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ABSTRACT

Microscopy imaging often suffers from limited depth-of-
focus. However, the specimen can be ‘optically sectioned’
by moving the object along the optical axis; different
areas appear in focus in different images. Extended depth-
of-focus is a fusion algorithm that combines those images
into one single sharp composite. One promising method
is based on the wavelet transform. In this paper, we show
how the wavelet-based image fusion technique can be
improved and easily extended to multi-channel data. First,
we propose the use of complex-valued wavelet bases,
which seem to outperform traditional real-valued wavelet
transforms. Second, we introduce a way to apply this
technique for multi-channel images that suppresses
artifacts and does not introduce false colors, an important
requirement for multi-channel fluorescence microscopy
imaging. We evaluate our method on simulated image
stacks and give results relevant to biological imaging.

1. INTRODUCTION

Limited depth-of-focus is a common problem in biologi-
cal imaging with conventional light microscopy. Often,
the specimen turns out to be thicker than the attainable
focal depth. Portions of the object’s surface outside the
focal plane appear defocused in the acquired image plane.
This becomes worse as the magnification increases
because the numerical aperture increases, too, and therefore
the depth-of-focus becomes smaller. Consequently, each
acquisition will be compromised and show certain parts of
the specimen in and out of focus. One common approach
to image the whole specimen is by taking multiple
images at different focal planes. The challenge then
becomes to select from each slice the area that is focused
in order to reconstruct an image projection that is sharp
everywhere. In this way, it is possible to extend the
apparent depth-of-focus without the physical limitation of
the numerical aperture of the objective lens (see Fig. 1).
Numerous articles have been written on image fusion and
some solutions have proven to be more efficient than
others. An overview can be found in [1-3]. One of the
known methods is based on the wavelet transform, for
which we propose two extensions in this paper. Basically,
our approach computes the discrete complex-valued
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Fig. 1. Microscopic imaging system, depth-of-focus.

wavelet transform of each image slice of the object, and
builds up the wavelet coefficients of the composite image
by a maximum-absolute-value selection rule. The final
composite image is obtained after computing the inverse
complex wavelet transform. For successful application to
multi-channel images, we propose an adapted multi-
channel conversion and recovery as a pre- and post-
processing step. In essence, this method compensates for
the increase in dynamic range of the image obtained after
fusion and avoids the introduction of false colors [4]. We
propose a quantitative validation procedure that allows us
to compare our method with other approaches and to
evaluate its performance. We also present results obtained
with real specimens.

2. EXTENDED DEPTH-OF-FOCUS USING THE
WAVELET TRANSFORM

To extend the depth-of-focus, we first have to define an
in-focus criterion. Typically, an image that is in-focus has
a maximal number of visible details. On the other hand,
defocused images are blurred by the point-spread-function
of the microscope. Therefore, we suppose that the areas of
an image that are focused contain more high frequency
components than out-of-focus areas.

Classical frequency analysis, using the Fourier transform,
does not provide any spatial localization. The discrete
wavelet transform, by contrast, seems to be the ideal high
saliency detection, since it allows a local analysis of the
image’s frequency content. Unlike windowed Fourier
transforms, this type of multi-resolution automatically



adapts to various sizes of details. Moreover, the discrete
wavelet transform is nonredundant and invertible.

3. IMAGE FUSION ALGORITHM

The image fusion algorithm proposed in this paper relies
on two conditions prior to processing. The first is that the
images must be aligned throughout the stack and the
second is that they must be at the same magnification
level. Both conditions are met if the original images are
taken by a traditional light microscope with the specimen
being translated along the optical axis z to obtain the
slices. For best visual results, however, the whole
specimen should be recorded with translation steps Az
smaller than the real depth-of-focus.

3.1. Complex-valued Wavelet Transform
The discrete wavelet transform was proposed for image
fusion in many papers (for example, see [2] for an
overview). The proposed wavelet transforms are bi- or
orthonormal basis decompositions and thus the
information in different bands is unique. Moreover, it
allows perfect reconstruction and fast implementations [7].
However, not all wavelets have the same performance. We
choose the complex Daubechies wavelets invented
independly by Lawton [5] and by Lina and Mayrand [6].
They perform a complex-valued wavelet transform by
filtering with finite-length complex low and high pass
filters. They provide complex wavelet bases of various
degrees and thus an adjustment of the order of smoothing
performed by the transform is possible. Here, we selected
the complex Daubechies wavelets with four vanishing
moments and 6/6 taps filters, because they provide an
orthonormal decomposition, which is useful for an
eventual additional denoising step, and because they
perform an adequate smoothing.
For each slice s(.,.,z) of the stack {s(x,y,z)}., we perform a
2D separable complex wavelet transform CWT

CWT: s(x.y;z) = {c(nm;2)}
and obtain complex-valued coefficients ¢; for each scale ;.
We found that the complex-valued transform adds

robustness to the selection rule and consistency check
algorithms.

