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Abstract

In a companion paper we characterized the class of scale-invariant convolution operators: the generalized

fractional derivatives of order γ. We used these operators to specify regularization functionals for a series of

Tikhonov-like least squares data fitting problems and proved that the general solution is a fractional spline of twice

the order. We investigated the deterministic properties of these smoothing splines and proposed a fast FFT-based

implementation.

Here, we present an alternative stochastic formulation to further justify these fractional spline estimators. As

suggested by the title, the relevant processes are those that are statistically self-similar; that is, fractional Brownian

motion (fBm) and its higher order extensions. To overcome the technical difficulties due to the non-stationary

character of fBm, we adopt a distributional formulation due to Gel’fand. This allows us to rigorously specify

an innovation model for these fractal processes, which rests on the property that they can be whitened by suitable

fractional differentiation. Using the characteristic form of the fBm, we then derive the conditional PDF, p(BH(t)|Y ),

where Y = {BH(k) +n[k]}k∈Z are the noisy samples of the fBm BH(t) with Hurst exponent H . We find that the

conditional mean is a fractional spline of degree 2H , which proves that this class of functions is indeed optimal for

the estimation of fractal-like processes. The result also yields the optimal (MMSE) parameters for the smoothing

spline estimator, as well as the connection with kriging and Wiener filtering.

Index Terms

fractional Brownian motion, fractional splines, Wiener filtering, interpolation, self-similar processes,

smoothing splines, MMSE estimation

I. INTRODUCTION

In the preceding paper [1], we demonstrated the power of the differential formulation of splines

by constructing an extended family of fractional splines. These functions are specified in terms of a

differential operator L, which, in the present case, is constrained to be scale-invariant (or self-similar).

We also investigated an alternative variational formulation which allowed us to recover a subset of these

splines (the ones associated with self-adjoint operators) based on the minimization of some scale-invariant

“spline energy” involving the same type of operator. We used this deterministic framework to specify a

general parametric class of smoothing spline estimators for fitting discrete signals corrupted by noise.

Differential operators also naturally arise in the theory of continuous-time stochastic processes; for

instance, it is often possible to specify a process x(t) as the solution of a stochastic differential equation,

L{x(t)} = w(t), whose driving term w(t) is white Gaussian noise with variance σ2
0—this type of

representation is often referred to as the innovation model of the process [2], [3]. Now, in the standard case

where L is shift-invariant and its inverse is well defined in the L2-sense (i.e.;
∫ +∞
−∞ 1/|L(ω)|2dω <∞), this
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procedure defines a stationary process whose power density is Φyy(ω) = σ2
0/|L(ω)|2. The interpretation

is simply that L is the whitening operator of the process.

Interestingly, there is a perfect parallel between the deterministic differential equations used to define

general L-splines, and the stochastic ones just mentioned above. In our previous work, we have taken

advantage of this fact to derive an equivalence between spline interpolation and the optimal, continuous-

time estimation of stationary processes from their integer samples [4]. In particular, we showed that every

continuous-time stationary process with a rational power spectrum has a natural exponential spline space

associated with it and that this space contains the optimal solutions of all related minimum mean square

error (MMSE) interpolation and estimation problems.

Following this line of thought, it seems quite natural to extend those stochastic results to the classical

polynomial splines [5] and their fractional extensions specified in [1]. Unfortunately, this is far less trivial

than we would have thought initially because of the lack of correspondence between 1/ωγ spectra and

stationary processes. Indeed, the price to pay for self-similary is the zero of order γ in the frequency

response of L at ω = 0 which makes the differential system unstable, and substantially complicates the

mathematical analysis. Here, as suggested by the title, the relevant stochastic processes are those that are

statistically self-similar [6]. These were characterized in 1968 by Mandelbrot and van Ness [7] and named

fractional Brownian motion (fBm) because they can be viewed as an extension of Brownian motion, also

known as the Wiener process. In this respect, we note that there is an early mention of a link between

(thin-plate) splines and fractals in a paper by Szeleski and Terzopoulos in computer graphics, the argument

being that both types of entities give rise qualitatively to the same type of frequency behavior [8]. The

main difficulty in dealing with fBms is that they are non-stationary1, meaning that they do not have

a well-defined power spectrum. The corollary is that the mathematics of fBm-like processes are much

more involved than those of ordinary stationary processes. Yet, it is possible to define some generalized

notion of power spectrum for these processes [10]; for fBm, these follow a characteristic 1/ωγ power

law, which justifies the common denomination of “1/f noise”. There are a few results available on the

prediction of such process from their past [9], [11]–[14] and on optimal signal detection in 1/ωγ noise

[15]. Also relevant to the topic is the wavelet-based technique for generating fBm-like processes that was

proposed by Meyer et al. [16].

1It can be shown that there is no mean-square-continuous stationary process whose covariance function is self-similar. However,

a careful distributional extension using Gel’fand and Vilenkin’s mathematical framework can lead to the definition of Gaussian

stationary processes that are self-similar, discontinuous and of infinite power (e.g. white noise) [9]. Qualitatively, these correspond

to fBm’s with H < 0.
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The purpose of this paper is to close the gap by showing that the fractional splines are the optimal

function spaces for interpolating and estimating fractal processes. A key technical point is the rigorous

statement (in the distributional sense) that the fractional derivatives are the whitening operators for

fBms and their higher order extensions. This allows us to prove our main theorem which states that

the continuous-time Wiener estimator of a generalized fBm, given its (possibly noisy) samples at the

integers, is a fractional smoothing spline of order 2γ = 2H + 1 where H > 0 is the order of self-

similarity (Hurst exponent) of the process.

The paper is organized as follows. In Section II, we introduce the notation while briefly reviewing

the key properties of fractional smoothing spline filters. In Section III, we address the issue of the

stochastic modeling of self-similar processes. Our contribution is the proposal of an innovation model

for the generation of fBm and their extension for Hurst exponents H > 1 (cf. Fig. 1). In effect, the

fBm is generated by suitable fractional integration of a white noise process. The major difficulty here

is of technical nature: it requires giving a precise mathematical meaning to the objects and operations

involved (within the context of distribution theory) and searching for an effective way of imposing

boundary conditions at the origin that are specific to self-similar processes. To this end, we rely on

Gel’fand’s theory of generalized stochastic processes (cf. subsection III.B) which allows us to safely

manipulate fBms; for instance, compute fractional derivatives and anti-derivatives. In Section IV, we use

the proposed distributional characterization of fBm to solve our basic estimation problem. Our main result

is an explicit formula for the posterior probability density function p (x(t0)|Y ) for any t0 ∈ R where

Y = {y[k] = x(k) + n[k]}k∈Z are the samples of a fBm process x(t) corrupted by additive Gaussian

stationary noise n. This automatically yields the optimal spline estimator that includes a rapidly decaying

non-stationary component. We then proceed with the derivation of the best “stationary” estimator which

turns out to be computationally equivalent to the “deterministic” smoothing spline algorithm investigated

in Part I.

II. FRACTIONAL SPLINE ESTIMATORS

In this section, we briefly recall the key features of the fractional smoothing splines that were specified

in Part I using a deterministic, variational formulation. In the process, we also adapt the notation slightly

to make it more suitable for a statistical formulation.

Our basic estimation problem is to recover an unknown continuous-time function X = {x(t)}t∈R given

a sequence of noisy samples Y = {y[k] = x(k) + n[k]}k∈Z, where {n[k]}k∈Z is a perturbation signal

(noise) whose influence we want to minimize.
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The fractional spline estimator of degree α (or, equivalently, of order 2γ = α+1) is a continuous-time

function that depends upon the discrete measurements Y and takes the generic form

x̃(t|Y ) =
∑
k∈Z

c[k]βα
0 (t− k) (1)

where βα
0 (t) is the fractional symmetric B-spline of degree α (cf. first row of Table I). It is uniquely

characterized by the sequence of its B-spline coefficients {c[k]}k∈Z.

For the class of smoothing spline estimators described in [1], the B-spline coefficients are obtained by

appropriate filtering of the input data: c[k] = (h∗y)[k]. The digital smoothing spline filter h is parametrized

by the degree of the spline, a regularization factor λ ≥ 0, and a positive definite convolution kernel v[k]

whose discrete Fourier transform is V (ejω). Here, to simplify the notation, we combine the two latter

entities into a single weighting function

0 ≤ Λ(ejω) :=
λ

V (ejω)
,

which we assume to be bounded. Using this formalism, we rewrite the frequency response of the filter

(cf. [1, Eq. (20)]) as

H(ejω) =
1

|2 sin(ω/2)|α+1Λ(ejω) +Bα
0 (ejω)

. (2)

where

Bα
0 (ejω) =

∑
k∈Z

βα
0 (k)e−jωk, (3)

is the discrete-time Fourier transform of the sampled B-spline basis function.

Putting these elements together, we express the smoothing spline estimator in terms of the input y[k]:

x̃(t|Y ) =
∑
k∈Z

y[k]ϕΛ(t− k) (4)

where

ϕΛ(t) =
∑
k∈Z

h[k]βα
0 (t− k) (5)

is an equivalent fractional spline basis function that represents the “impulse response” of the estimator,

keeping in mind that the input Y is discrete, while the output x̃ is analog.

