓK have edges of length smaller that 2−N2−K .
We add here this crucial remark on which we will heavily rely in the sequel and which

will be the occasion to introduce the angle θ̄. There exists an angle, θ̄ > 0, such that
every angle in the triangles of ΓK is bounded from below by θ̄, uniformly in K (θ̄ depends
on the choice of the various triangulations of T 0

u , that, in turn, depend on N , so that θ̄
depends only on N and f). This property is ensured by the self-similarity construction,
that provides at each step K two families of triangles, those arising from self-similarity and
those arising from the bisection of a (tilted) square with sides parallel to those of Qk, as
in Figure 1.

Step 8. For every K, we set gK as the CPWL interpolant of f according to ΓK . Recall
that CPWL functions on Ω have finite Hessian–Schatten total variation. We can compute
|D2

1g
K | = |D∇gK | explicitly, that will be concentrated on jump points of the ∇gK , i.e. on

the edges of the triangulation ΓK (Remark 20).
The computations of Step 9 below ensure that {gK}K are equi-Lipschitz functions,

so that it is clear that as K → ∞ it holds that ∥f − gK∥L∞(Ω) → 0. We claim that
lim supK→∞ |D2

1g
K |(Ω) ≤ |D2f |(Ω)+Cfε. Let U

δ denote the open δ neighbourhood of GN ,
intersected with Ω.

Recall the definition of θ̄ given at the end of Step 7. Some of our estimates depend on
θ̄ (see, in particular, the first item below and Step 9) whose value essentially depends on
N . Since N has been fixed, depending on ε and the modulus of continuity of ∇2f , we may
absorb the θ̄ dependence into the f dependence.

The claim, hence the conclusion, will be a consequence of these two following facts,
stated for T closed triangle in ΓK , say T ∈ Qk:

(1) it holds

|D2
1g

K |(T ∩ Ω) ≤ CfL2(T );
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(2) whenever T does not intersect U2·2−N2−K
, then

1

2
|D2

1g
K |(T ) ≤ (|Dk|1 + Cfε)L2(T ).

We recall that Dk is the diagonal matrix introduced in Step 4 for the closed square
Qk.

Notice that in the first item we have a constant Cf which depends on f , and hence we
have to take K big enough so that the contributions of these terms are small enough.
Recall that in our estimates we allow Cf to vary line to line.
We defer the proof of items 1 and 2 to Step 9 and Step 10 respectively, now let us

show how to conclude the proof using these facts. Fix for the moment K and k. Now
consider {Ti}i, the (finite) collection (depending on K and k, but we will not make such
dependence explicit) of all the closed triangles in the triangulation ΓK that are contained
in Q̄k. Notice that

i) The interiors of {Ti}i are pairwise disjoint.
ii) If σ is an edge of ΓK that lies on the boundary of Qk, then there exists exactly

one element of {Ti}i having σ as edge. This is due to the fact that we are taking
triangles contained in Q̄k

iii) If σ is an edge of ΓK that does not lie on the boundary of Qk, then there exist
exactly two elements of {Ti}i having σ as edge.

We order the collection {Ti}i in such a way that T1, . . . , TI are contained in U4·2−N2−K

and TI+1, . . . do not intersect U
2·2−N2−K

(if there is a triangle Ti contained in U4·2−N2−K
and

not intersecting U2·2−N2−K
, we agree that it belongs to the first set of triangles T1, . . . , TI ,

even though this choice makes no difference in the end). We explain the motivation for
this distinction. The triangles T1, . . . , TI are the ones contained a small neighbourhood
of the grid GN (the measure of such neighbourhood vanishes as K → ∞) so that their
contribution to the Hessian–Schatten variation vanishes as K → ∞. The remaining tri-
angles, TI+1, . . . are far enough from the grid GN : this ensures that they (as well as their
neighbours) belong to the region that has been triangulated in the standard way, hence
their contribution to the Hessian–Schatten variation remains manageable. Notice also that
this distinction covers any possible case, as the lengths of the edges of the triangles in {Ti}i
are bounded from above by 2−N2−K , hence any of these triangles that intersects U2·2−N2−K

is contained in U4·2−N2−K
. We compute, using items 1 and 2, recalling iii) above for what

concerns the factor 1/2 in the first line,

|D2
1g

K |(Ω ∩ Q̄k) ≤
∑
i≤I

|D2
1g

K |(Ti) +
1

2

∑
i>I

|D2
1g

K |(Ti)