3.2. Selection Rule and Consistency Checks
The largest absolute value of the coefficients in the
subbands will correspond to sharper brightness changes
and therefore to the most salient features. A good
integration rule consists in selecting the slice with the
largest absolute value of the wavelet coefficients at each
point:

di(n,m) = c(n,m, arg max.|c(n,m,z)|).
The fused transform based on the combined complex
coefficients can thereafter be inverted in order to obtain a
composite image. We store the number of the selected
slice per pixel in a separate map. It may be used for
consistency checks or topological visualization.

There are several approaches on consistency checks for the

choice of the coefficients. The two most important are

* Spatial consistency: If the majority of neighboring
coefficients of di(n,m) in a 3 x 3 window are from a
different slice k=/, then d;(n,m) is changed to di(n,m).

* Subband consistency: If two out of three correspond-
ing subband coefficients are attributed to the same
slice, then the third one is taken from that slice, too.

3.3. Inverse Complex Discrete Wavelet Transform
We compute the inverse complex wavelet transform on the
fused coefficient matrix to get an intermediate fused
image:

CWT " {din,m)}; = p(x.).
In general, the pixels of the reconstructed image are
complex numbers. We considered the transformation on
real values by calculating the absolute value of the
complex number per pixel and by just taking the real
parts. We found that the second approach performs better.

4. PRE- AND POST-PROCESSING STEPS

4.1. Pre-processing: Multi-channel conversion
Using the fusion method based on the wavelet transform,
one would be tempted to apply the algorithm to multi-
channel data, by treating each channel independently.
Such an approach could be useful for multi-channel data
where the details are not correlated across channels.
However, if the channels jointly contribute to details, this
method will cause saturation and false colors. Moreover,
we would have to perform the whole algorithm several
times, which multiplies the computation time and storage
space. We propose a method to convert color images to
greyscale in order to apply the algorithm once.
The traditional method to perform color conversion from
RGB images to grayscales consists in a fixed weighted
average of the three colors (i.e., Y = 0.30Red +
0.59 Green + 0.11 Blue). This is a good universal color
to greyscale transformation in particular for natural
images. However, in microscopy images, a particular
color might be highly present (e.g., a specimen stained
using a red colorant). Therefore, we adapt the weights to
the different channels & according to their average
intensity:

Yyt = seyia)).
In this way, a predominant color will be given more
weight during the subsequent fusion algorithm.

Fig. 2. One slice of a stack showing Peyer plaques from the
intestine of a mouse. Multi-channel conversion with (left)
and without (right) adaptive weights.



The greyscale images created preserve more saliency than
by simply using fixed weights (see Fig. 2).

4.2. Post-Processing: Clipping

Fusion in the wavelet domain yields results that are “non
convex” combinations of the pixel values of the input
images; a consequence of retaining the maximal absolute
value coefficient. For typical images, approximately 30%
of the pixels are over or under the original dynamic range
of all images. Such an increase of dynamic range boosts
the global energy of the image, the noise level, and the
amount of saturation.

To at least avoid the non-convexity errors, we propose a
“clipping” algorithm that selects the closest available
value according to the original data. Multi-channel
clipping for each channel & can be expressed as

q"(xy) = s"(xy; arg min. |p(xy)-s(x.y;2))).
This procedure eliminates outliers and diminishes ringing
effects (see Fig. 3). Moreover it can be applied to “restore”
the multi-channel pixel data, without false color effects,
by construction.

Fig. 3. Mouse epidermis. Clipping (left) diminishes ringing
effects (right).

5. COMPARISON WITH OTHER METHODS
To evaluate our method we simulated microscopical data
and compared the reconstructed image with the ground
truth. We compared our complex wavelets method with
the real wavelets and the variance method.