In Part I, we have shown that this spline estimator is optimal in the sense that, for a given input

sequence y[k] ∈ `2, it minimizes the regularized error criterion

ξ(y, s) =
∑
k∈Z

|v ∗ (y[k]− s(k))|2 + λ

∫ +∞

−∞
|∂γ

τ s(t)|2dt,
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where ∂γ
τ is a generalized fractional derivative of order γ = α+1

2 (cf. definition in Table I). Using our

present notation, we can write the equivalent frequency domain criterion

ξ′(y, s) =
∫ 2π

0

∣∣Y (ejω)−
∑

n∈Z ŝ(ω + 2πn)
∣∣2

Λ(ejω)
dω
2π

+
∫ +∞

−∞
|ω|α+1|ŝ(ω)|2 dω

2π
,

whose minimum over all functions s(t) ∈ L2 is achieved by the spline estimator (4).

Since the digital filter h is guaranteed to be BIBO stable (cf. [1, Theorem 2]) and the fractional B-spline

basis functions are Lp-stable for 1 ≤ p ≤ ∞, there is no compelling reason for restricting ourselves to

input signals that are in `2, other than the fact that the variational criteria listed above may no longer

be well defined. In the sequel, we will lift this hypothesis and consider the application of the spline

estimator (4) to stochastic signals that are not square summable. It is important to note that this does not

change anything from a computational point of view, meaning that the fast smoothing spline algorithm

introduced in [1, Section IV] and the corresponding frequency domain analysis remain valid.

III. STOCHASTIC MODELING OF SELF-SIMILAR PROCESSES

To justify the use of the above smoothing spline estimator on statistical grounds, we first need to

introduce an appropriate mathematical framework that allows us to characterize fractal-like processes

and to apply linear operators to them, including the fractional derivatives listed in Table I. Since this

cannot be handled by standard stochastic calculus, we had to turn to Gel’fand and Vilenkin’s theory

of generalized stochastic processes which constitutes the statistical counterpart of Schwartz’s theory of

distributions.

A. Self-similar processes: review of standard results

There are a number of technical difficulties with the modeling of self-similar processes, fractional

Brownian-motion (fBm) being the most prominent example. This is primarily due to the fact that

these processes are non-stationary, meaning that their spectral power density cannot be defined in the

conventional sense. Fortunately, the τ -lag increment derived process, yτ (t) = x(t)−x(t− τ), where x(t)

denotes the realization of a fBm-like process, is zero-mean, second-order stationary.

In the statistical literature, a process whose increments are stationary is referred to as being intrinsic

stationary. These processes are often characterized by their variogram [17],

γx(τ) := E {(x(t)− x(t− τ))2},

which measures the variance of the increment process yτ (t) as a function of the time-lag.
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TABLE I

PRIMARY FUNCTIONS AND OPERATORS FOR SMOOTHING SPLINE ESTIMATION AND THE MODELING OF FRACTAL PROCESSES

Notation Defining formula

Spline generating functions:

Symmetric B-spline of degree α βα
0 (t) β̂α

0 (ω) =
∣∣∣∣sin(ω/2)

ω/2

∣∣∣∣α+1

Generalized fractional B-spline βα
τ (t) β̂α

τ (ω) =
(

1− e−jω

jω

)α+1
2

+τ (1− ejω

−jω

)α+1
2

−τ

Test functions of rapid decay φ(t) ∈ S |φ(n)(t)| ≤ Cm,n

1 + |t|m
, ∀,m, n ∈ N

φ̂(ω) ∈ S φ̂(ω) =
∫ +∞

−∞
φ(t)e−jωtdt with φ ∈ S

Scale-invariant operators:

Fractional derivative ∂γ
τ φ(t) ∂̂γ

τ φ(ω) = (−jω)
γ

2
−τ (jω)

γ

2
+τ φ̂(ω)

Fractional finite differences ∆γ
τφ(t) ∆̂γ

τφ(ω) = (1− ejω)
γ

2
−τ (1− e−jω)

γ

2
+τ φ̂(ω)

Left fractional anti-derivative −γ
−τ ∂φ(t) −̂γ

−τ ∂φ(ω) =
φ̂(ω)−

∑dγ− 3
2
e

k=0 φ̂(k)(0)ωk

k!

(−jω)
γ

2
−τ (jω)

γ

2
+τ

Right fractional anti-derivative ∂−γ
−τ φ(t) ∂−γ

−τ φ(t) =
∫ −∞

−∞

ejωt −
∑dγ− 3

2
e

k=0
(jωt)k

k!

(−jω)
γ

2
−τ (jω)

γ

2
+τ

φ̂(ω)
dω
2π

A real valued stochastic process X = {x(t)}t∈R is self-similar with index (or Hurst exponent) H > 0

if, for any a > 0,

{x(at)}t∈R , {aHx(t)}t∈R

where , denotes the equality of all underlying finite-dimensional distributions.

The fractional Brownian motion (fBm) with Hurst exponent 0 < H < 1 is a zero-mean Gaussian

process that is both self-similar and intrinsically stationary [7]. In particular, this implies that its variogram
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is self-similar of order 2H (in the sense that γx(aτ) = a2Hγx(τ)) and is therefore given by

γx(τ) = CH · |τ |2H (6)

where CH > 0 is simply a scaling factor (cf. [1, proof of Proposition 1]). The variance of the fBm has

the same self-similar functional form

σ2
x(t) = CH · |t|2H , (7)

which is time-dependent, confirming that the process is non-stationary.

If we know both the time-varying variance and the variogram of the process, we easily obtain the

autocorrelation function, thanks to the relation

cxx(t1, t2) := E {x(t1)x(t2)} =
1
2
(
E {x2(t1)}+ E {x2(t2)} − γx(τ)

)
.

In the case of the fBm process, this yields the following explicit form of the autocorrelation,

cxx(t1, t2) =
CH

2
(
|t1|2H + |t2|2H − |t2 − t1|2H

)
, (8)

which is also self-similar of order 2H . Conversely, it can be shown that the 2D function defined by (8) is

non-negative definite (see Thm. 1 below) and that it is the only possible parametric form of correlation

that corresponds to a process that is both self-similar and intrinsically stationary [18].

The notion of intrinsic stationarity can be further generalized by considering processes whose nth-order

increments are stationary [12], [19]. Among those, one can also identify the ones that are self-similar,

which leads to an extended notion of fractional Brownian motion for larger Hurst exponents H such that

n − 1 < H < n where n is the order of the increment. Such processes can be obtained, for example,

from the n-fold integration of a conventional fBm with suitable initial conditions [20]. This leads to an

autocorrelation function of the form

cxx(t1, t2) =
CH

2
×

(
−|t2 − t1|2H +

n−1∑
k=0

(−1)k

(
2H
k

)[(
t1
t2

)k

|t2|2H +
(
t2
t1

)k

|t1|2H

])
, (9)

where CH is a constant and n = dHe. In the literature, the constant is sometimes expressed as CH =
ε2H

Γ(2H+1) sin(πH) where ε2H is a spectral energy factor; the standard normalized case corresponds to the

choice ε2H = 1 and 0 < H < 1.

B. Generalized stochastic processes: Gel’fand-Vilenkin’s approach [21]

In order to perform linear operations such as differentiation on random processes, a fruitful approach

is to consider them as random distributions and to extend the applicability of the distributional calculus
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to these processes. In particular, this formalism provides a rigorous definition of white noise, which plays

such as fundamental role in statistical signal processing. A very stimulating and fundamental presentation

of this theory can be found in [21].

Although Gel’fand and Vilenkin’s approach is a natural extension of the now classical theory of

distributions [22], it seems to have been somewhat neglected in the standard literature on random

processes, including fBms. One notable exception relating to signal processing is [23]. By contrast, the

Itô stochastic calculus and its Stratonovich variant have received a much greater attention; in particular,

in statistical physics and financial mathematics [24], [25]. Both types of approaches have their advantages

and limitations; for instance, the Itô calculus can handle certain nonlinear operations on random processes

that cannot be dealt with the distributional approach. Gel’fand’s theory, on the other hand, is ideally suited

for performing any kind of linear operations including some, such as fractional derivatives, which are

extremely cumbersome to define in a traditional (non-distributional) framework.

Most readers may recall that a distribution u(t) is not defined through its point values (samples), but

rather through a series of scalar products (linear functionals) 〈u, φ〉 with all test functions φ ∈ S

(Schwartz’s class). These test functions are indefinitely differentiable and they, as well as all their

derivatives, have very rapid decay (i.e., faster than O(|t|−m),∀m ∈ N+). In an analogous fashion,

a generalized stochastic process x(t) is not defined by the probability law of its pointwise samples

{. . . , x(t1), x(t2), . . . , x(tN ), . . .}, but by the probability law of its scalar products with arbitrary test

functions φ(t) ∈ S .

