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Abstract— A fast computational method is given for the Fourier
transform of the polyharmonic B-spline autocorrelation sequence
in d dimensions. The approximation error is exponentially
decaying with the number of terms taken into account. The al-
gorithm improves speed upon a simple truncated-sum approach.
Moreover, it is virtually independent of the spline’s order. The
autocorrelation filter directly serves for various tasks related to
polyharmonic splines, such as interpolation, orthonormalization,
and wavelet basis design.

Index Terms— polyharmonic B-splines, autocorrelation se-
quence, Epstein zeta function

I. INTRODUCTION

THE LAPLACIAN has a very special status in image
processing because it is one of the few operators that

are invariant with respect to the three fundamental coordinate
transformations: translation, dilation and rotation. In fact, the
complete family of such real-valued operators reduces to
the fractional iterates of the Laplacian (−∆)γ/2 [1], whose
distributional Fourier-domain definition is

∀f ∈ S ′, (−∆)
γ
2 f(x) F←→ ‖ω‖γ f̂(ω)

where S ′ denotes Schwartz’s space of tempered distribu-
tions. The usual discrete finite-difference counterpart of the
d-dimensional Laplacian ∆ is the digital filter ∆d, whose
frequency response is

−∆̂d(ω) = 4 ‖sin(ω/2)‖2 , 4
d∑

l=1

sin2
(ωl

2

)
One can also obtain a discrete counterpart of the fractional
Laplacian by considering the γ

2 th power of this expression.
We like to view the polyharmonic B-splines as the func-

tions that link the continuous and discrete versions of these
(fractional) operators; e.g.,

∀f ∈ S ′, (−∆d)
γ
2 f = βγ ∗ (−∆)

γ
2 f.

This yields the Fourier-domain characterization of the polyhar-
monic B-spline of order γ, which will serve as our definition

β̂γ(ω) =
(−∆̂d)

γ
2 (ω)

(−∆̂)
γ
2 (ω)

=
(
‖sin(ω/2)‖
‖ω/2‖

)γ

. (1)
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Note that this formula involves the γth power of a sinc-like
function which is bounded since the numerator tempers the
singularity at ωωω = 0. Also, when d = 1 and γ is even, we
recover the classical symmetric polynomial B-splines.

The polyharmonic B-splines were introduced by Rabut as
a proper, non-separable generalization of the univariate B-
splines [2]. The key point is that they generate shift-invariant
bases for the whole family of Duchon’s thin-plate splines when
the data points are taken on a uniform grid [3]. They also
satisfy scaling relations that make them ideal candidates for
the construction of various types of non-separable multidimen-
sional wavelet bases [4], [5]. Thus, by analogy with what has
been achieved in 1-D [6], the polyharmonic B-splines can
provide the primary building blocks for designing multidi-
mensional digital filtering algorithms for a whole variety of
spline-based signal processing tasks including interpolation,
least-squares approximation, the optimal estimation of fractal-
like processes [7], and non-separable wavelet transforms [4],
[8]. In principle, these operations can all be implemented in the
Fourier domain provided that one has an efficient mechanism
for evaluating the autocorrelation (or Gram) filter, which plays
a central role in the B-spline formulation. The two equivalent
forms of this filter are

Aγ(ejωωω) =
∑
n∈Zd

e−j〈ω,n〉β2γ(n) (2)

=
∑
k∈Zd

|β̂γ(ω + 2kπ)|2 (3)

Unfortunately, none of these formulas lends itself to an easy
numerical determination and this has been a major obstacle for
the deployment of polyharmonic spline techniques so far. The
main difficulty stems from the fact that the polyharmonic B-
splines are not compactly supported and that they do not admit
simple space-domain expressions which essentially rules out
the use of (2)—the preferred formula for the (non-fractional)
univariate case. The only option left is then to use (3) in
combination with (1). The practical problem here is that the
summation is over a multidimensional lattice and that the
convergence of the truncated series is slow, especially for
lower values of γ.

The purpose of this letter is to propose an alternative to the
truncated series approximation that is computationally much
more favorable. The primary idea is to relate the infinite
sum in (3) to the Epstein zeta function and to then take
advantage of computational techniques that were developed
in computational physics and crystallography in particular [9].
Our approach owes a lot to the work of Crandall who proposed
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an algorithm for the fast evaluation of general Epstein zeta
functions; his method is available on-line but not published
otherwise [10].