5.1. Classical approach

The variance method is based on the assumption that in
focus regions of the image correspond to high variations
of intensity. The variance over a 3 x 3 window is
calcultated in order to determine whether the center pixel
is in a focused area. The pixel along the z-axis with the
highest variance is chosen for the composite image. This
algorithm has the advantage of computational simplicity.

5.2. Evaluation

Four simulated stacks are constructed as illustrated in
Fig. 4. Brodatz textures (D18, D22, D23, DI112) are
mapped onto a surface and discretized using linear
interpolation along the z-direction. Next, the volume is
convolved by a filter that contains a Gaussian blur for
each slice with increasing width as the defocus increases.
We compared the variance method, the real wavelet
method and the complex wavelet method. We used the
real orthonormal spline wavelet of degree 3 and the
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Fig. 4. Construction of a simulated data stack by projecting
texture on a surface.

6/6 tap complex Daubechies wavelet, since they have the
same number of vanishing moments. Moreover, we
evaluated the influence of clipping and of the consistency
checks. For all experiments we measured the signal-to-
noise-ration (SNR) with respect to the ground truth. The
results compared to the variance method are given in
Tab. 1. We found that both wavelet methods outperform
the variance method. The quality of the output image of
the variance method is quite poor. Problems especially
occur when the focused area contains homogenous parts,
and often artificial details are introduced.

Comparing complex and real wavelets, the complex ones
give us about 0.7 dB performance gain. Clipping adds
about 0.3 dB for both wavelet methods. Consistency
checks improve the quality of the result, especially when
they are combined with clipping. However, the consis-
tency checks turned out to be very costly with respect to
storage space and computation time. For the processing of
real microscopic stacks (typical resolution of 1996 x
1450, about 40 images) we therefore set them aside and
perform the complex wavelet method with clipping.

5.3. Results

Fig. 5.a. The variance method (left), and the real wavelet
method (right) with clipping.

Fig. 5.b. The complex wavelet method with clipping.



Performance gain Spline 3 CDaub 6] CDaub 6
compared to comp. to
\Variance Method Spline 3
No manipulations 249dB 3.21dB| 0.72dB
Clipping 287 dB 3.51dB| 0.64 dB
Spatial Check 3.55dB 3.67dB| 0.12dB
Spatial Check, Clipping 3.74 dB 3.89 dB| 0.15 dB
Subband Check 414 dB 4.50 dB| 0.36 dB
Subb. Ch., Clipping 4.33dB 4.70 dB| 0.37 dB
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Tab. 1. The average performance gain of the real and the com-
plex wavelet method with preprocessing and consistency
checks compared to the variance method. The left columns
give the average difference of the SNRs with respect to the
variance method. The right column gives the SNR’s average
differences of the complex wavelet method and the real one.
The SNRs of both wavelet methods range between 23 — 29 dB.

We discuss our results on the example of Peyer plaques
from the intestine of a mouse (see Fig. 5 a, b). The
specimen is strongly stained with a red colorant.

Also for real data the complex wavelet method with
clipping proposed in this paper outperforms the classical
fusion method. It gives more details in the boundary
regions, but does not introduce artificial details.

6. SOFTWARE PACKAGE
We implemented our method in Java as an ImageJ plug-
in. ImagelJ is a widely used multi-platform public domain
software for the analysis of biological images. Our plug-in
can be downloaded from our web site

http://bigwww.epfl.ch/demo/edf/

It allows the fusion of a stack of images by just one
single mouse click, see Fig. 6.

7. CONCLUSIONS

We presented a new method to extend the depth-of-focus
of microscopic images. By measurements on simulated
data and by examples on real images, we showed that our
choice of a complex wavelet transform outperforms real
wavelets and the variance method. We showed that a
careful multi-channel conversion with subsequent clipping
avoids the introduction of false colors, and suppresses
artifacts. Our algorithm is freely available as a plug-in for
ImageJ and is used in practice by biologists at the ISREC
cancer research facility in Lausanne. The algorithm can be
applied to visualize and present light microscopy images.
Another application includes the reconstruction of a sharp
DIC (differential interference contrast) image, containing
structural information of a biological specimen, that is su-
perposed with fluorescence images [8].

In the future, we will incorporate non-linear denoising in
the wavelet domain and work on improving the height
map for an estimation of an elevation surface and for 3D
reconstruction.
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Fig. 6. Screenshot of our software package, which is freely
available as a plug-in for the ImageJ] Java Image Processing
Framework.
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