Specifically, given φ ∈ S , y = 〈x, φ〉 is a random variable characterized by a probability density

pφ(y) dy. The characteristic function of this random variable is used to define a functional of φ:

Zx(φ) = E
{
e−j〈x,φ〉} =

∫
e−jypφ(y) dy,

where E {·} is the expectation operator. This functional Zx is called the characteristic form of the

process x. It is important to understand that it concentrates all the information available on the generalized

stochatic process x(t). For instance, if one wants to access the joint probability of the random variables

y1 = 〈x, φ1〉, y2 = 〈x, φ2〉,. . . yN = 〈x, φN 〉, then it suffices to take the inverse Fourier transform of

Zx(ω1φ1 + ω2φ2 + . . . ωNφN ) with respect to ω = {ω1, ω2, . . . ωN}. This is because the probability

density of the set of random variables {y1, y2, . . . yN} is given by

p(y1, y2, . . . yN ) =
∫

E
{
e
−

NP
k=1

jωk〈x,φk〉}︸ ︷︷ ︸
Zx

(
NP

k=1
ωkφk

) e

NP
k=1

jωkyk dNω

(2π)N
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Conversely, if Z(φ) is a continuous form of positive type2 and satisfies Z(0) = 1, then it is the

characteristic form of a generalized stochastic process x(t). The continuity of the functional expresses

the fact that Z(φk) tends to Z(φ) when φk tends to φ as k →∞; it is an essential ingredient that allows

the extension of the characteristic form Zx to potentially larger function spaces than S . For instance, if

Zx is continuous with respect to the L2-norm then, thanks to the density of S in L2, we may extend

the functional Zx to arbitrary functions of L2. For continuous processes such as fBm, we can even let

φk tend to δ, the Dirac distribution: the continuity property of the characteristic form will ensure the

well-definiteness of Zx(δ).

Conceptually, this means that the characteristic form can be viewed as the distributional, infinite-

dimensional extension of the classical characteristic function. To get a better feeling for this connection,

we note that characteristic function (i.e., the Fourier transform of the probability density) of the sample

x(0) of a stochastic process x(t) is defined by E
{
e−jωx

}
which can also be expressed as Zx(ωδ); this

corresponds to a one-dimensional analysis of the process with the test functions φ(t) = ωδ(t) parametrized

by ω ∈ R. The argument obviously also holds in higher dimensions by considering the N -dimensional

subspace of test functions ω1δ(t− t1) + · · ·ωNδ(t− tN ) with (ω1, · · · , ωN ) ∈ RN .

The advantage of working with scalar products instead of point values is that it is possible to exploit

duality properties to perform linear operations such as differentiation, Fourier transforms or convolutions.

For instance, using the definitions 〈∂γ
τ x, φ〉 = 〈x, ∂γ

−τφ〉, we are able to compute the fractional derivative

of a stochastic process. This can be moved automatically to the characteristic form:

Z∂γ
τ x(φ) = Zx(∂γ

−τφ) (10)

More generally, if h is some filter, the characteristic form of h ∗ x is given by Zh∗x(φ) = Zx(h† ∗ φ)

where h†(x) = h(−x).

Similarly, using the definition 〈x̂, φ〉 = 〈x, φ̂〉, the characteristic form of the Fourier transform of a

stochastic process is given by:

Zx̂(φ) = Zx(φ̂). (11)

The case of generalized, zero-mean Gaussian processes is especially simple to deal with since they are

completely defined by their mean and autocorrelation. Specifically, if cxx(t, t′) is the correlation form3

2i.e., if the matrix Z = [Z(φk − φl)]1≤k,l≤N is positive irrespective of N ∈ N \ {0} and of the choice of φk ∈ S .
3defined by 〈cxx(t, t′), φ(t)ψ(t′)〉 = E {〈x, φ〉〈x, ψ〉} for all φ, ψ ∈ S .
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of the zero-mean process x, then its characteristic form is given by:

Zx(φ) = exp
{
−1

2

∫
cxx(t, t′)φ(t)φ(t′) dtdt′

}
. (12)

Conversely, if cxx is a continuous positive distribution of (t, t′), then (12) defines a generalized zero-mean

Gaussian process. Stationary processes have a simpler characteristic form:

Zx(φ) = e−
1
2
‖hx∗φ‖2

L2 (13)

where hx(t) is a filter such that |ĥx(ω)|2 is the power spectral density of the process x(t). Of particular

interest is the case of the normalized Gaussian white noise W (t) which is defined via its characteristic

form

ZW (φ) = e−
1
2
‖φ‖2

L2 .

Applying Parseval identity and the definition (11) of the Fourier transform of a stochastic process, we

easily get the “intuitive” result that the Fourier transform of a white noise is a white noise as well.

However, if we lift the Gaussian hypothesis, other versions of white noise processes can be obtained

such as the generalized Poisson process which has the following characteristic form:

ZW (φ) = exp
(
λ

∫ (
ejφ(t) − 1

)
dt
)
.

In their book, Gel’fand and Vilenkin give the explicit expression of the characteristic form of an even

broader class of non-Gaussian white noise-like processes [21].

C. Fractional integrals/anti-derivatives

One of the classical definition of fBm involves a fractional integral of a Wiener (or Brownian motion)

process [7], [18]. It is therefore tempting to introduce an extended family of integral operators (fractional

anti-derivatives) that are inverse operators for ∂γ
τ where γ ≥ 0. To this end, we have to make the

distinction between left, and right inverse denoted respectively by −γ
−τ ∂ and ∂−γ

−τ . When γ 6= 0, we

propose the following operators

−γ
−τ ∂φ(t) =

1
2π

∫
φ̂(ω)−

∑dγ− 3
2
e

k=0 φ̂(k)(0)ωk

k!

(−jω)
γ

2
−τ (jω)

γ

2
+τ

ejωt dω,

and

∂−γ
−τ φ(t) =

1
2π

∫
ejωt −

∑dγ− 3
2
e

k=0
(jωt)k

k!

(−jω)
γ

2
−τ (jω)

γ

2
+τ

φ̂(ω) dω.

(14)

June 28, 2006 DRAFT



To appear in IEEE TRANSACTIONS ON SIGNAL PROCESSING 12

When φ is regular and decreases fastly enough4, −γ
−τ ∂φ defines a true function which is either in L2 when

γ is not a half-integer, or is continuous and slowly decreasing (but not in L2) when γ is a half-integer.

It is easy to verify that −γ
−τ ∂ satisfies −γ

−τ ∂∂
γ
τ φ = φ for every function of S ; i.e., −γ

−τ ∂∂
γ
τ = Identity.

Moreover, it can be checked that −γ
−τ ∂ and ∂−γ

τ are adjoint of one another (in a similar way as ∂γ
−τ

and ∂γ
τ are adjoint); i.e., 〈∂−γ

−τ ψ, φ〉 = 〈ψ,−γ
τ ∂φ〉 when φ and ψ are in S . Thanks to duality, we can

thus claim that 〈∂γ
τ ∂

−γ
−τ ψ, φ〉 = 〈ψ, φ〉; i.e., ∂γ

τ ∂
−γ
−τ = Identity.

This allows to extend the right fractional derivative inverse ∂−γ
−τ to a subset of tempered distributions

u according to the rule

〈∂−γ
−τ u, φ〉 = 〈u,−γ

τ ∂φ〉.

It is interesting to note that both types of anti-derivative operators are scale-invariant of order −γ.

Intuitively, they may be thought of as (fractional) integrals to which one has imposed special boundary

conditions at the origin. This has also the benefit of producing a result that is reasonably localized;

i.e., square-integrable in the case when φ ∈ S . The left anti-derivative operator, for instance, has a

special Dirac distribution annihilation property in the sense that −γ
−τ ∂δ

(m)(t) = 0, for m = 0, · · · , n,

where n = dγ − 3
2e. The right anti-derivative operator, on the other hand, will produce a function (or

distribution) v(t) = ∂−γ
−τ u(t) that has a (n+1)th order zero at the origin: v(m)(0) = 0, for m = 0, · · · , n.

When we are dealing with a function, this can be achieved by correcting the usual integral with a suitable

polynomial that is in the null space of ∂γ
τ . In both cases, these are properties that are strictly tied to the

origin t = 0, indicating that the operators are not shift-invariant.

Thanks to the above distributional relations, we can readily apply these anti-derivative operators to

a wide class of generalized stochastic processes x; in particular, the Gaussian stationary ones specified

by (26). For instance, by using the definition, 〈∂−γ
−τ x, φ〉 = 〈x,−γ

τ ∂φ〉, we can directly move the right

anti-derivative to the characteristic form, which yields

Z∂−γ
−τ x(φ) = Zx(−γ

τ ∂φ). (15)

Of course, the restriction here is that the right hand side of (15) be well defined, which will typically be

the case when −γ
τ ∂φ ∈ L2.

4For instance, when γ is not a half-integer, we may wish to ensure that the remainder of the Taylor development of φ̂(ω)

near ω = 0 be at least O(|ω|γ−1/2+ε) for some positive ε, and that
R
|φ̂(ω)|dω < ∞, which is automatically satisfied when

φ ∈ S .
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D. Distributional characterization of fBm

We now present our first theoretical result on the characterization of fBm.

