ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON IMAGE PRCESSING 1

An Orthogonal Family of Quincunx Wavelets

with Continuously-Adjustable Order

Manuela Feilner, Dimitri Van De VilldMember, Michael Unser~elow

The authors are with the Biomedical Imaging Group, STI/IOA, Swiss Fédestitute of Technology Lausanne (EPFL),
CH-1015 Lausanne, Switzerland

Corresponding author: Michael Unser (Michael.Unser@epfl.ch)

May 24, 2004 DRAFT



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON IMAGE PRCESSING 2

Abstract

We present a new family of 2D and 3D orthogonal wavelets whigs quincunx sampling. The
orthogonal refinement filters have a simple analytical esgioa in the Fourier domain as a function
of the order), which may be non-integer. We can also prove that they yieldelet bases of»(R?)
for any A > 0. The wavelets are fractional in the sense that the apprdkimarror at a given scale
a decays likeO(a?); they also essentially behave like fractional derivatipemtors. To make our
construction practical, we propose an FFT-based implesientthat turns out to be surprisingly fast.

In fact, our method is almost as efficient as the standarda¥algorithm for separable wavelets.

Index Terms

Wavelet transform, Quincunx sampling, Non-separabler fitesign, McClellan transform.

I. INTRODUCTION

THE great majority of wavelet bases that are currently usednfiage processing are separable.
There are two primary reasons for this. The first is convenieramm@ulse wavelet theory is most
developed in 1D and that these results are directly tramdpego higher dimensions through the
use of tensor product basis functions. The second is efficibecause a separable transform can
be implemented by successive 1D processing of the rows dndne of the image. The downside,
however, is that separable transforms tend to privilegeréinical and horizontal directions. They also
produce a so-called “diagonal” wavelet component, whicksdaot have a straightforward directional
interpretation.

Non-separable wavelets, by contrast, offer more freedasincan be better tuned to the characteris-
tics of images [1], [2]. Their less attractive side is thatythequire more computations. The quincunx
wavelets are especially interesting because they can lignéesto be nearly isotropic [3]. In contrast
with the separable case, there is a single wavelet and tHe smduction is more progressive: a
factor /2 instead of2. The preferred technique for designing quincunx waveleth gybod isotropy
properties is to use the McClellan transform [4] to map 1Drthiegonal designs to the multidimen-
sional case. Since this approach requires the filters to be symemit has only been applied to the
biorthogonal case because of the strong incentive to peodilters that are compactly supported
[5]-[8]. One noteworthy exception is the work of Nicolier @t who used the McClellan transform
to produce a quincunx version of the Battle-Lergawavelet filters [9]. However, we believe that
their filters were truncated because they used a representatterms of Tchebycheff polynomials.

In this paper, we construct a new family of quincunx wavebsigt are orthogonal and have a

fractional order of approximation. The idea of fractionadlens was introduced recently in the context
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of spline wavelets for extending the family to non-integegies [10]. The main advantage of having a
continuously-varying order parameter—not just integepstas in the traditional wavelet families—
is flexibility. It allows for a continuous adjustment of theykparameters of the transform; e.g.,
regularity and localization of the basis functions. The @titat we are paying for these new features—
orthogonality with symmetry as well as fractional orders-+that the filters can no longer be compactly
supported. We will make up for this handicap by proposingst FFT-based implementation which

is almost as efficient as Mallat’s algorithm for separable elets [11].

I[I. QUINCUNX SAMPLING AND FILTERBANKS

First, we recall some basic results on quincunx sampling aniggt reconstruction filterbanks [12].

The quincunx sampling lattice is shown in Fig. 1. Lék] with & = (k1, k2) € Z2 denote the discrete

-,

signal on the initial grid. The 2D Z-transform af| is denoted byX () =3 _;_,. x[E]E_E, where

# = Ik The continuous 2D Fourier transform is then given Xye’¥) = Sy wlkleIER

with @ = (w1,ws), and finally the discrete 2D Fourier transform fel] given on anN x N grid

—j2m (@, k)

(k1 ko =0,1,...,N —1) by X[fi] = g g alkle™ ¥, with nq,np = 0,1,...,N — 1.

Now we write the quincunx sampled version k| as

[z],p[k] = 2[Dk], whereD = 1 11 . (1)

Our down-sampling matriD is such thaD? = 2I. The Fourier-domain version of (1) is

il 5 [x (°72) 1+ x (O 1349)] @

wherew = (m, 7).

