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Abstract

We present a new family of 2D and 3D orthogonal wavelets whichuses quincunx sampling. The

orthogonal refinement filters have a simple analytical expression in the Fourier domain as a function

of the orderλ, which may be non-integer. We can also prove that they yield wavelet bases ofL2(R
2)

for any λ > 0. The wavelets are fractional in the sense that the approximation error at a given scale

a decays likeO(aλ); they also essentially behave like fractional derivative operators. To make our

construction practical, we propose an FFT-based implementation that turns out to be surprisingly fast.

In fact, our method is almost as efficient as the standard Mallat algorithm for separable wavelets.

Index Terms

Wavelet transform, Quincunx sampling, Non-separable filter design, McClellan transform.

I. I NTRODUCTION

THE great majority of wavelet bases that are currently used for image processing are separable.

There are two primary reasons for this. The first is convenience because wavelet theory is most

developed in 1D and that these results are directly transposable to higher dimensions through the

use of tensor product basis functions. The second is efficiencybecause a separable transform can

be implemented by successive 1D processing of the rows and columns of the image. The downside,

however, is that separable transforms tend to privilege thevertical and horizontal directions. They also

produce a so-called “diagonal” wavelet component, which does not have a straightforward directional

interpretation.

Non-separable wavelets, by contrast, offer more freedom and can be better tuned to the characteris-

tics of images [1], [2]. Their less attractive side is that they require more computations. The quincunx

wavelets are especially interesting because they can be designed to be nearly isotropic [3]. In contrast

with the separable case, there is a single wavelet and the scale reduction is more progressive: a

factor
√

2 instead of2. The preferred technique for designing quincunx wavelets with good isotropy

properties is to use the McClellan transform [4] to map 1D biorthogonal designs to the multidimen-

sional case. Since this approach requires the filters to be symmetric, it has only been applied to the

biorthogonal case because of the strong incentive to produce filters that are compactly supported

[5]–[8]. One noteworthy exception is the work of Nicolier etal. who used the McClellan transform

to produce a quincunx version of the Battle-Lemarié wavelet filters [9]. However, we believe that

their filters were truncated because they used a representation in terms of Tchebycheff polynomials.

In this paper, we construct a new family of quincunx waveletsthat are orthogonal and have a

fractional order of approximation. The idea of fractional orders was introduced recently in the context
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of spline wavelets for extending the family to non-integer degrees [10]. The main advantage of having a

continuously-varying order parameter—not just integer steps as in the traditional wavelet families—

is flexibility. It allows for a continuous adjustment of the key parameters of the transform; e.g.,

regularity and localization of the basis functions. The price that we are paying for these new features—

orthogonality with symmetry as well as fractional orders—is that the filters can no longer be compactly

supported. We will make up for this handicap by proposing a fast FFT-based implementation which

is almost as efficient as Mallat’s algorithm for separable wavelets [11].

II. QUINCUNX SAMPLING AND FILTERBANKS

First, we recall some basic results on quincunx sampling and perfect reconstruction filterbanks [12].

The quincunx sampling lattice is shown in Fig. 1. Letx[~k] with ~k = (k1, k2) ∈ Z
2 denote the discrete

signal on the initial grid. The 2D Z-transform ofx[~k] is denoted byX(~z) =
∑

~k∈Z2 x[~k]~z−
~k, where

~z
~k = zk1

1 zk2

2 . The continuous 2D Fourier transform is then given byX(ej~ω) =
∑

~k∈Z2 x[~k]e−j〈~ω,~k〉

with ~ω = (ω1, ω2), and finally the discrete 2D Fourier transform forx[~k] given on anN × N grid

(k1, k2 = 0, 1, . . . , N − 1) by X[~n] =
∑

~k∈Z2 x[~k]e
−j2π〈~n,~k〉

N , with n1, n2 = 0, 1, . . . , N − 1.

Now we write the quincunx sampled version ofx[~k] as

[x]↓D[~k] = x[D~k], whereD =


 1 1

1 −1


 . (1)

Our down-sampling matrixD is such thatD2 = 2I. The Fourier-domain version of (1) is

[x]↓D[~k] ←→ 1

2

[
X

(
ejD−T ~ω

)
+ X

(
ej(D−T ~ω+~π)

)]
, (2)

where~π = (π, π).