Theorem 1: The usual (0 < H < 1) fractional Brownian motion process BH(t) is characterized by

the form

ZBH
(φ) = exp

(
−
ε2H
4π

∫
|φ̂(ω)− φ̂(0)|2

|ω|2H+1
dω
)
, (16)

where ε2H = Γ(2H + 1) sin(πH)CH , the constant CH being defined according to (6) or (8).

Proof: We already know that a fBm is a Gaussian process with correlation cxx(t, t′) = CH/2
(
|t|2H+

|t′|2H − |t− t′|2H
)
. We thus only have to prove that∫

cxx(t, t′)φ(t)φ(t′) dtdt′ = ε2H

∫
|φ̂(ω)− φ̂(0)|2

|ω|2H+1

dω
2π
.

In order to do this, we choose s > 0 and introduce the function λs(t) = CH/2 |t|2He−s|t| whose Fourier

transform is λ̂s(ω) = CHΓ(2H+1)Re
{
(s+ jω)−2H−1

}
. Obviously, cs(t, t′) = λs(t)+λs(t′)−λs(t−t′)

tends to cxx(t, t′) when s→ 0. More precisely, Lebesgue dominated5 convergence theorem ensures that∫
cs(t, t′)φ(t)φ(t′) dtdt′ tends to

∫
cxx(t, t′)φ(t)φ(t′) dtdt′ when s→ 0.

Then, we observe that∫
cs(t, t′)φ(t)φ(t′) dtdt′ = −

∫
|φ̂(ω)− φ̂(0)|2λ̂s(ω)

dω
2π

because of the following Fourier equivalences:

•

∫
λs(t)φ(t)φ(t′) dtdt′ = φ̂(0)

∫
λ̂s(ω)φ̂(ω)∗

dω
2π

= φ̂(0)∗
∫
λ̂s(ω)φ̂(ω)

dω
2π

•

∫
λs(t− t′)φ(t)φ(t′) dtdt′ =

∫
λ̂s(ω)|φ̂(ω)|2 dω

2π

• |φ̂(0)|2
∫
λ̂s(ω)

dω
2π

= |φ̂(0)|2λs(0) = 0

Let us denote by v(ω) the integrable function −CHΓ(2H + 1) sin(πH)|φ̂(ω) − φ̂(0)|2|ω|−2H−1. We

have the limit result lims→0 |φ̂(ω)− φ̂(0)|2λ̂s(ω) = v(ω). Moreover, |φ̂(ω)− φ̂(0)|2|λ̂s(ω)| is dominated,

up to a constant, by |v(ω)|. Finally, using Lebesgue dominated convergence theorem, we obtain the

claimed Fourier expression

lim
s→0

−
∫
|φ̂(ω)− φ̂(0)|2λ̂s(ω) dω = CHΓ(2H + 1) sin(πH)

∫
|φ̂(ω)− φ̂(0)|2

|ω|2H+1

dω
2π
.

Note that this proof is also a direct method for showing that the expression (8) effectively defines a

correlation (i.e., a positive quadratic form).

5Notice that |cs(t, t′)φ(t)φ(t′)| is “dominated” by (|t|2H + |t′|2H + |t− t′|2H)|φ(t)φ(t′)| which is integrable.

June 28, 2006 DRAFT



To appear in IEEE TRANSACTIONS ON SIGNAL PROCESSING 14

It is also possible to extend the expression (16) by making use of the left fractional anti-derivative
− 1

2
−H

τ ∂φ of φ(t) ∈ S , defined in subsection III.C. Note that τ ∈ R is an arbitrary free parameter. Thanks

to this notation, we rewritte the characteristic form of the fBm as

ZBH
(φ) = e

− ε2
H
2

∥∥− 1
2−H

τ ∂φ
∥∥2

L2 . (17)

The advantage of this formula is that it also yields a natural extension of the fBm for non-integer Hurst

exponents H > 1. Note that positive integer values of H are excluded because they correspond to anti-

derivatives
− 1

2
−H

τ ∂φ that are not necessarily square integrable. Using the same technique as in Thm. 1,

it is then possible to compute the autocorrelation of the process defined by (17), resulting in a form that

is identical to (9). This also yields a direct relation between the amplitude factor εH in (17) and the

constant CH in (9):

CH =
ε2H

Γ(2H + 1) sin(πH)
(18)

This shows that the generalized fBm that is concisely defined by (17) with H ∈ R+\N is in fact equivalent

to the one introduced by Perrin et al. with the help of more traditional techniques [20].

By setting εH = 1 in the definition (17), we see that, for H > 1, we have ZBH
(φ′) = ZBH−1(φ). This

results in B′
H(t) = −BH−1(t); i.e., the usual derivative of an extended fBm of exponent H is an extended

fBm of exponent H − 1. More generally, we can show that an extended fBm BH with noninteger Hurst

exponent H is bHc-times continuously differentiable and that dbHc

dtbHcBH is a usual fractional Brownian

motion with Hurst exponent [H] = H − bHc. In fact, by substituting φ(t) = δ(t) in (17), we observe

that the Fourier transform of the probability density of BH(0) = 〈BH , δ〉 equals 1 which means that

BH(0) = 0 with probability one. Likewise, we can show that an extended fBm with exponent H is

bHc-times continuously differentiable and that all its derivatives vanish at t = 0: dn

dtnBH(0) = 0 for

n = 0 . . . bHc.

E. Whitening properties of the fractional derivatives

We now wish to reinterpret the formula (17) that defines both the usual fBm (0 < H < 1) and

the “extended” one (H ∈ R+ \ N). By using the characteristic form ZW (φ) = exp(−1
2‖φ‖

2
L2

) of the

normalized Gaussian white noise and the duality between right and left primitive (10), we identify the

characteristic form of the fBm with the characteristic form of εH ∂
−H− 1

2
−τ W :

ZBH
(φ) = e

− ε2
H
2

∥∥− 1
2−H

τ ∂φ
∥∥2

L2

= ZW (εH
− 1

2
−H

τ ∂φ)

= Z
εH ∂

−H− 1
2

−τ W
(φ),
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which proves the identity between the two processes.

Proposition 1: The extended fractional Brownian motion with arbitrary noninteger positive Hurst

exponent H can be expressed as a right (H + 1
2)th anti-derivative of a Gaussian white noise:

BH = εH ∂
−H− 1

2
−τ W. (19)

As a corollary, we get that the (H + 1
2)th derivative of an fBm is a white noise:

∂
H+ 1

2
τ BH = εH W, (20)

which follows from the right-inverse property ∂
H+ 1

2
τ ∂

−H− 1
2

−τ = Identity.

Note that, for τ = H/2+1/4, the formula (20) is equivalent to the one that was proposed in [20, eq.(6)].

F. Fractional increment process

As mentioned in subsection III.A, the standard approach for dealing with intrinsically stationary

processes is to consider their increment so that the problem reduces to the characterization of a stationary

process. Alternatively, when the process is intrinsically stationary of order n, one can apply an nth order

differentiator which yields a (generalized) derived process that is stationary as well [12], [19].

Here we propose another possibility that is specifically tailored to the characterization of γth order

self-similar processes. It is stochastic transposition of the localization technique discussed in [1, Sections

II and III]. Specifically, we chose to apply a discrete operator—the γth order fractional finite difference—

that closely approximates the whitening operator of the process (i.e., ∂γ
τ ). This produces a derived process

that is stationary, essentially decorrelated, and yet well-defined in the classical sense (i.e, mean-square

continuous) for γ > 1
2 .

Proposition 2: Let BH(t) be an fBm with noninteger Hurst exponent H > 0. Then, the derived process

y(t) = ∆H+1/2
τ BH(t) is zero mean, stationary with covariance function

cyy(t1, t2) = ε2H β2H
0 (t2 − t1);

i.e., y(t) can be expressed as the convolution of a normalized Gaussian white noise W with a fractional

B-spline according to

∆H+1/2
τ BH(t) = εH β

H− 1
2

τ ∗W.

Proof: Using the definition of ∆γ
τ (cf. Table 1) and the fact that its adjoint is simply ∆γ

−τ , we

have that 〈∆H+1/2
τ BH , φ〉 = 〈BH ,∆

H+1/2
−τ φ〉. Moreover, expressing BH as an anti-derivative of white

noise according to (20) and using the duality definition for ∂
−H− 1

2
−τ , we find that

〈y, φ〉 = 〈W, εH
−H− 1

2
τ ∂∆H+1/2

−τ φ〉.
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It is now a simple matter to verify by applying the definition (14) that −γ
τ ∂∆γ

−τφ = βγ−1
−τ ∗φ. The result

then follows by noticing that {βγ−1
−τ }† = βγ−1

τ .