The upsampling is defined by

. z[D k] whenk; + ks is even,
[z]ip[k] = (3)
0 elsewhere,

and its effect in the Fourier domain is as follows:
[z]1D [E] — X (ejDT‘j) . (4)

If we now chain the down-sampling and up-sampling operatoesget

. z[k] whenk, + ks is even,
[z]|pD[k] = (5)
0 elsewhere,
!
1 . L
= J& J(G+7)
2[X(e )+X(e )} (6)
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Since quincunx sampling reduces the number of image sampladdxctor of two, the corresponding

reconstruction filterbank has two channels (cf. Fig. 2). Thepass filter reduces the resolution

by a factor ofy/2; the wavelet coefficients correspond to the output of the -piass filterG.
Applying the relation (6) to the block diagram in Fig. 2, it iasy to derive the conditions for a

perfect reconstruction:
If(E)H(Z)JrGEZ)G(E):Q @)
H(-Z)H(2)+G(-2)G(2) =0,
where H and G (respectivelyﬁ and C~¥) are the transfer functions of the synthesis (respectively
analysis) filters. In the orthogonal case, the analysis anthegis filters are identical up to a central

symmetry; the wavelet filte7 is simply a modulated version of the low-pass fil#ér

I11. FRACTIONAL QUINCUNX FILTERS

To generate quincunx filters, we will use the standard approdtich is to apply the diamond

McClellan transform to map a one dimensional design ontogthiacunx structure.

A. A new 1D wavelet family

As starting point for our construction, we introduce a neve-oiimensional family of orthogonal
filters:
V2(z+2+ 2712
VE+2+z DA+ (2 +2—21)A
V2(2 + 2cosw)?

Hy(z) =

= , 8
V(2 +2cosw)? + (2 — 2cosw)? ®)
which is indexed by the continuously-varying order paramat
These filters are symmetric and are designed to have zeros ef brat = = —1; the numerator

is a fractional power ofz + 2 + z~!) (the simplest symmetric refinement filter of order 2) and
the denominator is the appropriatg-orthonormalization factor. By varying, we can adjust the
frequency response as shown in Fig. 3. AsicreasesH, (z) converges to the ideal half-band low-
pass filter. Also note that these filters are maximally flat at thgirg they essentially behave like
H)y (w) /V2 =1+ O(w?") asw — 0. Their frequency response is similar to the Daubechies’ ilter
with two important differences: (1) the filters are symmetaad (2) the order is not restricted to
integer values.

We can prove mathematically that these filters will generale\iD fractional wavelet bases of
L, similar to the fractional splines presented in [10]. The omg®perty (here fractional) is essential

because it determines the rate of decay of the approximatiam as a function of the scale. It also
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conditions the behavior of the corresponding waveletvhich will act like a fractional derivative of

order \. In other words, it will kill all polynomials of degree < [\ —1]; i.e.,

/w"w)\(x)dm =0. 9

B. Corresponding 2D wavelet family

Applying the diamond McClellan transform to the filter abosgestraightforward; it amounts to
replacingcos w by % (coswy +coswy) in (8). Thus, our quincunx refinement filter is given by

= V2(2 + cosw) + cosws)?

Hy(e?Y) = . 10
A& V(2 + coswy + coswa)? + (2 — coswy — coswa ) (10)

This filter is guaranteed to be orthogonal because the Mc@leinsform has the property of
preserving biorthogonality. Also, by construction, theéh order zero atv = 7 gets mapped into
a corresponding zero a = (m,); this is precisely the condition that is required to get a two
dimensional wavelet transform of orderAlso note the isotropic behavior and the flatnes#lgfe’*)
around the origin; i.e.Hx(e’*)/v/2 = 14 O(||@||*) for & — 0. Figure 4 shows contour plots of the
scaling filter for several choices of the order

The orthogonal wavelet filter is obtained by modulation
GA(2) = z1Hy(—271). (11)