The upsampling is defined by

[x]↑D[~k] =





x[D−1~k] whenk1 + k2 is even,

0 elsewhere,
(3)

and its effect in the Fourier domain is as follows:

[x]↑D[~k] ←→ X
(
ejDT ~ω

)
. (4)

If we now chain the down-sampling and up-sampling operators, we get

[x]↓D↑D[~k] =





x[~k] whenk1 + k2 is even,

0 elsewhere,
(5)

l
1

2

[
X

(
ej~ω

)
+ X

(
ej(~ω+~π)

)]
. (6)
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Since quincunx sampling reduces the number of image samples by a factor of two, the corresponding

reconstruction filterbank has two channels (cf. Fig. 2). The low-pass filterH̃ reduces the resolution

by a factor of
√

2; the wavelet coefficients correspond to the output of the high-pass filterG̃.

Applying the relation (6) to the block diagram in Fig. 2, it is easy to derive the conditions for a

perfect reconstruction: 



H̃ (~z)H (~z) + G̃ (~z) G (~z) = 2

H̃ (−~z)H (~z) + G̃ (−~z)G (~z) = 0,
(7)

where H and G (respectivelyH̃ and G̃) are the transfer functions of the synthesis (respectively

analysis) filters. In the orthogonal case, the analysis and synthesis filters are identical up to a central

symmetry; the wavelet filterG is simply a modulated version of the low-pass filterH.

III. F RACTIONAL QUINCUNX FILTERS

To generate quincunx filters, we will use the standard approach which is to apply the diamond

McClellan transform to map a one dimensional design onto thequincunx structure.

A. A new 1D wavelet family

As starting point for our construction, we introduce a new one-dimensional family of orthogonal

filters:

Hλ(z) =

√
2(z + 2 + z−1)

λ

2

√
(z + 2 + z−1)λ + (−z + 2 − z−1)λ

=

√
2(2 + 2 cos ω)

λ

2

√
(2 + 2 cos ω)λ + (2 − 2 cos ω)λ

, (8)

which is indexed by the continuously-varying order parameter λ.

These filters are symmetric and are designed to have zeros of order λ at z = −1; the numerator

is a fractional power of(z + 2 + z−1) (the simplest symmetric refinement filter of order 2) and

the denominator is the appropriatel2-orthonormalization factor. By varyingλ, we can adjust the

frequency response as shown in Fig. 3. Asλ increases,Hλ(z) converges to the ideal half-band low-

pass filter. Also note that these filters are maximally flat at the origin; they essentially behave like

Hλ (ω) /
√

2 = 1 + O(ωλ) as ω → 0. Their frequency response is similar to the Daubechies’ filters

with two important differences: (1) the filters are symmetric, and (2) the order is not restricted to

integer values.

We can prove mathematically that these filters will generate valid 1D fractional wavelet bases of

L2 similar to the fractional splines presented in [10]. The order property (here fractional) is essential

because it determines the rate of decay of the approximationerror as a function of the scale. It also
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conditions the behavior of the corresponding waveletψ which will act like a fractional derivative of

orderλ. In other words, it will kill all polynomials of degreen ≤ dλ − 1e; i.e.,
∫

xnψλ(x)dx = 0. (9)

B. Corresponding 2D wavelet family

Applying the diamond McClellan transform to the filter above is straightforward; it amounts to

replacingcos ω by 1
2 (cos ω1 + cosω2) in (8). Thus, our quincunx refinement filter is given by

Hλ(ej~ω) =

√
2(2 + cos ω1 + cos ω2)

λ

2

√
(2 + cos ω1 + cos ω2)λ + (2 − cos ω1 − cos ω2)λ

. (10)

This filter is guaranteed to be orthogonal because the McClellan transform has the property of

preserving biorthogonality. Also, by construction, theλth order zero atω = π gets mapped into

a corresponding zero at~ω = (π, π); this is precisely the condition that is required to get a two

dimensional wavelet transform of orderλ. Also note the isotropic behavior and the flatness ofHλ(ej~ω)

around the origin; i.e.,Hλ(ej~ω)/
√

2 = 1 + O(||~ω||λ) for ~ω → 0. Figure 4 shows contour plots of the

scaling filter for several choices of the orderλ.