Practically, this means that we have at our disposal a digital filter that we can apply to {x(t)}t∈R —or

to its sampled values {x[k]}t∈Z—to produce an output signal (resp., output sequence) that is stationary,

with a very short correlation distance and therefore much easier to handle mathematically. The whole

concept is schematically represented in Fig. 1.
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Fig. 1. Synthesis and analysis of a self-similar stochastic process: The fBm process x(t) is generated by fractional integration

of white Gaussian noise with suitable initial condition that guarantee that E{|x(0)|2} = 0. The whitening operator of the

process is a fractional derivative operator ∂γ
τ ′ of corresponding order. Even though x(t) is not necessarily stationary, it can be

transformed into a stationary process y(t) through the application of the fractional finite difference operator ∆γ
τ ′ . Since ∆γ

τ ′

is a “good” discrete approximation of the continuous-time operator ∂γ
τ ′ , the correlation function cyy(τ) is well-defined and

concentrated around the origin. In fact, this function may be thought of as a regularized version of the Dirac impulse. Note that

τ ′ can be chosen arbitrarily.

IV. OPTIMAL ESTIMATION OF FRACTAL-LIKE SIGNALS

We are now ready to investigate the problem of the MMSE estimation of fBm signals. To this end,

we will first derive the posterior distribution of x(t0) at a fixed location t = t0 given a series of noisy

samples of a fBm with Hurst exponent 0 < H < 1. In particular, we will establish that the posterior mean
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is a fractional spline of degree 2H which justifies the use of spline estimators. The next step will be to

specify a Wiener-like filtering algorithm that will perform the MMSE estimation of x(t) simultaneously

for all t ∈ R. We will show that this can be achieved via an appropriate tuning of the smoothing spline

algorithm described in Section II and that the solution is also applicable for generalized fBms with Hurst

exponents greater than 1.

A. Posterior estimation of fBm

Let x(t) be a fBm with Hurst exponent H < 1. We suppose that we are observing the signal indirectly

through a series of noisy measurements at the integers: y[k] = x(k) + n[k], where n[k] is additive

stationary noise that is independent from x(t). The noise is zero-mean and is characterized by its second

order statistics: E {n[k]n[l]} = cnn[k − l]. Our goal is to construct the best estimator of x(t0) given

the measurements Y . To get a complete handle on this problem, we derive the posterior distribution

p(x(t0)|Y ) which fully specifies the information about the signal that is contained in the measurements.

Theorem 2: Let x(t) = BH(t) be a realization of an fBm of noninteger Hurst exponent 1 > H > 0.

Then, the posterior probability density of x(t0) given the measurements Y = {y[k] = x(k) + n[k]}k∈Z,

where n[k] is a zero-mean Gaussian stationary noise independent of x(t) with autocorrelation cnn[k] ∈ `2,

is the Gaussian density

p(x(t0)|Y ) =
1√

2πσ(t0)
exp

(
−(x(t0)− µ(t0|Y ))2

2σ2(t0|Y )

)
with time-varying mean

µ(t0|Y ) = x̃(t0|Y )− ρ(t0)x̃(0|Y ), (21)

where x̃(t0|Y ) =
∑

k∈Z y[k]ϕΛ(t0 − k) is the fractional smoothing spline of degree α = 2H specified

by (4), (5) and (2) in Section II with

Λ(ejω) =
Cnn(ejω)

ε2H
. (22)

The conditional variance is given by

σ2(t0|Y ) = σ2
0(t0)− ρ2(t0)σ2

0(0). (23)

with
σ2

0(t0) =
CH

2

∑
l∈Z

|t0 − l|2HϕΛ(t0 − l)

ρ(t0) =
∑

l∈Z cnn[l]ϕΛ(t0 − l)∑
l∈Z cnn[l]ϕΛ(l)

.

(24)

where ϕΛ(t0) is the equivalent smoothing spline basis function defined by (5).
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Our proof of this result, which uses the characteristic form of the fBm, is given in Appendix I.

As a direct application of Theorem 2, we get the MMSE estimator of the fBm process x(t) which

is simply the conditional mean E {x(t)|Y } [3]. The key point for our purpose is that this estimator is

a fractional spline, albeit not exactly the smoothing spline solution (4) that we may have wished for

initially.

Corollary 1: Consider the noisy samples Y of an fBm process x(t) = BH(t), as specified in Theorem

2. Then, the MMSE estimator of x(t) given Y is the function µ(t|Y ) defined in Theorem 2, which is a

fractional spline of degree 2H . The corresponding minimum estimation error at location t is E {|x(t)−

µ(t)|2|Y } = σ2(t|Y ) as specified in (23).

The above results call for the following comments.

1) The optimal fBm estimator µ(t0|Y ) is the sum of two terms that are both fractional splines of

degree 2H . The first component, x̃(t0|Y ), is precisely the smoothing spline fit of Y , as specified

in Section II, with the optimal choice of Λ(ejω) given by (22). The second term, −ρ(t0)x̃(0|Y ), is

a non-stationary correction that ensures that the estimate is zero at t = 0, which is consistent with

the property that x(0) = BH(0) is zero with probability one.

2) The variance of the estimator is made up of two terms as well. The first, σ2
0(t0), is 1-periodic. The

second is a correction that expresses the fact that the optimal spline estimate is more accurate near

the origin because of the preference that is given to the value zero.

3) Interestingly, the correction function ρ(t0) is the fractional smoothing spline fit of the autocorrelation

of the noise whose value at the origin has been normalized to one. Since cnn[k] ∈ `2 and takes its

maximum for k = 0, one can expect this function to decay rapidly as one moves away from t = 0.

For instance, when the noise is white, then ρ(t0) = ϕλ(t0)/ϕλ(0), which typically decreases like

O(|t|−2H−2); that is, the rate of decay of the fractional B-splines (cf. [26, Theorem 3.1]).

4) When the measurement noise is zero, we have that x̃(0|Y ) = 0 and σ2(0|Y ) = 0. Then, µ(t0|Y ) =∑
k∈Z y[k]ϕint(t−k) corresponds to the fractional spline interpolation of the input signal Y . This is

equivalent to a smoothing spline estimate with Λ = 0. As expected, the estimation error σ2(t0|Y ) is

zero at the integers because of the interpolation property of the underlying basis function: ϕint(k) =

δk.

5) The optimal estimator µ(t0|Y ) is undistinguishable from the smoothing spline solution x̃(t|Y ) in

the following situations: (a) when the measurement noise is negligible, (b) when x̃(0|Y ) ≈ 0 which

may happen because of (a) or simply by chance, and (c) in all cases for t0 sufficiently large; that

is, as one moves away from the origin which has a very special status due to the self-similarity of
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the underlying process.

6) An efficient way to implement the estimator is to apply the Fourier domain algorithm that was

presented in [1]. The procedure is to first run the algorithm on {y[k]} to obtain the smoothing

spline x̃(t|Y ). Second, one applies the same algorithm to the autocorrelation sequence of the noise

{cnn[k]}. One then corrects x̃(t|Y ) by subtracting a reweighted version of the latter spline so as

to produce a result that is zero at the origin.

7) The Hurst exponent of the standard Wiener (or Brownian motion) process is H = 1
2 . This corre-

sponds to a simple piecewise linear spline estimator with α = 1. In the noise-free case, we recover

a classical result by Lévy [11] that states that the optimal estimator of a Brownian motion process

is obtained by linearly interpolating the samples. In that case, the estimate is entirely determined

by the two neighboring samples. This is not so for other values of H (or when cnn[k] 6= 0) because

the smoothing spline filter generally has an infinite impulse response which induces coupling.

If one excludes the simpler case of Brownian motion, the present results on the prediction of fractal

processes are new to the best of our knowledge. In principle, they should also be generalizable for fBms

with H > 1, but we expect the formulas to become more complicated. In the sequel, we will investigate

the general case as well, but adopt a less frontal approach by searching for the optimal estimator within

the slightly more restrictive class of Wiener-filter-like (or stationary) solutions.

B. Wiener filtering of fractal processes

The main point that differentiates the optimal fBm estimator given by (21) from that of a stationary

process (cf. [4, Theorem]) is the correction term −ρ(t0)x̃(0|Y ), which makes the estimator vanish at

the origin. Its presence is a consequence of the fBm being non-stationary. This lack of stationarity is

obviously a source of complication; it requires the use of an advanced mathematical formulation and

makes the task of finding the best estimator much more difficult.

While we have at our disposal a general closed form solution for H < 1, it may be justifiable in

practice to discard the second, non-stationary part of the MMSE estimator for the following reasons:

1) The exact location of the origin (t = 0 in our model) will rarely be known (or controllable) in

practice; especially if we are dealing with time series.

2) The Wiener-like estimators that are available for stationary processes have the advantage of com-

putational simplicity. The same can be said for the smoothing spline part of µ(t0|Y ), which can

be implemented by digital filtering of the input data.
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3) The estimation error in Corollary 1 does not behave like the estimation error of a stationary

process, which is necessarily periodic (cf. Appendix II). Instead, one may wish the wholeness of

the nonstationary behavior of the fBm to be captured by the linear estimator, whilst the estimation

error would be indistinguishable from the estimation error of a stationary process.

4) There is an alternative ”kriging” formulation from the field of geostatistics that yields the best

linear unbiased (BLU) estimator of x(t0) from sampled data (typically, non-uniform and multi-

dimensional) [17], [27]. This non-parametric estimator is computed from the variogram (which

does not include absolute positional information). Under suitable conditions, this estimator is also

known to be the solution of a variational spline problem [28], [29].