The corresponding orthogonal scaling functipg (%) is defined implicitly as the solution of the
guincunx two-scale relation:
oA (F) = V2 Y e (DT F) . (12)
kez?
Since the refinement filter is orthogonal with respect to the @uir lattice, it follows thatp, (Z) €
Ly(R?) and that it is orthogonal to its integer translates. Moreof@ \ > 0, it will satisfy the
partition of unity condition, which comes as a direct cons=tpe of the vanishing of the filter at
(w1, we) = (m,m). Thus, we have the guarantee that our scheme will yield oathaigwavelet bases
of Ly(R?). The underlying orthogonal quincunx wavelet is simply
on(@) = V2 Y gilflex (D7 - F). (13)
kez?
Given the behavior off)(e/%) at @ = 0, we also have),(3) « ||@||*, and as such the wavelet
behaves as thath order differentiator for low frequencies [13]. The vanighmoment property in
the 2D case becomes
/x?la:;%/))\(f)df, for ny +ng < [A—1]. (14)
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Figure 5 shows the wavelét, (Z) for various choices of the order. Note that the wavelet is centered
around(1, 1). Asiillustrated by these plots, the wavelets clearly getsathrer as\ increases. However,
a mathematical rigorous estimation of their regularity éydnd the scope of this paper.

IV. IMPLEMENTATION IN FOURIER DOMAIN

The major objection that can be made to our construction isthefilters are not FIR and that
it may be difficult and costly to implement the transform in qgiree. We will see here that we can
turn the situation around and obtain a very simple and efficdgorithm that is based on the FFT,
following the idea of [14]. Working in the frequency domammalso very convenient because of the
way in which we have specified our filters (see Egs. (10) and (Ihplementations of the wavelet
transform for the quincunx subsampling matrix using FFTs hahlpFoposed before [9], [15], but
our algorithm is another variation, which in particular imiizes the number and size of FFTs and
seems to be faster.

First let us assume that the image sizeMsx N. Now, we will describe the decomposition part
of our algorithm which corresponds to the block diagram @nésd in Fig. 6, where we have pooled
together two levels of the decomposition. The initializatgtep is to evaluate the FFT of the initial
input imagex[E] and to precompute the corresponding sampled frequencynesp of the analysis
filters H [77] and@[ﬁ] using (10) and (11). We also precompute the rotated versidheofilters,

denoted a7, (7] and G, [, that can be obtained as

H,[7] = H[D7 mod(N,N)], (15)

G,[A = G[Di mod(N,N)]. (16)

Let us now consider the 2D FFT of the input, given by

_2m (k)

Xi[f] =Y alkle? "%, forniny=0,1,...,N 1. (17)
;;

-,

Globally, at the end of the process, the output variablegterauincunx wavelet coefficients [k,

-, -,

yo[K], ..., ys[k] andz ;[k]; e.g., as shown in Fig. 7 (a). Their Fourier transforms for tti¢ iterations

are derived from the auxiliarfv x N signals (see also Fig. 6):
_ = .27 (k,7)
i1 [l = ngﬂ[k]@ A (18)
E

. - 2n(k,#A)
z'/+1 @] = Z?Jgﬂ[k]@ A (19)
E

Down- and upsampling witl in the first iteration step introduces zeros in the space domahile it

preserves the size of/ , [77]. However, it implies some symmetry/redundancy in freqyesiamain.
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Therefore, only half of the coefficients needs to be computetiwbaves operations. The reduced

signal Y/H[E] and its corresponding low-pass signal are obtained by

Vali] = @R E R G PINF Y], @
X ) = (AWK BT+ G5 G5]). @

whereii’ € [0, 5 — 1] x [0, N — 1].
To generate the signal [k ] of (19) in the way that is depicted in Fig. 7 (a) with every saton
row shifted by one pixel, we separate the image in evgn;vey) and odd ;1 odq) rows already

in the Fourier domain, using the auxiliary varialifen):

Zi) = Yiqlm)+ Y 7+ (0,5)]
7 (Vi) = Yy [+ (0,5)]) &5 (22)
!
ziv1lk] = yirtevedk] + jYis1.00dk], (23)
with 773 € [0, & —1]. The sum in the real par¥{,, [7i] + Y/, , [+ (0, §)]) represents downsampling

by two in the vertical direction, keeping all the even rowdieneas the sum in the imaginary part
represents the odd rows. In the space domain, we alternratewWsy, ;1 [k, 2ke + 1] = Re{ [E]}
andy;y1 [k1,2ks] = Im {z[E]}. Sincez[k] is four times smaller thap; [k k], we save computations
with the reduced-size IFFT.

