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1 Shift-invariance and rotation-covariance

A multiresolution analysis of L2(R2) is specified by a sequence of shift-invariant
closed subspaces

{0} ⊂ . . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . ⊂ L2(R2)

satisfying the following properties:

(i)
⋃
j∈Z

Vj = L2(R2) and
⋂
j∈Z

Vj = {0}.

(ii) There is a dilation matrix A ∈ GL(2,R) that 1.) leaves Z2 invariant, i.e.,
AZ2 ⊂ Z2, and 2.) has eigenvalues 1 < |λ1| ≤ |λ2|, such that

f ∈ Vj ⇐⇒ f(A−j•) ∈ V0.

(iii) There is a scaling function ϕ ∈ L2(R2), whose integer translates form a
Riesz basis of V0:

V0 = span{ϕ(• − k) | k ∈ Z2}.

Here we will investigate multiresolution analyses that are generated by rotation-
covariant functions. By rotation-covariance we mean that a rotation of the
argument of a function f : R2 → C gets translated into a rotation of the
functions’ value in the complex plane:

Definition 1 Let f : R2 → C be a function. Denote by Rθ : R2 → R2 the
rotation operator with respect to the angle θ ∈ R

x =
(
x1

x2

)
7→ Rθx =

 cos θ sin θ

− sin θ cos θ

(x1

x2

)
. (1)

The function f is called rotation-covariant if there exists a constant N ∈ Z,
which is independent of x and θ, such that

f(Rθx) = f(x) · eiNθ.

Rotation-covariant atoms have the remarkable property of encoding rotations
of the analyzed function in the phase only. Let φ be a rotation-covariant atom.
Denote by Rθf = f(Rθ•). Then

〈R−θf, φ〉 = 〈f,Rθφ〉 = 〈f, φ〉 · e−iNθ.
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As a consequence the moduli of the coefficients are not affected by rotations
of f .

Our purpose in this work is to define and characterize a new family of multires-
olution analyses with corresponding wavelets using such functions as elemen-
tary building blocks. A multidimensional wavelet analysis typically involves
templates (or basis functions) that are shifted and dilated versions of a scal-
ing function ϕ and some elementary wavelets ψi; these are often chosen to
be separable for simplicity [1]. Since shift- and rotation-invariance are highly
desirable properties for image processing, we aim at constructing complex,
non-separable wavelet bases that exhibit a high degree of rotation-covariance.
Ideally, this would provide a wavelet analysis where the magnitude of the
wavelet coefficients would characterize the amount of local image variation
(contour or singularity at a given location) irrespective of the orientation, while
the phase would extract the directional information. The advantage of such a
transform is that it would allow us to perform transform domain processing—
by primarily operating on the moduli of the coefficients—that is essentially
rotation-invariant. While exact rotation invariance is incompatible 1 with the
requirement of having a wavelet basis of L2(R2), we will show here that this
property can at least be enforced qualitatively. Specifically, we will display
new quincunx wavelet bases that essentially behave like multi-scale versions
of Wirtinger operators (cf. Proposition 16), which are rotation-covariant and
closely related to the gradient [2–4].

This paper is organized as follows: In Section 2, we start with the definition of
a sequence of spaces {Vj}j∈Z spanned by shifts of a rotation-covariant function
ρ. In the next section, we give conditions for the sequence {Vj}j∈Z to form a
multiresolution analysis for all dilation matrices A that operate as scaled ro-
tation. Since multiresolution analyses are defined with respect to fixed regular
grids AjZ2, j ∈ Z, exact rotation-covariance is not possible for ϕ. However, the
construction of approximately rotation-covariant scaling functions is possible.
In Section 4, we describe several classes of admissible localizing multipliers.
It turns out that there are no continuous complex ones. We define a new
class of multipliers which yield higher regularity of decomposition filters and
wavelets. They also improve smoothness and polynomial reproduction proper-
ties of classical polyharmonic B-splines. Thus, the order of approximation and
the decay are considered in Sections 5–7. We close the paper with remarks on
implementation and a summary.