Because of these considerations, it makes good sense to search for a suboptimal solution that has the

simplicity of a stationary (or Wiener) estimator. In particular, we want to find out whether or not we

can improve upon the smoothing spline estimator x̃(t|Y ). The key requirement for such a formulation

is expressed by Remark 3) which implies a restriction on the possible linear estimators, as described by

the following proposition.

Proposition 3: Let x(t) be an fBm of arbitrary (noninteger) Hurst order H and y[k] = x(k) + n[k]

its noisy samples, where n[k] is a zero-mean Gaussian stationary discrete process that is independent of

x(t). We build the linear estimator x̃(t) of x(t):

x̃(t) =
∑
k∈Z

y(k)ϕk(t). (25)

In order for the estimation error e(t) = x(t) − x̃(t) to behave like the estimation error of a stationary

process, it is necessary and sufficient that∑
k∈Z

ksϕk(t) = ts, for s = 0 . . . bHc, (26)

in the sense of distributions.

The proof is given in Appendix II.

The interesting aspect of this result is that it allows us to evacuate the difficulties associated with the

non-stationary character of fractal processes. It is also suggests that the root of the problem lies within

the (random) polynomial part of the signal which is included in the null space of the whitening operator

∂
H+ 1

2
τ . In fact, the presence of this null space component is somewhat artificial for it is only here to

ensure that the fBm has the correct boundary conditions at the origin. Thus, a possible interpretation of

Proposition 3 is that the fBm can be made stationary through the removal of its polynomial trend which

is entirely captured by any estimator satisfying (26). Incidentally, this polynomial reproduction property
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also plays a fundamental role in wavelet theory [30], [31]. Specifically, when we perform a wavelet

analysis of order N ≥ bHc of a fBm, the polynomial component of the process is entirely projected

onto the coarser scale approximation with the consequence that the discrete wavelet coefficients end up

being stationary within any given scale. This is the fundamental reason why wavelets act as approximate

whitening operators for fractal-like processes [32], [33].

For H < 1, we also note that the “stationarizing” hypothesis is in fact equivalent to the unbiasedness

constraint that is used for deriving unbiased kriging estimators [17], [27]. In that particular framework,

the random process to estimate is expressed as the sum of an unknown constant (the trend) and a random

process of known variogram.

Under the “stationarizing” hypothesis (26), we are able to provide the best linear estimator of a fBm.

Not so surprisingly, when 0 < H < 1, this estimator is precisely the first term of (21) that was given in

Thm. 2, namely x̃(t|Y ). Note that the result below is valid for values of H larger than 1 as well.

Theorem 3: Let x(t) be an fBm of arbitrary (noninteger) Hurst order H and y[k] = x(k)+n[k] its noisy

samples, where n[k] is a zero-mean Gaussian stationary discrete process with autocorrelation cnn[k] ∈ `2,

independent of x(t). Then the least mean-square linear estimator (25) satisfying the “stationarizing”

conditions (26) is given by

x̃(t) =
∑
k∈Z

y[k]ϕΛ(t− k)

where, as in Thm.2, ϕΛ is the smoothing spline of degree 2H defined by (5) and (2), with Λ chosen

according to (22). The variance of the estimation error is given by

E {|x(t0)− x̃(t0)|2} =
ε2H

2Γ(2H + 1) sin(πH)

∑
k∈Z

|t0 − k|2HϕΛ(t0 − k).

For a proof, see Appendix III.

This results closes the loop by showing that the optimal estimator of an fBm is indeed a smoothing

spline with matching parameters. In particular, the spectral regularization Λ(ejω) should be set propor-

tional to the power spectrum of the noise.

For instance, when the measurement noise is white with variance σ2
n, then Λ(ejω) = σ2

n/ε
2
H = λ is

a scalar that is inversely proportional to the signal-to-noise ratio. This means that the smoothing effect

of the spline gets stronger as the power of the noise increases, which is consistent with our expectation.

Under those circumstances, the effect of the smoothing spline is analogous to that of a Butterworth filter

of order 2H + 1 with a cutoff frequency ω0 = λ−2H−1.
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Theorem 3 also gives an explicit expression for the estimation error. By considering the expression

for CH given by (18), we observe that that E {|x(t0) − x̃(t0)|2} coincides with the primary variance

component σ2
0(t0) in Thm. 2 when 0 < H < 1. Note that this error is a symmetric 1-periodic function

that is minimal at the integers. We expect it to take its maximum at the half integers because these points

are the furthest away from the sampling locations (integers). We also expect the variance to increase

and to flatten out as the smoothing gets stronger; that is, when Cnn(ejω) is large relative to ε2H . In that

respect, the second variance term in (23), ρ2(t0)σ2
0(0), quantifies the loss of performance of the stationary

estimator in Theorem 3 over the optimal one specified in Corollary 1. Here too, in concordance with what

has been said earlier in subsection IV-A, this variance bias can be expected to decrease rapidly as one

moves away from the origin. This provides some solid, quantitative justification for using the stationary

solution (smoothing spline) as a substitute for the optimal one.

Among the proposed solutions, one can single out the smoothing splines of odd degrees n = 1, 3, · · · ,

which correspond to the optimal solution for the estimation Brownian motion (n = 1 (linear splines)

for H = 1
2 ) and its generalized counterparts (in particular, n = 3 (cubic splines) for H = 1.5). It is

noteworthy that the basic versions of these estimators have a fast recursive implementation [34]. One

surprising finding of our investigation is that there is no fractal interpretation for the fractional smoothing

splines of even degree (i.e., H ∈ N), whose building blocks are not piecewise polynomials, but rather

“radial basis functions” of the type |t|2n log |t| [26]. Thus, an open question is whether or not there exist

a class of (non-self-similar) processes corresponding to these basis functions, or equivalently, a positive

definite form cxx(t1, t2) (similar to (9)) that is made up of such building blocks.

Finally, we note that the smoothing spline solution in Theorem 3 for 0 < H < 1 is equivalent to the

BLU estimator that could have been derived using the kriging formalism with compatible hypotheses (cf.

[35] for a treatment of the multidimensional case). The key point, however, is that the present cardinal

spline framework also yields a fast algorithm that is generally not available for kriging. Since kriging is

originally designed for dealing with non-uniform data, the standard approach is to restrict the data to a

given number of neighbours of t0 (which is suboptimal) and to recompute the estimator by solving the

normal equations for each position t0. Clearly, the advantage of using splines is that the optimal solution

x̃(t|Y ) can be computed at once for t ∈ R using all available data. This is computationally much more

efficient, but only possible because we are taking advantage of the shift-invariant structure provided by

the uniform grid.
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V. CONCLUSION

In this pair of papers, we have established a formal connection between deterministic splines and

stochastic fractal processes (fBms). The fundamental, unifying relation that appears in both contexts is

the differential equation

∂γ
τ {x(t)} = w(t) (27)

that defines a self-similar system with continuous-time input w(t) and output x(t). This characterization is

complete in the sense that the fractional derivative, ∂γ
τ , which is indexed by the order γ and an asymmetry

parameter τ , spans the whole class of differential operators that are both shift- and scale-invariant.

We can formally construct all the varieties of deterministic fractional splines identified in [1] by exciting

the system with a weighted stream of Dirac impulses w(t) =
∑

k∈Z a[k]δ(t − k), where the a[k]’s are

some suitable coefficients. Likewise, we have shown that we could generate all brands of fBm’s, including

the generalized ones with Hurst exponent H = γ − 1
2 > 1, by driving the system with white Gaussian

noise.

While the above differential description is appealing conceptually, we must be aware that it is fraught

with technical difficulties. Indeed, the price to pay for self-similarity is that the system (27) is unstable

with a pole of order γ at ω = 0. In particular, this means that the Green function of ∂γ
τ —the fundamental

building block of the fractional splines—is not in L1. Likewise, the generalized stochastic processes that

are generated by (27) are non-stationary. This calls for a special mathematical (distributional) treatment

and also requires the specification of boundary conditions. Another non-trivial aspect is that the fractional

operators are typically non-local, in contrast with the classical integer-order derivatives.

The connection also extends nicely beyond the generation process. For instance, we have shown that

the MMSE estimator x(t) of a fBm with Hurst exponent H given its—possibly, noisy—samples at the

integers lies in a fractional spline space of degree 2H . We derived the corresponding smoothing spline

estimator that can be assimilated to a hybrid version of the Wiener filter for which the input is discrete

and the output analog. In particular, we are able to specify the Wiener filter for the Wiener process (with

H = 1
2 ) bringing together two seemingly incompatible aspects of the research of Norbert Wiener. In that

particular case, the optimal estimator happens to be a piecewise-linear smoothing spline estimator that

has a fast recursive implementation. As for the estimators for arbitrary values of H , we have shown that

they could all be implemented efficiently by means of an FFT-based algorithm.
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APPENDIX I

PROOF OF THEOREM 2

We will proceed in three main steps: first, we derive the general expression of the (Gaussian) posterior

distribution of BH(t0) given a finite number of measurements of BH ; second, we calculate the expression

of the posterior expectation of BH(t0) given BH(k) for k ∈ Z; finally, we evaluate the expression of the

posterior standard deviation of BH(t0) given BH(k).

a) Step 1—Posterior probability of BH(t0): Taking a more general point of view, we first compute

the posterior density probability of 〈BH , ψt0〉 given K measurements 〈y, ψk〉 where k = −K,−K +

1, . . .K. We will then set ψt0(t) = δ(t− t0) and ψk(t) = δ(t− k) to get the desired result.