Instead of rotating the frequency variables after eaclatiem, we use the precomputed rotated
version of the filters (i.e.H, and G,), which we apply at all even iterations. In this way, we also
save two rotations per iteration in the frequency domain.

The Fourier transforms of the output for the even iteratiars a

.2 (kM)

— e N N
Yiio [m]zzyiw[ Je F for m1,m2:0,1,---75—1- (24)
K

They are computed by

Xia ] = 5 (B[] XL 1] + By [+ (0, 5)] XLy [+ (0, 9)]) (25)
Viealit] = 5 (Golt) Xioy 1) + Gy [+ (0. 5)] X0y [+ (0, 5)]) . (26)

The process is then iterated until one reaches the final resolWhen the last iteration is even, we
lower the computation costs with the FFT by utilizing its imaayly part:

-,

R = 3 (Kiwol] + Yisofml) € 2 (27)

—

m
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wherez; o[k] = Re{z[E]} and yio[F] = Im {Z[E]}.

Obviously, as the resolution gets coarser after each ibesathe Fourier transforms of the filters
need not be recalculated; they are simply obtained by da@ammpling the previous arrays.

The synthesis algorithm operates according to the sameigpescand corresponds to the flow
graph transpose of the decomposition algorithm using umpéiag instead. For instance, the synthesis

counterpart of (25) is:

Xiyo [mi,mo+ (5)] = Xiyo[ma,mo],
Yiio [miyme+ (§)] = Yira[ma, ma],
Xip1[mi,no] = Xio[ma,nolHplmy, no] + Y, o[ma, no]Gplmy, nol.

V. EXPERIMENTS
A. Benchmark and testing

We have implemented two versions of the algorithm, basedawa and Matlab. For the Matlab
version, we report computation times bel6ws for 16 quincunx iterations of 256 x 256 image on
an Apple G4 700MHz desktop; the decomposition is esseptilfect with a reconstruction error
below 10~ RMS. The method is generic and works for any set of filters thattespecified in
the frequency domain, independent of their spatial supfoorinfinite spatial support such as in our
case). As a comparison, the Matlab implementation avalablthe latest Wavelet Toolbox [16] for
the Daubechies 9/7 filters (used in JPEG 2000) applied to the saage and for an equivalent of
8 separable iterations, takes abdufs. For N datapoints, the complexity of our approach boils
down to O(N log N) for the FFT-based implementation, vers@N B) for the spatial-domain
implementation, wherd is related to the filter support. The exact trade-off will deghen the image
size and the filter size. However, taking into account the berark measures and its flexibility, we
believe that the FFT-based implementation deserves coasimierfor a broad class of applications.

We provide also an applet written in Java, which makes it iptesgo run the algorithm over
the Internet, at the sitht t p: // bi gww. epf | . ch/ deno/j qui ncunx/. A screen-shot of this
applet is presented in Fig. 8.

Two examples of fractional quincunx wavelet decomposgtiaith A = v/2 and A\ = 7 are shown
in Fig. 9. Note how the residual image details are more vidibtehe lower value of\. The larger
A reduces the energy of the wavelet coefficient, but this alsnesoat the expense of some ringing.
Thus, it is convenient to have an adjustable parameter tetsdar the best tradeoff.

An advantage of the present approach is that the filters foll Skrewe nearly isotropic; this is the

reason why the wavelet details in Fig. 9 do not present anyepefial orientation. The degree of
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isotropy of the various lowpass filters can be seen from Fig. 4. Sitape of the contour-plots of the
low-pass filterH (e’“) confirms that the degree of isotropy is the best for small wabfe\. At the
other extreme, whei — oo, Hy(e’“) tends to the diamond-shaped ideal filter.

Another nice feature of the algorithm is that the computaticcost remains the same irrespective

of the value of\.

B. Dependence of the order parameter

The usefulness of a tunable order parameter is demonstratid following experiment: we apply
the quincunx transform to the test image “cameraman” (seelEga)) and reconstruct using only
15% of the largest coefficients. Then the SNR is measured dependirteoorder parameter. The
plot in Fig. 11 shows how the SNR changes according to the ordlre optimum, indicated by the
circle, is achieved fon = 2.5. Figure 10 (b) and (c) show the reconstructions for the optinder
and an order too high. The last one gets penalized by the inttimth of ringing artefacts around
the edges. We also plot the SNR curves 20f, and 25% of the coefficients. The same type of

gualitative behavior holds for other images.