The orthogonal wavelet filter is obtained by modulation

Gλ(~z) = z1Hλ(−~z−1). (11)

The corresponding orthogonal scaling functionϕλ (~x) is defined implicitly as the solution of the

quincunx two-scale relation:

ϕλ (~x) =
√

2
∑

~k∈Z2

hλ[~k]ϕλ

(
D~x − ~k

)
. (12)

Since the refinement filter is orthogonal with respect to the quincunx lattice, it follows thatϕλ (~x) ∈
L2(R

2) and that it is orthogonal to its integer translates. Moreover, for λ > 0, it will satisfy the

partition of unity condition, which comes as a direct consequence of the vanishing of the filter at

(ω1, ω2) = (π, π). Thus, we have the guarantee that our scheme will yield orthogonal wavelet bases

of L2(R
2). The underlying orthogonal quincunx wavelet is simply

ψλ (~x) =
√

2
∑

~k∈Z2

gλ[~k]ϕλ

(
D~x − ~k

)
. (13)

Given the behavior ofHλ(ej~ω) at ~ω = 0, we also haveψ̂λ(~ω) ∝ ||~ω||λ, and as such the wavelet

behaves as theλth order differentiator for low frequencies [13]. The vanishing moment property in

the 2D case becomes ∫
xn1

1 xn2

2 ψλ(~x)d~x, for n1 + n2 ≤ dλ − 1e. (14)
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Figure 5 shows the waveletψλ(~x) for various choices of the orderλ. Note that the wavelet is centered

around(1
2 , 1

2). As illustrated by these plots, the wavelets clearly gets smoother asλ increases. However,

a mathematical rigorous estimation of their regularity is beyond the scope of this paper.

IV. I MPLEMENTATION IN FOURIER DOMAIN

The major objection that can be made to our construction is that the filters are not FIR and that

it may be difficult and costly to implement the transform in practice. We will see here that we can

turn the situation around and obtain a very simple and efficient algorithm that is based on the FFT,

following the idea of [14]. Working in the frequency domain is also very convenient because of the

way in which we have specified our filters (see Eqs. (10) and (11)).Implementations of the wavelet

transform for the quincunx subsampling matrix using FFTs has been proposed before [9], [15], but

our algorithm is another variation, which in particular minimizes the number and size of FFTs and

seems to be faster.

First let us assume that the image size isN × N . Now, we will describe the decomposition part

of our algorithm which corresponds to the block diagram presented in Fig. 6, where we have pooled

together two levels of the decomposition. The initialization step is to evaluate the FFT of the initial

input imagex[~k] and to precompute the corresponding sampled frequency responses of the analysis

filters H̃ [~n] and G̃ [~n] using (10) and (11). We also precompute the rotated version of the filters,

denoted as̃Hp[~n] and G̃p[~n], that can be obtained as

H̃p [~n] = H̃ [D~n mod(N, N)] , (15)

G̃p [~n] = G̃ [D~n mod(N, N)] . (16)

Let us now consider the 2D FFT of the input, given by

Xi [~n] =
∑

~k

xi[~k]e−j
2π〈~k,~n〉

N , for n1, n2 = 0, 1, . . . , N − 1. (17)

Globally, at the end of the process, the output variables arethe quincunx wavelet coefficientsy1[~k],

y2[~k], ..., yJ [~k] andxJ [~k]; e.g., as shown in Fig. 7 (a). Their Fourier transforms for the odd iterations

are derived from the auxiliaryN × N signals (see also Fig. 6):

X ′
i+1 [~n] =

∑

~k

x′
i+1[

~k]e−j
2π〈~k,~n〉

N , (18)

Y ′
i+1 [~n] =

∑

~k

y′i+1[
~k]e−j

2π〈~k,~n〉

N . (19)

Down- and upsampling withD in the first iteration step introduces zeros in the space domain while it

preserves the size ofY ′
i+1[~n]. However, it implies some symmetry/redundancy in frequency domain.
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Therefore, only half of the coefficients needs to be computed which saves operations. The reduced

signalY ′
i+1[

~k] and its corresponding low-pass signal are obtained by

Y ′
i+1

[
~n′

]
=

1

2

(
G̃

[
~n′

]
Xi

[
~n′

]
+ G̃

[
~n′ +

(
N
2 , N

2

)]
Xi

[
~n′ +

(
N
2 , N

2

)])
, (20)

X ′
i+1

[
~n′

]
=

1

2

(
H̃

[
~n′

]
Xi

[
~n′

]
+ H̃

[
~n′ +

(
N
2 , N

2

)]
Xi

[
~n′ +

(
N
2 , N

2

)])
, (21)

where~n′ ∈ [0, N
2 − 1] × [0, N − 1].