≤
∑
i≤I

CfL2(Ti) +
∑
i>I

(|Dk|1 + Cfε)L2(Ti)

≤ CfL2(U4·2−N2−K ∩Qk) + (|Dk|1 + Cfε)L2(Qk).
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Therefore, repeating the procedure for every k,

|D2
1g

K |(Ω) ≤
∑
k

|D2
1g

K |(Ω ∩ Q̄k)

≤
∑
k

CfL2(U4·2−N2−K ∩Qk) + Cfε
∑
k

L2(Qk) +
∑
k

|Dk|1L2(Qk)

≤ CfL2(U4·2−N2−K

) + CfεL2(Ω) +
∑
k

|Dk|1L2(Qk).

Fix now K big enough so that CfL2(U4·2−N2−K
) ≤ ε, we have

|D2
1g

K |(Ω) ≤ Cfε+
∑
k

|Dk|1L2(Qk).

Now we compute, for every k, taking into account (17),

|Dk|1L2(Qk) =

ˆ
Qk

|Dk|1 ≤
ˆ
Qk

(
|(UN

k )t∇2f(x)UN
k |1 + ε

)
=

ˆ
Qk

(
|∇2f(x)|1 + ε

)
= |D2

1f |(Qk) + εL2(Qk)

so that we can continue our previous computation to see that

|D2
1g

K |(Ω) ≤ Cfε+
∑
k

|Dk|1L2(Qk) ≤ Cfε+
∑
k

|D2f |(Qk) +
∑
k

εL2(Qk)

= Cfε+ |D2
1f |(Ω) + εL2(Ω) ≤ Cfε+ |D2

1f |(Ω)
thus concluding the proof.

Step 9. We prove item 1 of Step 8. For definiteness, assume that K is fixed. We will
heavily use Remark 20 with no reference.

Say T = ABC ⊆ Qk. It is enough to show that |D2
1g

K |(AB) ≤ CfL2(T ), under the
assumption that AB does not lie in the boundary of Ω, so that there exists another triangle
T ′ = ABC ′ of ΓK (possibly inside an adjacent cube to Qk, recall also that the mesh size
parameter K is independent of k), so that T and T ′ have disjoint interiors.
Call a = ∇gK on T and a′ = ∇gK on T ′. Then,{

a · (B − C) = f(B)− f(C)

a · (A− C) = f(A)− f(C)
and

{
a′ · (B − C ′) = f(B)− f(C ′)

a′ · (A− C ′) = f(A)− f(C ′).

The mean value theorem gives(
(B − C)t

(A− C)t

)
a =

(
∇f(C)(B − C) + 1

2
(B − C)t∇2f(ξ1)(B − C)

∇f(C)(A− C) + 1
2
(A− C)t∇2f(ξ2)(A− C)

)
, (18)

where ξ1, ξ2 ∈ T . Now notice that as the angles of ABC are bounded below by θ̄, the
matrix (

(B − C)t

(A− C)t

)
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is invertible and its inverse has norm bounded above by
cθ̄

|AB| , for a suitable constant cθ̄.

Also, possibly choosing a larger constant cθ̄, the bound from below of the angles yields that
|BC| ≤ cθ̄|AB| and |AC| ≤ cθ̄|AB|. Similar considerations hold for the triangle T ′. As cθ̄
depends only on θ̄, we will absorb this dependence into the f dependence, as announced
above.

We rewrite then (18) as

a = ∇f(C) + 1

2

(
(B − C)t

(A− C)t

)−1(
(B − C)t∇2f(ξ1)(B − C)
(A− C)t∇2f(ξ2)(A− C)

)
.

Similarly,

a′ = ∇f(C ′) +
1

2

(
(B − C ′)t

(A− C ′)t

)−1(
(B − C ′)t∇2f(η1)(B − C ′)
(A− C ′)t∇2f(η2)(A− C ′)

)
,

for η1, η2 ∈ T ′. Hence

|D2
1g

K |(AB) = |a− a′||AB| ≤
(
|∇f(C)−∇f(C ′)|+ Cf

|AB|
|AB|2

)
|AB|.