C. Approximation properties

The main differences between the quincunx and the conveite@parable algorithm is the finer
scale progression and the non-separability. To test theadmihat this may have on compression
capability, we compared the approximation qualities ohbagpproaches. Since the wavelet transform
is orthogonal, the approximation error (distortion) is &qto D? = ||z — | = ||y — 7||?, where
y are the wavelet coefficients of the input imagez is the reconstructed image obtained from the
quantized—or truncated—wavelet coefficiemtsAlso D? in the space domain is equivalent to the
sum of squares of discarded wavelet coefficients [17].

1) Linear approximation: In classical rate-distortion theory, the coefficients areuged into
channels and coded independently. In the orthogonal ¢2%és equivalent to the difference between
the signal’'s energy and the energy of the reconstructedakigm — #||> = [|z||* — ||2]|* = ||z||* -

<||:icJ||2 + Z"le ||gjj\|2>. The distortion acros#V channels with variance? is
D=N.-C-272R. ;2 (28)

where(C is a constantR is the mean rate angl is the geometric mean of the subband variances:

B N ) N
p= (H O'Z-> . (29)
=1
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When p is small, the distortion is small as well. What this meanslitatavely is that the wavelet
transform which has the larger spread in the variances willewe the better coding gain [12]. The

linear approximation subband coding gain for sample-bypa quantization (PCM) is described by:

D L ]\i o2
Gpoy = =M = N 2im1 . (30)

D ~
5B (Hi\;l 01'2)

To better illustrate this issue, we have decomposed theirtemje “cameraman” for the maximal

number of iterations, both for the quincunx and the separabke as shown in Fig. 12. The order
was fixed (i.e. A = 4) for our method and for the orthogonal separable approashiggponding to
the commonly used degree parameter 3 for the underlying B-splines). In Fig. 13 (a) we compare
the energy packing properties of both decompositions foedi approximation. “Energy packing”
refers to the property that the more the first coefficients éorgaergy, the better the DWT yields
compression. We start to sum up the energy of the subbandstiwétlowest resolution. Each step
of the stairs represents a subbanthe first subbands of the quincunx decomposition report highe
energy packing than the separable case, but the overalgagiin is slightly better for the separable
case than the quincunx cask (9 versus45.23). Figure 13 (c) shows similar results for the “Lena”
test image.

Since the branches are orthogonal, the transformation tlaides the maximum energy com-
paction in the low-pass channel is also the one that resultsei minimum approximation error [17].
Since most images have a power spectrum that is roughly ontdly-invariant and decreases with
higher frequencies, separable systems are usually notshéstl for isolating a low-pass channel
containing most energy and having high-pass channels with dnergy. In contrast, a quincunx
low-pass filter will retain more of the original signal’s eger{12].

Consequently, the type of images that benefit the most frongtliecunx scheme have a more
isotropic spectrum. For example, for the well-known zoagpltest image of Fig. 14 (a), the coding
gain of quincunx scheme is abo2®% better than the one obtained by the separable schérse (
versus3.64). Also the quincunx scheme gives better energy compaatiotektures of highly isotropic
nature (and as such a higher coding gain). Two such examplé®e @Brodatz textures are shown in
Fig. 14 (b) and (c), corresponding to a coding gainl8f67 versus12.45 and 12.04 versus9.62,
respectively. On the other hand, a separable treatmens lkead better energy compaction for the
texture shown in Fig. 158(78 versus15.48). Other authors have also found that texture analysis

using the quincunx scheme improves the results as compavrixt tseparable scheme [18].

1A quincunx wavelet decomposition with iterations generate®v = J + 1 channels, while a separable wavelet

decomposition withJ iterations results intaV = 3J + 1 channels.
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2) Non-linear approximation: A more recent trend in wavelet theory is the studynofi-linear
approximation. In this case we do not take the-first” coefficients, but the7i-largest” coefficients
to approximate a signal with coefficients. This yields better energy packing, since in tlageaket
domain the %h-first” coefficients are not necessarily the largest one, eajpe@long the position-
indices [19]. The distortion is described by [20]:

D? =y —ynl* = D lynll*. (31)
lyl<T

Moreover, it can be shown that

x
2

Do C-(N(T)) 3, (32)

when the smoothness gfis measured by its inclusion in some critical Besov spBgeL?(I)) with

% =7+ % roughly speaking whep is a function withy derivatives inL4(1) [20], [21].
For the non-linear approximation, the quincunx scheme yilslds a better approximation than the
separable one for a smallin many cases. Figure 13 (b) represents the energy dependitiiea.

largest coefficients (in log).