To generate the signalyi+1[~k] of (19) in the way that is depicted in Fig. 7 (a) with every second

row shifted by one pixel, we separate the image in even (yi+1,even) and odd (yi+1,odd) rows already

in the Fourier domain, using the auxiliary variableZ[~m]:

Z[~m] = Y ′
i+1[~m] + Y ′

i+1

[
~m +

(
0, N

2

)]

+j
(
Y ′

i+1[~m] − Y ′
i+1

[
~m +

(
0, N

2

)])
ej

2π(m1+m2)

N (22)

l

zi+1[~k] = yi+1,even[~k] + jyi+1,odd[~k], (23)

with ~m ∈ [0, N
2 −1]2. The sum in the real part (Y ′

i+1[~m]+Y ′
i+1[~m+

(
0, N

2

)
]) represents downsampling

by two in the vertical direction, keeping all the even rows, whereas the sum in the imaginary part

represents the odd rows. In the space domain, we alternate the rowsyi+1 [k1, 2k2 + 1] = Re
{

z[~k]
}

andyi+1 [k1, 2k2] = Im
{

z[~k]
}

. Sincez[~k] is four times smaller thany′i+1[
~k], we save computations

with the reduced-size IFFT.

Instead of rotating the frequency variables after each iteration, we use the precomputed rotated

version of the filters (i.e.,̃Hp and G̃p), which we apply at all even iterations. In this way, we also

save two rotations per iteration in the frequency domain.

The Fourier transforms of the output for the even iterations are:

Yi+2 [~m] =
∑

~k

yi+2[~k]e
−j

2π〈~k, ~m〉
N
2 for m1, m2 = 0, 1, . . . ,

N

2
− 1. (24)

They are computed by

Xi+2 [~m] =
1

2

(
H̃p [~m] X ′

i+1 [~m] + H̃p

[
~m +

(
0, N

2

)]
X ′

i+1

[
~m +

(
0, N

2

)])
(25)

Yi+2 [~m] =
1

2

(
G̃p [~m] X ′

i+1 [~m] + G̃p

[
~m +

(
0, N

2

)]
X ′

i+1

[
~m +

(
0, N

2

)])
. (26)

The process is then iterated until one reaches the final resolution. When the last iteration is even, we

lower the computation costs with the FFT by utilizing its imaginary part:

z[~k] =
∑

~m

(Xi+2[~m] + jYi+2[~m]) e
j

2π〈~m,~k〉
N
2 , (27)
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wherexi+2[~k] = Re
{

z[~k]
}

andyi+2[~k] = Im
{

z[~k]
}

.

Obviously, as the resolution gets coarser after each iteration, the Fourier transforms of the filters

need not be recalculated; they are simply obtained by down-sampling the previous arrays.

The synthesis algorithm operates according to the same principles and corresponds to the flow

graph transpose of the decomposition algorithm using up-sampling instead. For instance, the synthesis

counterpart of (25) is:

X ′
i+2

[
m1, m2 +

(
N
2

)]
= Xi+2 [m1, m2] ,

Y ′
i+2

[
m1, m2 +

(
N
2

)]
= Yi+2 [m1, m2] ,

Xi+1 [m1, n2] = X ′
i+2[m1, n2]Hp[m1, n2] + Y ′

i+2[m1, n2]Gp[m1, n2].

V. EXPERIMENTS

A. Benchmark and testing

We have implemented two versions of the algorithm, based on Java and Matlab. For the Matlab

version, we report computation times below0.8s for 16 quincunx iterations of a256× 256 image on

an Apple G4 700MHz desktop; the decomposition is essentially perfect with a reconstruction error

below 10−12 RMS. The method is generic and works for any set of filters that canbe specified in

the frequency domain, independent of their spatial support(or infinite spatial support such as in our

case). As a comparison, the Matlab implementation available in the latest Wavelet Toolbox [16] for

the Daubechies 9/7 filters (used in JPEG 2000) applied to the sameimage and for an equivalent of

8 separable iterations, takes about1.7s. For N datapoints, the complexity of our approach boils

down to O(N log N) for the FFT-based implementation, versusO(NB) for the spatial-domain

implementation, whereB is related to the filter support. The exact trade-off will depend on the image

size and the filter size. However, taking into account the benchmark measures and its flexibility, we

believe that the FFT-based implementation deserves consideration for a broad class of applications.