Now, |∇f(C)−∇f(C ′)| ≤ max |∇f |(|AC|+ |AC ′|) so that

|D2
1g

K |(AB) ≤ Cf |AB|2

and the right hand side is bounded above by CfL2(T ) as the angles of T are bounded
below by θ̄.

Step 10. We prove item 2 of Step 8. For definiteness, assume that K and k are fixed,
for T ⊆ Qk. We will heavily use Remark 20 with no reference again. Notice that T lies in
a closed square of GK

k and this square, together with the other squares of GK
k intersecting

it (at the boundary), is triangulated in the standard way, by the assumption that T does

not intersect U2·2−N2−K
. Notice that the square mentioned before is divided by ΓK into

two triangles. For definiteness, assume that T is the one whose barycentre has smaller y
coordinate, the other case being similar. Also, for definiteness, assume that θk ∈ (π/4, π/2),
the case θk ∈ (0, π/4) being similar.

Call T = ACD, such that the angles are named clockwise and the angle at D is of π/2.
Call B the other vertex of the square of the grid in which T lies. Call E the vertex of ΓK

such that C = (B + E)/2. Call a = ∇gK on T , a′ = ∇gK on ACB and a′′ = ∇gK on
CDE. Finally, call F := (B+D)/2 and ℓ = |AD|. We refer to Figure 2 for an illustration
on the introduced notations.

We first estimate |D2
1g

K |(AC):

|D2
1g

K |(AC) = |a− a′|H1(AC) =
√
2ℓ|a− a′|.

Now we compute

(gK(D)− gK(F ))− (gK(F )− gK(B)) = f(D) + f(B)− f(A)− f(C)

= (f(D)− f(A))− (f(C)− f(B)).
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Figure 2. An illustration of the notations introduced in the Step 10 of the proof.

Now, ∣∣f(D)− f(A)−
(
− ℓ∂wk

f(A) +
ℓ2

2
∂2wk,wk

f(A)
)∣∣ ≤ ℓ3

6
∥∂3wk,wk,wk

f∥∞,∣∣f(C)− f(B)−
(
− ℓ∂wk

f(B) +
ℓ2

2
∂2wk,wk

f(B)
)∣∣ ≤ ℓ3

6
∥∂3wk,wk,wk

f∥∞.

and

|∂2wk,wk
f(B)− ∂2wk,wk

f(A)| ≤ ℓ∥∂3vk,wk,wk
f∥∞,

|∂wk
f(B)− ∂wk

f(A)− ℓ∂2vk,wk
f(A)| ≤ ℓ2

2
∥∂3vk,vk,wk

f∥∞.

Then we can compute

|a− a′| =
√
2

ℓ

∣∣(gK(D)− gK(F ))− (gK(F )− gK(B))
∣∣ ≤ √

2

ℓ

(
ℓ2|∂2vk,wk

f(A)|+ Cfℓ
3
)
.

All in all, recalling 2−N ≤ ε,

|D2
1g

K |(AC) ≤ 2ℓ2
(
|∂2vk,wk

f(A)|+ Cfε
)
.

Now
∂2vk,wk

f(A) = wt
k∇2f(A)vk = (0, 1)tU t

k∇2f(A)Uk(1, 0)

so that, by (17),

|∂2vk,wk
f(A)| ≤ |(0, 1)tDk(1, 0)|+ |(0, 1)t(U t

k∇2f(A)Uk −Dk)(1, 0)| ≤ Cfε

and this gives
|D2

1g
K |(AC) ≤ ℓ2Cfε.

We turn to |D2
1g

k|(CD):

|D2
1g

K |(CD) = |a− a′′|H1(CD) = ℓ|a− a′′|.
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Now we compute

(gK(E)− gK(C))− (gK(D)− gK(A)) = (f(E)− f(C)) + (f(A)− f(D)).