VI. EXTENSION TO3D

The extension of quincunx sampling to 3D is rather straigiméod. First, the filters are obtained
by replacingcosw by %(coswl + coswy + cosws) in (8). Next, the quincunx sampling lattice for

3D is shown in Fig. 16 (a). Let[k] denote the discrete signal on the initial grid. Then, its quinx

sampled version, following [6], is

1 0 1
2] p[k] = 2[Dk] , whereD=|_1 -1 1]. (33)
0 -1 0

Our down-sampling matriD is such thafD? = 2I and |det D| = 2. The Fourier-domain version

of this formula is similar to the 2D case:
5 1 e P
- D16 J(D~TG+7)
aliplf] — 5 [X (¢P79) + X (e ). (34)

where? = (m, 7, ).

The implementation for the 3D case goes as follows. The outptabes are the discrete Fourier
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transforms of the wavelet coefficients

}/;"Fl [ﬁ] = Z y’i+1[l_€]6_j2w<]€ﬁ> ) for ni,N2,n3 = Oa ]-7 s 7N - 17 (35)
k
Y;—&-Q [ﬁ] = Zyi_yg[lg]efj%(ﬁﬁ) , for ny,ng,ng =0,1,...,N —1, (36)
k
. _2n(kE,m) N
Y;_f_3 [Tﬁ] = Zyi+3[k]e ! ¥ s for ml,mg,mgzo,l,...,g—l. (37)
k

The coefficients themselves are recovered by inverse FFT. ThéeFtnansforms after the first level

of filtering are given by

Xl = 3 (AWxm+Afi+ (LED %[+ EED]). 69
Yo [7] = %(é[ﬁ]xi[ﬁ}+é[ﬁ+(%,%,g)]xi i+ (5. 5.9)]). (39)

After the second level of filtering, we have:

Xiyo[] = %(ﬁp[ﬁ]xm (i) + H, [ii + (0,,0)] Xipa [ﬁ+(o,%,o)}), (40)
Yo [i] = %(ép[ﬁ]xm ]+ Gy [+ (0, 5,0)] Xisa [+ (0,5,0)]) . (4D)

Note that these are computed at the resolution of the inp&t.size reduction only takes place during

the third step:

Xevsl) =5 (Hop ] Xeoo 7] + By [+ (5,0,0)] Koo [+ (3.0.0)]), @2)

Vies Uil = 5 (Gop ) Xica 1] + Gl [+ (5,0,0)] Xigo [+ (3,0,0)]), (49

where H, 1)) = H [Dm mod(N, N, N)] and H,, ] = H [D*% mod(N, N, N)]. Analogously,
we have thatG,, [m] = G [Dm mod(N, N, N)] and G, [i] = G [D*7 mod(N, N, N)].

Figure 16 (b) shows how the coefficients can be arranged in aethmdant way inside the cube.
Note that it is still possible to optimize the 3D implemergattaking into account this arrangement
already in the Fourier domain, as such reducing the calounlaif FFTs. Again, the rotated filters

H,, Hy,, Gp, andG), are precomputed.

A. Approximation properties in 3D

We compared the compression capability for the quincunx thedseparable scheme applied to
3D data, similar to the type of experiments that are desdribe 2D in Sect. V-C. Figure 17 shows
the results for a spiral CT dataset of part of a human spine. liflear approximation quality is
shown in (b). The separable scheme takes much advantage eaivadiidity of many small (i.e.,

seven for each iteration) bandpass subbands, as compatieel guincunx scheme. To illustrate this
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point, we have grouped the bandpass subbands for the skpeasle together in one single bandpass
in (c). For non-linear approximation, both schemes perfemilarly with a small advantage for the
separable one, as shown in (d). If the dataset contains rismopic) high-frequency components,
the breakpoint between the quincunx and the separable bédtete the right.