We provide also an applet written in Java, which makes it possible to run the algorithm over

the Internet, at the sitehttp://bigwww.epfl.ch/demo/jquincunx/. A screen-shot of this

applet is presented in Fig. 8.

Two examples of fractional quincunx wavelet decompositions with λ =
√

2 andλ = π are shown

in Fig. 9. Note how the residual image details are more visiblefor the lower value ofλ. The larger

λ reduces the energy of the wavelet coefficient, but this also comes at the expense of some ringing.

Thus, it is convenient to have an adjustable parameter to search for the best tradeoff.

An advantage of the present approach is that the filters for small λ are nearly isotropic; this is the

reason why the wavelet details in Fig. 9 do not present any preferential orientation. The degree of

May 24, 2004 DRAFT



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON IMAGE PROCESSING 9

isotropy of the various lowpass filters can be seen from Fig. 4. The shape of the contour-plots of the

low-pass filterHλ(ej~ω) confirms that the degree of isotropy is the best for small values of λ. At the

other extreme, whenλ → ∞, Hλ(ej~ω) tends to the diamond-shaped ideal filter.

Another nice feature of the algorithm is that the computational cost remains the same irrespective

of the value ofλ.

B. Dependence of the order parameter

The usefulness of a tunable order parameter is demonstrated in the following experiment: we apply

the quincunx transform to the test image “cameraman” (see Fig. 10 (a)) and reconstruct using only

15% of the largest coefficients. Then the SNR is measured depending on the order parameter. The

plot in Fig. 11 shows how the SNR changes according to the orderλ; the optimum, indicated by the

circle, is achieved forλ = 2.5. Figure 10 (b) and (c) show the reconstructions for the optimal order

and an order too high. The last one gets penalized by the introduction of ringing artefacts around

the edges. We also plot the SNR curves for20% and 25% of the coefficients. The same type of

qualitative behavior holds for other images.

C. Approximation properties

The main differences between the quincunx and the conventional separable algorithm is the finer

scale progression and the non-separability. To test the impact that this may have on compression

capability, we compared the approximation qualities of both approaches. Since the wavelet transform

is orthogonal, the approximation error (distortion) is equal to D2 = ‖x − x̂‖2 = ‖y − ŷ‖2, where

y are the wavelet coefficients of the input imagex; x̂ is the reconstructed image obtained from the

quantized—or truncated—wavelet coefficientsŷ. Also D2 in the space domain is equivalent to the

sum of squares of discarded wavelet coefficients [17].

1) Linear approximation: In classical rate-distortion theory, the coefficients are grouped into

channels and coded independently. In the orthogonal case,D2 is equivalent to the difference between

the signal’s energy and the energy of the reconstructed signal: ‖x − x̂‖2 = ‖x‖2 − ‖x̂‖2 = ‖x‖2 −
(
‖x̂J‖2 +

∑J
j=1 ‖ŷj‖2

)
. The distortion acrossN channels with varianceσ2

i is

D = N · C · 2−2R̄ · ρ2, (28)

whereC is a constant,̄R is the mean rate andρ is the geometric mean of the subband variances:

ρ =

(
N∏

i=1

σ2
i

) 1

N

. (29)
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When ρ is small, the distortion is small as well. What this means qualitatively is that the wavelet

transform which has the larger spread in the variances will achieve the better coding gain [12]. The

linear approximation subband coding gain for sample-by-sample quantization (PCM) is described by:

GPCM =
DPCM

DSBC
=

1
N

∑N
i=1 σ2

i(∏N
i=1 σ2

i

) 1

N

. (30)

To better illustrate this issue, we have decomposed the testimage “cameraman” for the maximal

number of iterations, both for the quincunx and the separable case as shown in Fig. 12. The order

was fixed (i.e.,λ = 4) for our method and for the orthogonal separable approach (corresponding to

the commonly used degree parameterα = 3 for the underlying B-splines). In Fig. 13 (a) we compare

the energy packing properties of both decompositions for linear approximation. “Energy packing”

refers to the property that the more the first coefficients contain energy, the better the DWT yields

compression. We start to sum up the energy of the subbands with the lowest resolution. Each step

of the stairs represents a subband1. The first subbands of the quincunx decomposition report higher

energy packing than the separable case, but the overall coding gain is slightly better for the separable

case than the quincunx case (47.69 versus45.23). Figure 13 (c) shows similar results for the “Lena”

test image.