Using Bayes’ rule, we have

p
(
〈BH , ψt0〉

∣∣〈y, ψ1〉, 〈y, ψ2〉, . . . 〈y, ψK〉
)

=
p
(
〈BH , ψt0〉, 〈y, ψ1〉, 〈y, ψ2〉, . . . 〈y, ψK〉

)∫
p
(
x, 〈y, ψ1〉, 〈y, ψ2〉, . . . 〈y, ψK〉

)
dx

.

We thus have to compute the joint probability density of
{
〈BH , ψt0〉, 〈y, ψ1〉, 〈y, ψ2〉, . . . 〈y, ψK〉

}
. This

will be done through its Fourier transform; i.e., its characteristic function which is expressed using ZBH

and Zn, the characteristic forms of the processes BH(t) and n(t):

ζ(λ, λ−K , . . . λK) = E
{

exp
(
− jλ〈BH , ψt0〉 − j

∑
k
λk〈y, ψk〉

)}
= E

{
exp

(
− j〈BH , λψ +

∑
k
λkψk〉 − j〈n,

∑
k
λkψk〉

)}
= E

{
exp

(
− j〈BH , λψ +

∑
k
λkψk〉

)}
E
{

exp
(
− j〈n,

∑
k
λkψk〉

)}
= ZBH

(
λψ +

∑
k
λkψk

)
Zn

(∑
k
λkψk

)
= exp

(
−
ε2H
2

∥∥− 1
2
−H

τ ∂
{
λψ +

∑
k
λkψk

}∥∥2

L2
− 1

2

∥∥hn ∗
∑

k
λkψk

∥∥2

L2

)
= exp

(
− αλ2 − 2λUTΛ−ΛTAΛ−ΛTSΛ

)
where we have denoted

α =
ε2H
2

∥∥− 1
2
−H

τ ∂ψt0

∥∥2

L2

U =
[ε2H

2

〈− 1
2
−H

τ ∂ψt0 ,
− 1

2
−H

τ ∂ψk

〉]
k=−K,−K+1,...K

A =
[ε2H

2

〈− 1
2
−H

τ ∂ψk,
− 1

2
−H

τ ∂ψl

〉]
k,l=−K,−K+1,...K

S =
[1
2
〈
hn ∗ ψk, hn ∗ ψl

〉︸ ︷︷ ︸
=cnn[k−l]

]
k,l=−K,−K+1,...K
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Performing the inverse Fourier transform of this expression, we obtain the posterior probability density

of x = 〈BH , ψt0〉 given Y = [〈y, ψk〉]k=−K,−K+1,...K :

p(x|Y) = Const × exp
(
− 1

4
(x−UT(A + S)−1Y)2

α−UT(A + S)−1U

)
.

This is a Gaussian density with mean µ = VTY and variance σ2 = 2
(
α−UTV

)
, where V = (A+S)−1U.

Using the definition of A, U and S, and denoting by vl its lth component, V has to satisfy

ε2H
2

〈− 1
2
−H

τ ∂ψt0 ,
− 1

2
−H

τ ∂ψk

〉
=

K∑
l=−K

(ε2H
2

〈− 1
2
−H

τ ∂ψk,
− 1

2
−H

τ ∂ψl

〉
+

1
2
cnn[k − l]

)
vl (28)

for all k = −K,−K + 1, . . .K.

b) Step 2—Computation of µ(t0|Y ): We let K tend to infinity and observe that finding vl from the

set of equations (28) is still well-posed because the quadratic form characterized by the (infinite) matrix

(A + S) is positive-definite; i.e., if there is a solution—which is not ensured when K = ∞—then this

solution is unique.

We will reinterpret (28) from an interpolation viewpoint. By inspection of (8), we observe that

cxx(t0, k) = ε2H〈
− 1

2
−H

τ ∂δ(t− t0),
− 1

2
−H

τ ∂δ(t− k)〉 is in the spanl∈Z{β2H
0 (t0− l)}. Denoting by ϕint(t) =

ϕ0(t) the unique interpolating function that belongs to this span6, we thus have the interpolation formula

cxx(t0, k) =
∑
l∈Z

cxx(l, k)ϕint(t0 − l)

=
∑
l∈Z

cxx(l, k)
(
ϕint(t0 − l)− ρ(t0)ϕint(l)

)
.

where ρ(t0) is the function of t0 specified in (24); the second line above has been obtained by using the

interpolation condition ϕint(l) = δl, and the fact that cxx(0, k) = 0. This identity can also be reformulated

using a smoothing spline basis {ϕΛ(t0 − l)}l∈Z: ϕint(t0) = ϕΛ(t0) +
∑

l rlϕΛ(t0 − l) where

R(ejω) =
1
ε2H

|1− e−jω|2H+1Cnn(ejω)
B2H

0 (ejω)

To do this, we write

vl(t0) = ϕΛ(t0 − l)− ρ(t0)ϕΛ(l), (29)

which allows to express ϕint(t0 − l)− ρ(t0)ϕint(l) in terms vl(t0) as

ϕint(t0 − l)− ρ(t0)ϕint(l) = vl(t0) +
∑
l′∈Z

rl′−lvl′(t0).

6In Fourier variables, ϕint is obtained by ϕ̂int(ω) = β̂2H
0 (ω)/B2H

0 (ejω).
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Replacing in the interpolation formula, we get

cxx(t0, k) =
∑
l∈Z

cxx(l, k)vl(t0) +
∑

l,l′∈Z
rl′−l cxx(l, k)vl′(t0).

The second term on the right hand side is evaluated as∑
l,l′∈Z

rl′−l cxx(l, k)vl′(t0) =
ε2H
2π

∫ ∑
l,l′∈Z

rl′−l
(ejlω − 1)(e−jkω − 1)

|ω|2H+1
vl′(t0) dω

=
ε2H
2π

∫ ∑
l′∈Z

(e−jkω − 1)
ejl

′ωR(ejω)
|ω|2H+1

vl′(t0) dω

=
1
2π

∫
(e−jkω − 1)

Cnn(ejω)
B2H

0 (ejω)
β̂2H

0 (ω)
∑
l′∈Z

ejl
′ωvl′(t0) dω

=
1
2π

∫ π

−π
(e−jkω − 1)Cnn(ejω)

∑
l′∈Z

ejl
′ωvl′(t0) dω

=
∑
l′∈Z

(
cnn[l′ − k]− cnn[l′]

)
vl′(t0)

=
∑
l′∈Z

cnn[l′ − k]︸ ︷︷ ︸
=cnn[k−l′]

vl′(t0)−
∑
l′∈Z

cnn[l′]
(
ϕΛ(t0 − l′)− ρ(t0)ϕΛ(l′)

)
︸ ︷︷ ︸

=0 by definition of ρ(t0)

.

This shows that vl(t0) as posed by (29) satisfies cxx(t0, k) =
∑

l cxx(l, k)vl(t0) +
∑

l′ cnn[k − l′]vl′(t0)

which is precisely (28) up to a factor 1/2. vl = vl(t0) is thus the solution we are looking for, which

implies that

µ(t0|Y ) =
∑
k∈Z

ykϕΛ(t0 − k)︸ ︷︷ ︸
x̃(t0|Y )

−ρ(t0)
∑
k∈Z

ykϕΛ(k)︸ ︷︷ ︸
x̃(0|Y )

.

The last technical step is to show that the random quantity x̃(t|Y ) is well-defined (convergent) almost

surely; this is ensured by the fact that ϕΛ(t) decreases fast enough (∝ |k|−2H−2) to tame the divergence

of E {|yk|} ∝ |k|H as k → ±∞.

c) Step 3—Computation of σ2(t0|Y ): The variance of the posterior density is given by σ2 = 2
(
α−

UTV
)
. Since 2α = cxx(t0, t0) = CH |t0|2H , it remains to compute UTV. We have

2UTV =
∑
l∈Z

cxx(t0, l)vl(t0)

=
CH

2

∑
l∈Z

(
|t0|2H + |l|2H − |t0 − l|2H

)
vl(t0)

=
CH

2

[
|t0|2H

(
1− ρ(t0)

)
+
∑
l∈Z

|l|2HϕΛ(t0 − l)− ρ(t0)
∑
l∈Z

|l|2HϕΛ(l)

−
∑
l∈Z

|t0 − l|2HϕΛ(t0 − l) + ρ(t0)
∑
l∈Z

|t0 − l|2HϕΛ(l)
]
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To evaluate this expression we first notice that∑
l∈Z

|l|2HϕΛ(t0 − l) =
∑
l∈Z

|t0 − l|2HϕΛ(l)

because ϕΛ(t0 − l) and |t0 − l|2H span the same space and because the right and the left hand sides

coincide at the integers. Secondly, the following sequence of equalities

|t0|2H =
∑
l∈Z

|l|2Hϕint(t0 − l)

=
∑
l∈Z

|l|2HϕΛ(t0 − l) +
∑

l,l′∈Z
rl′−l|l|2HϕΛ(t0 − l′)

=
∑
l∈Z

|l|2HϕΛ(t0 − l) +
∑

l,l′∈Z
rl′−l|l|2HϕΛ(t0 − l′)

=
∑
l∈Z

|l|2HϕΛ(t0 − l) + Const ×
∑
l′∈Z

cnn[l′]ϕΛ(t0 − l′)︸ ︷︷ ︸
=Const′×ρ(t0)

shows that ∑
l∈Z

|l|2HϕΛ(t0 − l) = |t0|2H + Const′′ × ρ(t0)

where the constant is obtained as
∑

l∈Z |l|2HϕΛ(l) by enforcing the equality at t0 = 0 because ρ(0) = 1.