The main advantage of the 3D quincunx scheme is in applicatioat can benefit from the (much)
slower scale progression. One example is the statisticallysis of brain activity using functional
magnetic resonance imaging (fMRI). Here we show an examgileguthe classical wavelet-based
approach for detecting activity, using the linear modellgsia and thet-test in the wavelet domain
for a 3D dataset6d x 64 x 64) with an auditory stimulus [22]; we refer to [23] for more dis.
We compared the use of the 3D dyadic separable wavelet desiiiop based on orthogonal linear
B-spline wavelets versus our 3D quincunx wavelets (samerpriihe parameter maps where obtained
using the same threshold after reconstructi® ©f the maximal parameter value). The number of
detected voxels, and as such the sensitivity of the apprasaimost 10% higher5(¢8 versus536)
when we use the 3D quincunx DWT, which confirms that the slowalesprogression improves the
quality of the results. Figure 18 shows the detected aatimapiatterns around the auditory cortex
(slice 33).

Other potential applications might include image analygsid 3D feature detection.

VII. CONCLUSION

We have introduced a new family of orthogonal wavelet tramas for quincunx lattices. A key
feature is the continuously-varying order parametewhich can be used to adjust the bandpass
characteristics as well as the localization of the basistfans.

We have also demonstrated that these wavelet transfornid beucomputed quite efficiently in
2D and 3D using FFTs. This should help dispel the commonly heléfitblat non-separable wavelet
decompositions are computationally much more demandiag the separable ones.

Because of their nice properties and their ease of impleatient these wavelets present an
alternative to the separable ones that are being used inietyaf image processing applications
(image analysis, image enhancement, filtering and dengif#adure detection, texture analysis, and

S0 on).
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Fig. 1. (a) The quincunx lattice and (b) the corresponding Nyquist iarélae frequency domain.
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Fig. 7. The wavelet coefficients for the quincunx subsampling scheanebe arranged in two ways. An example for

J = 4 iterations. (a) Compact representation. (b) Classic representation.
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Fig. 8. Applet of the Fourier-based implementation of the quincunx wavieensform, available on the site:

http://bi gww. epfl . ch/ deno/j qui ncunx/ .

(a) input image (b = V2 ) N=m

Fig. 9. Quincunx wavelet transforms with four iterations: (a) original iesmge, (b)A = v/2, (C) A = 7.
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Fig. 11. Relation between the order parametemd the SNR of the reconstructed image (test image “cameraman”) using
only the largest coefficients. The full line, dashed line, and dotted lineegpond respectively t95%, 20%, and 15% of

the largest coefficients.

(b)

(a)
Fig. 12. Decomposition of the test image “cameraman” for the maximsdipte number of iterations. (a) Quincunx case.

(b) Separable case. The contrast of each subband has beemeashhan
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Fig. 13. Comparison of energy-compaction property between the guinegnd the separable case of image decomposition
(as shown in Fig. 12). (a) & (c) Linear approximation depending onbremof coefficients (in log, grouped per subband),
respectively for “cameraman” and “Lena”. (b) & (d) Non-lineampapximation depending of the largest coefficients (in

log), respectively for “cameraman” and “Lena”. The quincunxesob yields better results for a low number of coefficients.

In the case of “lena”, the separable scheme performs better than ithugqu one over most of the range.
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Fig. 14. Some examples of typical images where the quincunx schetperfiums the separable case in term of coding

gain. (a) Zoneplate. (b) Brodatz texture D112. (c) Brodatz texture. Dh& Brodatz textures havel2 x 512 pixels and

are obtained from the USC-SIPI Image Database.
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Fig. 15. An example of a texture (Brodatz D68) that is better suited foparable treatment.

(b)

Fig. 16. (a) 3D-FCO (face-centered orthorhombic) lattice, cormesipg to the sampling matrix of Eq. (33). (b) Compact

representation of the wavelet coefficients for the 3D case.
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(a) Slice of an spiral CT dataset of part of a human spinatEsuand copyright of Ramani Pichumani, Stanford

University School of Medicine). (b) Linear approximation, for the amgble case each bandpass subband is considered

independently. (c) Linear approximation, for the separable case tidphas subbands are grouped together into one single

subband. (d) Non-linear approximation.

Fig. 18.

left white, superposed on a background of the T2*-scan.

May 24, 2004

dyadic separable DWT

quincunx DWT

FMRI brain activation detected using the classical wavelet-b@geaach. The activated voxels in the slice are

DRAFT