Since the branches are orthogonal, the transformation that provides the maximum energy com-

paction in the low-pass channel is also the one that results in the minimum approximation error [17].

Since most images have a power spectrum that is roughly rotationally-invariant and decreases with

higher frequencies, separable systems are usually not bestsuited for isolating a low-pass channel

containing most energy and having high-pass channels with low energy. In contrast, a quincunx

low-pass filter will retain more of the original signal’s energy [12].

Consequently, the type of images that benefit the most from thequincunx scheme have a more

isotropic spectrum. For example, for the well-known zoneplate test image of Fig. 14 (a), the coding

gain of quincunx scheme is about20% better than the one obtained by the separable scheme (4.30

versus3.64). Also the quincunx scheme gives better energy compaction for textures of highly isotropic

nature (and as such a higher coding gain). Two such examples of the Brodatz textures are shown in

Fig. 14 (b) and (c), corresponding to a coding gain of13.67 versus12.45 and 12.04 versus9.62,

respectively. On the other hand, a separable treatment leads to a better energy compaction for the

texture shown in Fig. 15 (8.78 versus15.48). Other authors have also found that texture analysis

using the quincunx scheme improves the results as compared to the separable scheme [18].

1A quincunx wavelet decomposition withJ iterations generatesN = J + 1 channels, while a separable wavelet

decomposition withJ iterations results intoN = 3J + 1 channels.
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2) Non-linear approximation: A more recent trend in wavelet theory is the study ofnon-linear

approximation. In this case we do not take the “n-first” coefficients, but the “n-largest” coefficients

to approximate a signal withn coefficients. This yields better energy packing, since in the wavelet

domain the “n-first” coefficients are not necessarily the largest one, especially along the position-

indices [19]. The distortion is described by [20]:

D2 = ‖y − yN(T )‖2 =
∑

|y|<T

|y[n]|2. (31)

Moreover, it can be shown that

D ∝ C · (N (T ))−
γ

2 , (32)

when the smoothness ofy is measured by its inclusion in some critical Besov spaceBγ
q (Lq(I)) with

1
q

= γ
2 + 1

2 , roughly speaking wheny is a function withγ derivatives inLq(I) [20], [21].

For the non-linear approximation, the quincunx scheme alsoyields a better approximation than the

separable one for a smalln in many cases. Figure 13 (b) represents the energy depending on then

largest coefficients (in log).

VI. EXTENSION TO 3D

The extension of quincunx sampling to 3D is rather straightforward. First, the filters are obtained

by replacingcos ω by 1
3 (cos ω1 + cos ω2 + cos ω3) in (8). Next, the quincunx sampling lattice for

3D is shown in Fig. 16 (a). Letx[~k] denote the discrete signal on the initial grid. Then, its quincunx

sampled version, following [6], is

[x]↓D[~k] = x[D~k] , whereD =




1 0 1

−1 −1 1

0 −1 0


 . (33)

Our down-sampling matrixD is such thatD3 = 2I and |detD| = 2. The Fourier-domain version

of this formula is similar to the 2D case:

[x]↓D[~k] ←→ 1

2

[
X

(
ejD−T ~ω

)
+ X

(
ej(D−T ~ω+~π)

)]
, (34)

where~π = (π, π, π).