Putting things together, we obtain

2UTV =
CH

2

[
2|t0|2H + ρ(t0)2

∑
l∈Z

|l|2HϕΛ(l)−
∑
l∈Z

|t0 − l|2HϕΛ(t0 − l)
]

which yield the expression for σ2(t0|Y ).

APPENDIX II

PROOF OF PROPOSITION 3

We will work with the correlation form of the estimation error e(t). In order to deal with continuous-

time processs only, we extrapolate the discrete stationary process n[k] to a continuous stationary process

n(t) with correlation function η(t), such that n(k) = n[k].

Let φ(t) be a function of Schwartz’ class S . Then, under the hypothesis that ϕk decreases fast enough

as k →∞, we have 〈e, φ〉 =
〈
x, ψφ〉+

〈
n, ψφ − φ〉 where

ψφ(t) def= φ(t)−
∑
k∈Z

〈ϕk, φ〉δ(t− k).
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Since x(t) is an fBm, the correlation form C of e(t) can be expressed as

C(φ, φ) =
ε2H
2π

∫
1

|ω|2H+1

∣∣∣ψ̂φ(ω)− ψ̂φ(0)− ψ̂′φ(0)ω − . . .
ψ̂

(bHc)
φ (0)

bHc!
ωbHc

∣∣∣2dω

+
1
2π

∫
η̂(ω)|ψ̂φ(ω)− φ̂(ω)|2dω

for all φ ∈ S whereas, if x(t) were a stationary process with correlation function ρ(t), the correlation

form of e(t) would be given by

Cstationary(φ, φ) =
1
2π

∫
ρ̂(ω)|ψ̂φ(ω)|2dω +

1
2π

∫
η̂(ω)|ψ̂φ(ω)− φ̂(ω)|2dω.

We are interested in the conditions on ϕk such that C(φ1, φ2) = Cstationary(φ1, φ2) for all φ1, φ2 ∈ S .

Let us define the subspace of S

S0 = {φ ∈ S s.t. 〈φ(t), tl −
∑
k∈Z

klφk(t)〉 = 0, for l = 0 . . . bHc} (30)

It is easy to check through Parseval identity that these conditions are equivalent to ψ̂
(l)
φ (0) = 0 for

l = 0 . . . bHc.

When φ ∈ S0, the correlation form of the estimation error of an fBm becomes similar to the one

of a (hypothetical) stationary process with ρ̂(ω) = ε2H |ω|−2H−1. If we enforce the identity C(φ, φ0) =

Cstationary(φ, φ0) for all φ ∈ S and φ0 ∈ S0, then we end up with the following equation∫
ρ̂(ω)ψ̂φ0(ω)∗

(
ψ̂φ(0) + ψ̂′φ(0)ω + . . .

ψ̂
(bHc)
φ (0)

bHc!
ωbHc

)
dω = 0, ∀(φ, φ0) ∈ S ×S0.

Now, because the collection of numbers {
∫
ρ̂(ω)ψ̂φ0(ω)∗ωldω}l=0...bHc may assume arbitrary independent

values, the only possibility for this identity to hold is that ψ̂(l)
φ (0) = 0 for l = 0 . . . bHc for all φ ∈ S .

In other words: S = S0. Using the definition (30) of S0, we get that tl −
∑

k∈Z k
lφk(t) = 0 in the

sense of distributions.

APPENDIX III

PROOF OF THEOREM 3

We follow the same first lines of the proof of Proposition 3 in Appendix II and we note that the

autocorrelation of the continuous-time process n(t) is related to the discrete one n[k] through cnn[k] =

η(k); i.e., Cnn(ejω) =
∑

k∈Z η̂(ω + 2kπ). After replacing (as the result of a limit process) φ(t) by

δ(t− t0), we get ψ̂φ(ω) = e−jt0ω − Φt0(ejω) where

Φt0(e
jω) =

∑
k∈Z

ϕk(t0)e−jkω.
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This leads to the variance of the estimation error e(t0) = x(t0) − x̃(t0) which is obtained as C(δ(· −

t0), δ(· − t0)):

E {|e(t0)|2} =
ε2H
2π

∫
|e−jt0ω − Φt0(ejω)|2

|ω|2H+1
dω +

1
2π

∫
η̂(ω)|Φt0(e

jω)|2dω

=
ε2H
2π

∫ 2π

0

(∑
k∈Z

|e−jt0(ω+2kπ) − Φt0(ejω)|2

|ω + 2kπ|2H+1
+ Λ(ejω)|Φt0(e

jω)|2
)

dω

=
ε2H
2π

∫ 2π

0

((
R0(ejω) + Λ(ejω)

)
|Φt0(e

jω)|2 − 2Re
{
Rt0(e

jω)∗ Φt0(e
jω)
}

+R0(ejω)
)

dω

=
ε2H
2π

∫ 2π

0

(
R0(ejω) + Λ(ejω)

)∣∣∣Φt0(e
jω)− Rt0(ejω)

R0(ejω) + Λ(ejω)

∣∣∣2dω

+
ε2H
2π

∫ 2π

0

(
R0(ejω)− |Rt0(ejω)|2

R0(ejω) + Λ(ejω)

)
dω

where we have defined Rt0(ejω) =
∑

k∈Z
e−jt0(ω+2kπ)

|ω+2kπ|2H+1 . Notice that, whenever this expression is finite, we

automatically have that ψ̂φ(ω)|ω+ 2kπ|−H−1/2 is square integrable, which also implies that ψ̂(l)
φ (0) = 0

for l = 0 . . . bHc. Thus, minimizing the variance of the estimation error with respect to ϕk(t0) subject

to the “stationarizing” constraint is simply equivalent to minimizing this same variance without any

constraints.

This minimum is obviously given by

Φt0(e
jω) =

Rt0(ejω)
R0(ejω) + Λ(ejω)

=

∑
k∈Z

β̂2H
0 (ω + 2kπ)e−jt0(ω+2kπ)

B2H
0 (ejω) + Λ(ejω)

∣∣∣2 sin
(ω

2

)∣∣∣2H+1

=
∑
k∈Z

ϕ̂Λ(ω + 2kπ)e−jt0(ω+2kπ)

=
∑
k∈Z

ϕΛ(t0 − k)e−jkω

where we have used the fact that ϕΛ(t) is an even function. Thus, by identifying left and right hand

sides, we get that ϕk(t0) = ϕΛ(t0 − k). Note that, even if the minimization has been performed over

estimators that satisfy e−jt0ω − Φt0(ejω) = o(|ω|bHc), the optimal solution actually satisfies twice as

many conditions namely: e−jt0ω − Φt0(ejω) = o(|ω|b2H+1c).

As a bonus, we have the expression of the variance of this minimum estimator

E {|e(t0)|2} =
ε2H
2π

∫ 2π

0

(
R0(ejω)−Rt0(e

jω)∗Φt0(e
jω)
)

dω

=
ε2H
2π

∫
1− ejt0ωΦt0(ejω)

|ω|2H+1
dω
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Similar to the proof of Thm. 1, we use the following limit

1
|ω|2H+1

= − 1
2Γ(2H + 1) sin(πH)

lim
s→0

λ̂s(ω)

where λs(t) = |t|2He−s|t|. Using Lebesgue’s dominated convergence theorem, we then express the error

as

E {|e(t0)|2} = −
ε2H

4πΓ(2H + 1) sin(πH)
lim
s→0

∫ (
1− ejt0ωΦt0(e

jω)
)
λ̂s(ω)dω

=
ε2H

4πΓ(2H + 1) sin(πH)
lim
s→0

∫
ejt0ωΦt0(e

jω)λ̂s(ω)dω

=
ε2H

2Γ(2H + 1) sin(πH)
lim
s→0

∑
k∈Z

ϕΛ(t0 − k)λs(t0 − k)

=
ε2H

2Γ(2H + 1) sin(πH)

∑
k∈Z

ϕΛ(t0 − k)|t0 − k|2H
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