Now ∣∣f(E)− f(C)−
(
− ℓ∂wk

f(C) +
ℓ2

2
∂2wk,wk

f(C)
)∣∣ ≤ ℓ3

6
∥∂3wk,wk,wk

f∥∞,∣∣f(A)− f(D)−
(
ℓ∂wk

f(D) +
ℓ2

2
∂2wk,wk

f(D)
)∣∣ ≤ ℓ3

6
∥∂3wk,wk,wk

f∥∞.

and

|∂wk
f(C)− ∂wk

f(D)− ℓ∂2vk,wk
f(D)| ≤ ℓ2

2
∥∂3vk,vk,wk

f∥∞.

Then we can compute

|a− a′′| = 1

ℓ

∣∣(gK(E)− gK(C))− (gK(D)− gK(A))
∣∣

≤ 1

ℓ

(ℓ2
2
|∂2wk,wk

f(C)|+ ℓ2

2
|∂2wk,wk

f(D)|+ ℓ2|∂2vk,wk
f(D)|+ Cfℓ

3
)
.

All in all, recalling again 2−N ≤ ε,

|D2
1g

K |(CD) ≤ ℓ2(
1

2
|∂2wk,wk

f(C)|+ 1

2
|∂2wk,wk

f(D)|+ |∂2vk,wk
f(D)|+ Cfε).

As before, |∂2vk,wk
f(D)| ≤ Cfε. Also, with similar computations as before,

|∂2wk,wk
f(C)| ≤ |(0, 1)tDk(0, 1)|+ |(0, 1)t(U t

k∇2f(D)Uk−Dk)(0, 1)| ≤ |(0, 1)tDk(0, 1)|+Cfε,

and similarly

|∂2wk,wk
f(D)| ≤ |(0, 1)tDk(0, 1)|+ |(0, 1)t(U t

k∇2f(D)Uk−Dk)(0, 1)| ≤ |(0, 1)tDk(0, 1)|+Cfε.

Therefore,

|D2
1g

K |(CD) ≤ ℓ2
(
|(0, 1)tDk(0, 1)|+ Cfε

)
.

With similar computations we arrive at

|D2
1g

K |(AD) ≤ ℓ2
(
|(1, 0)tDk(1, 0)|+ Cfε

)
.

Summing all the three contributions,

|D2
1g

K |(T ) = |D2
1g

K |(AC) + |D2
1g

K |(CD) + |D2
1g

K |(AD)

≤ ℓ2Cfε+ ℓ2
(
|(0, 1)tDk(0, 1)|+ Cfε

)
+ ℓ2

(
|(1, 0)tDk(1, 0)|+ Cfε

)
≤ ℓ2(Cfε+ |(0, 1)tDk(0, 1)|+ |(1, 0)tDk(1, 0)|)
= 2L2(T )(Cfε+ |Dk|1)

which concludes the proof. □
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5. Extremal Points of The Unit Ball

Let Ω := (0, 1)n ⊆ Rn. In this section, we investigate the extremal points of the set

{f ∈ L1
loc(Ω) : |D2f |(Ω) ≤ 1}.

Notice that elements of the set above are indeed in L1(Ω), by Proposition 13, as cubes
support Poincaré inequalities. In order to carry out our investigation, we will consider a
suitable quotient space. We describe now our working setting.

We consider the Banach space L1(Ω), endowed with the standard L1 norm. We let
A ⊆ L1(Ω) denote the (closed) subspace of affine functions. Therefore, L1(Ω)/A, endowed
with the quotient norm, is still a Banach space. We call π : L1(Ω) → L1(Ω)/A the
canonical projection. We define

B :=
{
g ∈ L1(Ω)/A : |D2g|(Ω) ≤ 1

}
,

where we notice that the |D2 · |(Ω) seminorm factorizes to the quotient, so that B = π({f ∈
L1(Ω) : |D2f |(Ω) ≤ 1}). We endow B with the subspace topology, hence, in the end, its
topology is the one induced by the L1 topology. Also, by Proposition 13 and standard
functional analytic arguments (in particular, the Rellich–Kondrachov Theorem), we can
prove that the convex set B is compact. We will then be able to apply the Krein–Milman
Theorem, for M ⊆ B:

B = co(M) if and only if ext(B) ⊆ M. (KM)

We set

E := π(CPWL(Ω)) ∩ ext(B) ⊆ S,
where

S :=
{
g ∈ L1(Ω)/A : |D2g|(Ω) = 1

}
.