II. COMPUTATIONAL METHODS

A. Truncated-sum method

The straightforward approach to calculate the autocorrela-
tion filter Aγ(ejωωω) is by taking a finite number of terms in
(3) ; e.g., those within the hypersphere ‖k‖ ≤ R. It can be
readily proved that such a procedure has a residual error that
is O

(
R−2γ+d/2

)
; as γ →

(
d
2

)+
, the decay of the error with

R stalls and the sum in (3) eventually diverges.
In 1-D, the convergence of the sum can be improved by

way of an accelerated partial-sum formula [11]:

Aγ(ejω) ≈

[
R∑

k=−R

∣∣∣∣2 sin(ω/2)
ω + 2πk

∣∣∣∣2γ
]

+
∣∣∣∣ sin(ω/2)

πR

∣∣∣∣2γ

×
[

2R

2γ − 1
− 1 +

γ( 2
3π2 + ω2)
2π2R

− γ(2γ + 1)ω2

4π2R2

]
,

which holds for |ω| ≤ π and improves the remainder to
O(R−2γ−3), instead of O(R−2γ+1) without the correction
term.

While this type of acceleration technique is quite powerful
in 1-D, it is much harder to apply in higher dimensions. It is
difficult to derive the correction terms, not to mention the fun-
damental limitation that the convergence remains polynomial
and slows down as d increases for a fixed γ.

B. Sum of incomplete Gamma (iG) functions

Inspired by Crandall’s approach for the fast evaluation of
Epstein zeta functions, we propose to express the infinite sum
in (3) as a sum of incomplete Gamma functions. To that end,
we first rewrite the autocorrelation filter as

Aγ(ejωωω) = (−∆̂d)γ(ωωω)
∑

k∈Zd
1

||ωωω+2πk||2γ , (4)

where we have taken advantage of the fact that the digital filter
∆̂γ

d(ωωω) corresponding to the γth Laplacian is 2π-periodic.
Proposition 1: The autocorrelation filter can be rephrased

as an infinite sum of incomplete Gamma functions. Specifi-
cally, for ωωω ∈]− π, π]d \ {0}, we have:

Aγ(ejωωω) = (−∆̂d)γ(ωωω) (2π)−2γΓ(γ)−1 ×
[

πγ

n/2− γ
+

∣∣∣∣∣∣ ωωω

2π

∣∣∣∣∣∣−2γ

Γ(γ, π
∣∣∣∣∣∣ ωωω

2π

∣∣∣∣∣∣2) +∑
k∈Zd\{0}

∣∣∣∣∣∣ ω

2π
− k

∣∣∣∣∣∣−2γ

Γ
(

γ, π
∥∥∥ ω

2π
− k

∥∥∥2
)

+π2γ− d
2 cos (〈k,ωωω〉) ||k||2γ−d Γ

(
d

2
− γ, π ||k||2

) ]
,

where Γ (α) and Γ (α, x) are the regular and incomplete
Gamma function, respectively. For ωωω = 0, one simply gets
Aγ(1) = 1.

The proof of this result is given in Appendix A. Note that
apart from the factor (−∆̂d)γ(ωωω), it corresponds to a special

case of Crandall’s formula for the generalized Epstein zeta
function (cf. [10, Eq. (2.2)]),

Ξ(s;A, c,d) =
∑
k∈Zd

e2πic·Ak

||Ak− d||s
, (5)

with the specific choice of parameters s = 2γ, A = 2πI,
c = 0, d = −ωωω.

At first sight, the reformulation does not bring much im-
provement; i.e., it still involves an infinite number terms and
these even look more complicated than before. The main
point, however, is that the iG sum converges much faster than
the previous one. Another convenient aspect is that efficient
software implementations of iG functions are available.

III. CONVERGENCE OF THE SUM OF IG FUNCTIONS

We now show that the rate of convergence of the iG
sum representation of Aγ

(
ejωωω

)
is extremely favorable and

independent upon γ—this is the key for obtaining a fast
algorithm.

Proposition 2: Approximating Aγ

(
ejωωω

)
by truncating the

iG expansion with a summation radius ||k|| ≤ R has a
remainder that is O

(
Rd−3e−πR2

)
, for ω ∈ ]−π, π]d.