The implementation for the 3D case goes as follows. The output variables are the discrete Fourier
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transforms of the wavelet coefficients

Yi+1 [~n] =
∑

~k

yi+1[~k]e−j
2π〈~k,~n〉

N , for n1, n2, n3 = 0, 1, . . . , N − 1, (35)

Yi+2 [~n] =
∑

~k

yi+2[~k]e−j
2π〈~k,~n〉

N , for n1, n2, n3 = 0, 1, . . . , N − 1, (36)

Yi+3 [~m] =
∑

~k

yi+3[~k]e
−j

2π〈~k, ~m〉
N
2 , for m1, m2, m3 = 0, 1, . . . ,

N

2
− 1. (37)

The coefficients themselves are recovered by inverse FFT. The Fourier transforms after the first level

of filtering are given by

Xi+1 [~n] =
1

2

(
H̃ [~n] Xi [~n] + H̃

[
~n +

(
N
2 , N

2 , N
2

)]
Xi

[
~n +

(
N
2 , N

2 , N
2

)])
, (38)

Yi+1 [~n] =
1

2

(
G̃ [~n]Xi [~n] + G̃

[
~n +

(
N
2 , N

2 , N
2

)]
Xi

[
~n +

(
N
2 , N

2 , N
2

)])
. (39)

After the second level of filtering, we have:

Xi+2 [~n] =
1

2

(
H̃p [~n] Xi+1 [~n] + H̃p

[
~n +

(
0, N

2 , 0
)]

Xi+1

[
~n +

(
0, N

2 , 0
)])

, (40)

Yi+2 [~n] =
1

2

(
G̃p [~n] Xi+1 [~n] + G̃p

[
~n +

(
0, N

2 , 0
)]

Xi+1

[
~n +

(
0, N

2 , 0
)])

. (41)

Note that these are computed at the resolution of the input. The size reduction only takes place during

the third step:

Xi+3 [~m] =
1

2

(
H̃pp [~m]Xi+2 [~m] + H̃pp

[
~m +

(
N
2 , 0, 0

)]
Xi+2

[
~m +

(
N
2 , 0, 0

)])
, (42)

Yi+3 [~m] =
1

2

(
G̃pp [~m] Xi+2 [~m] + G̃pp

[
~m +

(
N
2 , 0, 0

)]
Xi+2

[
~m +

(
N
2 , 0, 0

)])
, (43)

where H̃p [~m] = H̃ [D~m mod(N, N, N)] and H̃pp [~m] = H̃
[
D

2 ~m mod(N, N, N)
]
. Analogously,

we have that:G̃p [~m] = G̃ [D~m mod(N, N, N)] and G̃pp [~m] = G̃
[
D

2 ~m mod(N, N, N)
]
.

Figure 16 (b) shows how the coefficients can be arranged in a non-redundant way inside the cube.

Note that it is still possible to optimize the 3D implementation taking into account this arrangement

already in the Fourier domain, as such reducing the calculation of FFTs. Again, the rotated filters

Hp, Hpp, Gp, andGpp are precomputed.

A. Approximation properties in 3D

We compared the compression capability for the quincunx andthe separable scheme applied to

3D data, similar to the type of experiments that are described for 2D in Sect. V-C. Figure 17 shows

the results for a spiral CT dataset of part of a human spine. Thelinear approximation quality is

shown in (b). The separable scheme takes much advantage of theavailibity of many small (i.e.,

seven for each iteration) bandpass subbands, as compared tothe quincunx scheme. To illustrate this
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point, we have grouped the bandpass subbands for the separable case together in one single bandpass

in (c). For non-linear approximation, both schemes performsimilarly with a small advantage for the

separable one, as shown in (d). If the dataset contains more (isotropic) high-frequency components,

the breakpoint between the quincunx and the separable case shifts to the right.

The main advantage of the 3D quincunx scheme is in applications that can benefit from the (much)

slower scale progression. One example is the statistical analysis of brain activity using functional

magnetic resonance imaging (fMRI). Here we show an example using the classical wavelet-based

approach for detecting activity, using the linear model analysis and thet-test in the wavelet domain

for a 3D dataset (64 × 64 × 64) with an auditory stimulus [22]; we refer to [23] for more details.

We compared the use of the 3D dyadic separable wavelet decomposition based on orthogonal linear

B-spline wavelets versus our 3D quincunx wavelets (same order). The parameter maps where obtained

using the same threshold after reconstruction (5% of the maximal parameter value). The number of

detected voxels, and as such the sensitivity of the approach, is almost 10% higher (578 versus536)

when we use the 3D quincunx DWT, which confirms that the slower scale progression improves the

quality of the results. Figure 18 shows the detected activation patterns around the auditory cortex

(slice 33).

Other potential applications might include image analysisand 3D feature detection.