Thus, B corresponds to the unit ball with respect to the |D2 · |(Ω) norm whereas S to the
unit spere with respect to the same norm.

Even though we do not have an explicit characterization of extremal points of B, it is
easy to establish whether a function g ∈ π(CPWL(Ω)) is extremal or not.

Proposition 23 (CPWL Extreme Points). A function g ∈ π(CPWL(Ω))∩S belongs to E
if and only if h ∈ span(g) for all h ∈ B with supp (|D2h|) ⊆ supp (|D2g|).

Proof. The “only if” implication follows easily from Proposition 15.
We prove now the converse implication via a perturbation argument, recall Remark 20:

we will use the same notation.
Let g ∈ E and let h ∈ B with supp (|D2h|) ⊆ supp (|D2g|). We have to prove that

h ∈ span(g). Assume by contradiction that h /∈ span(g). We call now {P g
k }k (resp. {P h

k }k)
the triangles associated to g (resp. h) and {agk}k (resp. {ahk}k) the values associated to ∇g
(resp. ∇h). As we are assuming supp (|D2h|) ⊆ supp (|D2g|), we can and will assume that
{P g

k }k and {P h
k }k have the same cardinality and P g

k = P h
k for every k, so that we will drop
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the superscripts g and h on these triangles. Also, we assume that for every k, Pk ⊆ Ω̄.
Call

δ := min
{
|agk − agℓ | : H

1(∂Pk ∩ ∂Pℓ) > 0, agk ̸= agℓ
}

and

∆ := max
{
|ahk − ahℓ | : H1(∂Pk ∩ ∂Pℓ) > 0

}
and set finally ε := δ/∆ (if ∆ = 0, then h = 0 and hence there is nothing to prove). Now
we write

g1 :=
g + εh

|D2(g + εh)|(Ω)
and g2 :=

g − εh

|D2(g − εh)|(Ω)
,

notice that g1, g2 ∈ S are well defined as we are assuming h /∈ span(g). Clearly g =
c1g1 + c2g2, where

c1 :=
|D2(g + εh)|(Ω)

2
and c2 :=

|D2(g − εh)|(Ω)
2

.

If we show that c1+ c2 = 1, then we have concluded the proof, as this will show that g was
not extremal (recall we are assuming that h /∈ span(g)) and hence a contradiction.
We prove now the claim. We compute

|D2(g + εh)|(Ω) =
∑
k<ℓ

|(agk + εahk)− (agℓ + εahℓ )|H1(∂Pk ∩ ∂Pℓ)

=
∑
k<ℓ

|(agk − agℓ) + ε(ahk − ahℓ )|H1(∂Pk ∩ ∂Pℓ)

and similarly we compute |D2(g− εh)|. Notice now that for every k, ℓ satisfying H1(∂Pk ∩
∂Pℓ) > 0, there exists λk,ℓ with ε|λk,ℓ| ≤ 1 such that ahk − ahℓ = λk,ℓ(a

g
k − agℓ). This follows

from Remark 20 and the fact that agk = agℓ implies ahk = ahℓ . Therefore,

|D2(g + εh)|(Ω) + |D2(g − εh)|(Ω)

=
∑
k<ℓ

(
|(agk − agℓ) + ε(ahk − ahℓ )|+ |(agk − agℓ)− ε(ahk − ahℓ )|

)
H1(∂Pk ∩ ∂Pℓ)

=
∑
k<ℓ

(
|agk − agℓ |(1 + ελk,ℓ) + |agk − agℓ |(1− ελk,ℓ)

)
H1(∂Pk ∩ ∂Pℓ)

= 2
∑
k<ℓ

|agk − agℓ |H
1(∂Pk ∩ ∂Pℓ) = 2|D2g|(Ω) = 2,

which concludes the proof. □

Proposition 24. It holds that

co(E) = π(CPWL(Ω)) ∩ B.