Proof: We first bound the decay of the incomplete
Gamma function for large x:

Γ(α, x) =
∫ ∞

x

tα−1e−tdt ≈
∞∑

k=bxc

kα−1e−k +O
(
xα−1e−x

)
.

The first term is justifiable because the integrand is monotoni-
cally decaying and positive. The error-term behavior is derived
by noticing that (k + 1)α−1e−(k+1) < 1

2

(
kα−1e−k

)
:

∞∑
k=bxc

kα−1e−k <

∞∑
k=bxc

1
2k−bxc bxc

α−1
e−bxc

< 2xα−1e−x

∼ O
(
xα−1e−x

)
.

So we have Γ(α, x) ∼ O
(
xα−1e−x

)
. Both terms of the

sum in Proposition 1 are of the form
∑

k∈Zd
Γ(α,π‖k‖2)

π‖k‖2α ,
α ∈ {γ, d/2 − γ}. The summation of the terms with index
‖k‖ > R therefore has a magnitude of

O
(∫ ∞

R

rd−3e−πr2
dr +O

(
Rd−3e−πR2

))
,

where we switched to spherical coordinates in the continuous
domain.

The above integral is quite familiar; i.e., the substitution t =
πr2 reveals the incomplete Gamma function, which decays as
previously shown:∫ ∞

R

rd−3e−πr2
dr =

π1−d/2

2
Γ

(
d

2
− 1, πR2

)
∼ O

(
Rd−4e−πR2

)
.

In conclusion, we see that the truncated version of the sum in
Proposition 1 with ||k|| ≤ R leads to an approximation error
that decays like O

(
Rd−3e−πR2

)
.
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TABLE I
RADIUS R NECESSARY TO OBTAIN A GIVEN PRECISION.

truncated-sum iG
10−6 10−12 10−15 10−6 10−12 10−15

γ

7 < 5 < 5 5 2 3 3.5
4.5 < 5 10 100 1.5 2.9 3.5
3 10 250 > 500 1.5 2.25 3.5
2 250 > 500 > 500 1 2.25 2.9

We have thereby established that the convergence of the
truncated iG sum is exponential with respect to the square-
norm of the summation radius. This represents a significant
gain with respect to the prior inverse-polynomial behavior.
Furthermore, it does no longer depend on the order γ while
the influence of the number of dimensions d has also become
negligible. This is an important point, as in practice the
autocorrelation filter often needs to be evaluated for values
of γ that are relatively close to d/2.

IV. PERFORMANCE EVALUATION

We implemented in Matlab both the naive truncated-sum
method and the iG-based one for the 2-D case. The au-
tocorrelation filter was computed on a 512 × 512 uniform
grid in (−π, π]2. Both implementations take advantage of the
symmetries, reducing the number of computed samples by a
factor 8 (approx.). It is important to establish the ground-truth
as a reference for the algorithm; this was obtained using the
truncated-sum method for γ ≥ 4 and the iG method otherwise.
In each case, we added terms until the maximal contribution
dropped below 10−15, which is the machine precision1.

In Fig. 1 (a), we plot the root-mean-squared error (RMSE)
between the ground truth and the obtained solution as a
function of the order γ and the summation radius R. The
truncated-sum method shows a large dependence on the order,
as expected. The method also becomes inaccurate for low γ.
For the iG method, machine precision was reached already
for R = 4, even for γ very close to 1. It is also (almost)
independent of the order.

In Fig. 1 (b), we show the execution time. Measured on
a desktop PC (Core 2 duo 2.13GHz), the iG method reaches
machine precision in a steady 3s, independent from γ. The
truncated-sum method does better for γ > 6. However, for
lower γ the methods quickly becomes impracticable (e.g., γ =
4 runs for roughly 45 minutes).

V. CONCLUSION

The proposed algorithm provides us with a fast implemen-
tation of one of the key components of a multidimensional
spline toolbox. Thanks to it, we can now transpose most of the
digital filtering techniques available for the traditional polyno-
mial splines to the non-separable polyharmonic framework.
We have already taken advantage of the method to obtain
an efficient and accurate Fourier-domain implementation of
a whole family of polyharmonic-spline wavelet transforms
which will be made available soon.