VII. C ONCLUSION

We have introduced a new family of orthogonal wavelet transforms for quincunx lattices. A key

feature is the continuously-varying order parameterλ which can be used to adjust the bandpass

characteristics as well as the localization of the basis functions.

We have also demonstrated that these wavelet transforms could be computed quite efficiently in

2D and 3D using FFTs. This should help dispel the commonly held belief that non-separable wavelet

decompositions are computationally much more demanding than the separable ones.

Because of their nice properties and their ease of implementation, these wavelets present an

alternative to the separable ones that are being used in a variety of image processing applications

(image analysis, image enhancement, filtering and denoising, feature detection, texture analysis, and

so on).
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Fig. 1. (a) The quincunx lattice and (b) the corresponding Nyquist areain the frequency domain.
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Fig. 2. Perfect reconstruction filterbank on a quincunx lattice.
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Fig. 3. Frequency responses of the orthogonal refinement filters for λ = 1, . . . , 100.

May 24, 2004 DRAFT



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON IMAGE PROCESSING 19

(a) λ = 1 (b) λ =
√

2

(c) λ = π (d) λ = 10

Fig. 4. Contour plots of the low-pass filtersHλ(ej~ω) for various values of the order parameterλ.

(a) λ =
√

2 (b) λ = π (c) λ = 10

Fig. 5. Surface plots of the waveletsψλ for various values of the order parameter.
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Fig. 6. Analysis part of the 2D quincunx wavelet transform for two iterations.
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Fig. 7. The wavelet coefficients for the quincunx subsampling scheme can be arranged in two ways. An example for

J = 4 iterations. (a) Compact representation. (b) Classic representation.
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Fig. 8. Applet of the Fourier-based implementation of the quincunx wavelet transform, available on the site:

http://bigwww.epfl.ch/demo/jquincunx/.

(a) input image (b)λ =
√

2 (c) λ = π

Fig. 9. Quincunx wavelet transforms with four iterations: (a) original test image, (b)λ =
√

2, (c) λ = π.
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(a) original image (b)λ = 2.5 (c) λ = 14

Fig. 10. (a) Original test image “cameraman”. (b) & (c) Reconstruction of “cameraman” using15% of the largest

coefficients withλ = 2.5 (optimal) andλ = 14.
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Fig. 11. Relation between the order parameterλ and the SNR of the reconstructed image (test image “cameraman”) using

only the largest coefficients. The full line, dashed line, and dotted line correspond respectively to25%, 20%, and15% of

the largest coefficients.

(a) (b)

Fig. 12. Decomposition of the test image “cameraman” for the maximal possible number of iterations. (a) Quincunx case.

(b) Separable case. The contrast of each subband has been enhanced.
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Fig. 13. Comparison of energy-compaction property between the quincunx and the separable case of image decomposition

(as shown in Fig. 12). (a) & (c) Linear approximation depending on number of coefficients (in log, grouped per subband),

respectively for “cameraman” and “Lena”. (b) & (d) Non-linear approximation depending of then largest coefficients (in

log), respectively for “cameraman” and “Lena”. The quincunx scheme yields better results for a low number of coefficients.

In the case of “lena”, the separable scheme performs better than the quincunx one over most of the range.

(a) (b) (c)

Fig. 14. Some examples of typical images where the quincunx scheme outperforms the separable case in term of coding

gain. (a) Zoneplate. (b) Brodatz texture D112. (c) Brodatz texture D15. The Brodatz textures have512 × 512 pixels and

are obtained from the USC-SIPI Image Database.
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Fig. 15. An example of a texture (Brodatz D68) that is better suited for a separable treatment.
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Fig. 16. (a) 3D-FCO (face-centered orthorhombic) lattice, corresponding to the sampling matrix of Eq. (33). (b) Compact

representation of the wavelet coefficients for the 3D case.
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Fig. 17. (a) Slice of an spiral CT dataset of part of a human spine (courtesy and copyright of Ramani Pichumani, Stanford

University School of Medicine). (b) Linear approximation, for the separable case each bandpass subband is considered

independently. (c) Linear approximation, for the separable case the bandpass subbands are grouped together into one single

subband. (d) Non-linear approximation.

dyadic separable DWT quincunx DWT

Fig. 18. FMRI brain activation detected using the classical wavelet-basedapproach. The activated voxels in the slice are

left white, superposed on a background of the T2*-scan.
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