Proof. Being the inclusion ⊆ trivial by convexity, we focus on the opposite inclusion. We
will heavily rely on Remark 20. Take g ∈ π(CPWL(Ω)) ∩ B, g ̸= 0. Now consider the set

T :=
{
h ∈ E ∩ S : supp (|D2h|) ⊆ supp (|D2g|)

}
,
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and notice that by Proposition 23 and the fact that g ∈ CPWL(Ω), then T is finite (we
will show that T ̸= ∅ in Step 1). Also notice that h ∈ T if and only if −h ∈ T , so that we
write T = {±t1, . . . ,±tℓ}. We aim at showing that g ∈ co(T ), this will conclude the proof.

Step 1. We claim that T ̸= ∅. First, if g ∈ RE , then the whole proof is concluded,
as g/|D2g|(Ω) ∈ T so that g ∈ co(T ). Otherwise, thanks to Proposition 23, we can
take h1 ∈ B with supp (|D2h1|) ⊆ supp (|D2g|) but h1 /∈ span(g). Notice that this forces
h1 ∈ π(CPWL(Ω)). We can then take λ1 ∈ R such that

0 < H1(supp (|D2(g − λ1h1)|)) ≤ H1(supp (|D2g|))− Λ,

where

Λ := min{H1(∂Pk ∩ ∂Pℓ) : H1(∂Pk ∩ ∂Pℓ) > 0, k ̸= ℓ}
and we are using the same notation as for Proposition 23 (here the finitely many triangles
are relative to g). If g−λ1h1 ∈ RE then we have concluded the proof of this step. Otherwise,
take h2 ∈ B with supp (|D2h2|) ⊆ supp (|D2(g − λ1h1)|) but h2 /∈ span(g − λ1h1). Take
then λ2 ∈ R such that

0 < H1(supp (|D2(g−λ1h1−λ2h2)|)) ≤ H1(supp (|D2(g−λ1h1)|))−Λ ≤ H1(supp (|D2g|))−2Λ.

If g − λ1h1 − λ2h2 ∈ RE , then the proof of this step is concluded. Otherwise we continue
in this way, but, by the uniform decay posed on Hessian–Schatten total variations, this
process must stop, and this forces eventually g − λ1h1 − λ2h2 − . . .− λshs ∈ RE .
Step 2. We claim that g ∈ span(T ). The proof of this fact is identical to the one of Step
1, but we take hi ∈ T instead of hi ∈ B. The possibility of doing so is ensured by Step 1
(applied to g, g−λ1h1, . . .) and process would stop when g−λ1g1−λ2h2− . . .−λshs = 0.

Step 3. We consider the finite dimensional vector subspace V := span(T ) ⊆ L1(Ω)/A,
endowed with the subspace topology. Consider also B ∩ V , compact and convex, notice
that g ∈ B ∩ V , by Step 2. We claim that ext(B ∩ V) ⊆ T . This will conclude the
proof by the Krein–Milman Theorem, as in (KM), with T in place of M and B ∩ V in
place of B. We are using that T is closed and that co(T ) = co(T ) as T is finite. Take
h ∈ ext(B∩V), write then h = λ1t1+ . . .+λℓtℓ. Then there exists j ∈ {1, . . . , ℓ} such that
supp (|D2tj|) ⊆ supp (|D2h|), as supp (|D2h|) ⊆ supp (|D2g|) and by Step 1 applied to h
instead of g. The same perturbation argument of Proposition 23 shows that, in order for
h to be extremal in B ∩ V , we must have h = ±tj, which concludes the proof. □

Theorem 25 (Density of CPWL extreme points). If n = 2, then ext(B) ⊆ E. In particular,
the extreme points of

{f ∈ L1
loc(Ω) : |D2f |(Ω) ≤ 1}

are contained in π−1(E) (recall that the closure is taken with respect to the quotient topology
of L1(Ω)/A). If Conjecture 1 holds, this is true for any number n of space dimensions.

Proof. By Proposition 24,

co(E) = π(CPWL(Ω)) ∩ B,
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so that the density Theorem 21 gives

co(E) = π(CPWL(Ω)) ∩ B = B.
Then the claim follows from the Krein–Milman Theorem as recalled in (KM). □
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