1Matlab’s IEEE double precision arithmetics were used (8 bytes represen-
tation).

APPENDIX A
PROOF OF THE IG SUM FORMULA

While the result can be obtained from Crandall’s formula
for Epstein zeta functions [10], we provide a complete, self-
contained proof that is aimed at a signal processing audience.

Proof: The Laplacian filter (−∆̂d)γ(ω) can be computed
easily and only plays a role on the convergence of the series
for ωωω = 0, in which case we get Aγ(1) = 1. Therefore, we
focus on the computation of Sγ(ejωωω) ,

∑
k∈Zd

1
‖ω+2kπ‖2γ .

We proceed in five steps and perform the substitution s = 2γ
and f = ω/(2π) to simplify the notation.

Step 1 (Summation terms as Euler integrals):
Euler’s integral formula for the Gamma function is (cf. [12])

Γ(z) = ηz

∫ ∞

0

tz−1e−ηtdt , <z,<η > 0.

By taking η = ‖f − k‖2 and z = s/2, we obtain

1
‖f − k‖s

=
1

Γ(s/2)

∫ ∞

0

ts/2−1e−t‖f−k‖2
dt.

Step 2 (Splitting the integral):
Because the integrand is in L1 and the autocorrelation sum
is absolutely convergent, one may interchange the summation
and the integration. The integral is then split in two parts:

(2π)sΓ(s/2)Sγ(2πf)

=
∫ ∞

0

ts/2−1

 ∑
k∈Zd

e−t‖f−k‖2

 dt

=
∫ π

0

ts/2−1
∑
k∈Zd

e−t‖f−k‖2
dt

+
∫ ∞

π

ts/2−1
∑
k∈Zd

e−t‖f−k‖2
dt.

(6)

Step 3 (The [π ∞] integral):
The right term in (6) immediately yields a sum of incomplete
Gamma functions:∫ ∞

π

ts/2−1
∑
k∈Zd

e−t‖f−k‖2
dt

=
∑
k∈Zd

‖f − k‖−s

∫ ∞

π‖f−k‖2
rs/2−1e−rdr

=
∑
k∈Zd

‖f − k‖−sΓ
(
s/2, π‖f − k‖2

)
.

Step 4 (The [0 π] integral):
More effort is required to put the left term of (6) in a
computable form. We perform the change of variables r = 1/t:

∫ π

0

ts/2−1

 ∑
k∈Zd

e−t‖f−k‖2

 dt

=
∫ ∞

1
π

r−s/2−1

 ∑
k∈Zd

e−
1
r ‖f−k‖2

 dr.
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Fig. 1. (a) Root mean squared error (RMSE) as a function of the radius R. The error for the IG method is independent of γ and does
quickly drop below machine precision. (b) Execution time as a function of the radius R, including the levels when machine precision is
reached.

Fig. 1. (a) Root mean squared error (RMSE) as a function of the radius R. The error for the IG method is independent of γ and does quickly drop below
machine precision. (b) Execution time as a function of the radius R, including the levels when machine precision is reached.

Step 5 (Poisson summation formula):
Applying Poisson’s summation formula, we get∑

k∈Zd

e−t‖f−k‖2
= (πr)

d
2

∑
n∈Zd

e−j2π〈n,f〉e−π2r‖n‖2
,

which allows us to rewrite the [0 π] integral as (recall s > d):∫ ∞

1
π

r−s/2−1

 ∑
k∈Zd

e−
1
r ‖f−n‖2

 dr

= πd/2
∑

n∈Zd\{0}

e−j2π〈n,f〉
∫ ∞

1
π

r
d−s
2 −1e−rπ2‖n‖2

dr

+ πd/2

∫ ∞

1
π

r
d−s
2 −1dr

= πs−d/2
∑

n∈Zd\{0}

e−j2π〈n,f〉

‖n‖d−s

∫ ∞

π‖n‖2
t

d−s
2 −1e−tdt

+
2πs/2

d− s

= πs−d/2
∑

n∈Zd\{0}

e−j2π〈n,f〉

‖n‖d−s
Γ
(

d− s

2
, π‖n‖2

)
+

2πs/2

d− s
.

As expected the result is real since the terms with indices n
and −n are complex conjugates of each other.

Putting the pieces together yields the iG sum formula.
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