1 the same remark does obviously also apply to exact shift and scale invariance
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2 Generating function

To generate an approximately rotation-covariant multiresolution analysis, we
start with a perfectly rotation-covariant function ρ and consider the shift-
invariant space that is generated by integer shifts of ρ. We define ρ in the
sense of distributions by

ρ̂(ω1, ω2) :=
1

(ω2
1 + ω2

2)
α(ω1 − iω2)N

∈ S ′(Ω).

where Ω = R2\Bε{(0, 0)}, α ∈ R+
0 ,N ∈ N, α+N > 1, and Bε{(0, 0)} is a small

ε–neighborhood of the origin. Then ρ̂(Rθω) = e−iNθρ̂(ω) for ω = (ω1, ω2) and
thus ρ(Rθx) = e−iNθρ(x) for x = (x1, x2). I.e., ρ as well as its Fourier transform
ρ̂ are rotation-covariant. We consider the integer shift-invariant space V :=
span{ρ(• − k) | k ∈ Z2} ⊂ S ′(Ω) generated by integer shifts of ρ. Our aim is
to generate multiresolution analyses of L2(R2). Since ρ̂ /∈ L2(R2), ρ /∈ L2(R2)
as well, since the Fourier transform is an isometric isomorphism on L2(R2).
Therefore we have to “localize” ρ in order to get a scaling function ϕ that is
an element of L2(R2).

2.1 Localized generating functions

The function ρ̂ has a singularity of order 2α + N at the origin and thus is
not square-integrable. Therefore, to satisfy property (iii) of a multiresolution
analysis, we need to identify a function ϕ ∈ L2(R2), whose translates generate
an integer translation invariant subspace V0 of L2(R2):

V0 = span{ϕ(• − k) | k ∈ Z2}L2(R2)
.

This is achieved by localizing the generating function ρ; i.e., by finding a
sequence {ck}k∈Z2 such that

ϕ =
∑

k∈Z2

ckρ(•+ k) ∈ L2(R2).

To this end, we eliminate the singularity of ρ̂ at the origin by multiplying the
function by an appropriate bounded (2π, 2π)–periodic function ν; for example,
the trigonometric polynomial

ν(ω1, ω2) =
(
4
(
sin2 ω1

2
+ sin2 ω2

2

))α+N
2

.
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Proposition 2 Let ν be a (2π, 2π)–periodic function, such that

ϕ̂(ω1, ω2) =
ν(ω1, ω2)

(ω2
1 + ω2

2)
α · (ω1 − iω2)N

(2)

is bounded at (ω1, ω2) = (0, 0).

(i) Then ϕ̂ is square-integrable for α+ N
2
> 1

2
, and has fast decay

|ϕ̂(ω1, ω2)| = O(‖(ω1, ω2)‖−2α−N) (3)

for ‖(ω1, ω2)‖ → ∞.

For the space domain representation ϕ, the following properties hold:

(ii) It is ϕ ∈ L2(R2) with explicit space domain representation

ϕ(x) =
∑

k∈Z2

νkρ(x+ k) for almost all x = (x1, x2) ∈ R2. (4)

Here, (νk)k∈Z denotes the sequence of Fourier coefficients of the (2π, 2π)–
periodic multiplier ν(ω1, ω2) and ρ is the inverse Fourier transform of the
Hadamard partie finie Pf(ρ̂). (See Section 2.2.)

(iii) For s < 2α+N − 1 the function ϕ is element of the Sobolev space

ϕ ∈ W s
2 (R2).

(iv) If α+ N
2
> 1, the function ϕ is bounded, uniformly continuous, and vanishes

at infinity.
(v) Let β ∈ N2 denote a multi-index, ωβ = ωβ1

1 ω
β2
2 be the corresponding mono-

mial, and Dβ = ∂β1

∂xβ1

∂β2

∂xβ2
the corresponding differential operator.

Then (•)βϕ̂ ∈ L1(R2), as long as 2α+N − |β| > 2.
In this case, Dβϕ is bounded, uniformly continuous, and vanishes at in-

finity.

PROOF. (i) is obvious. (ii) follows from Fourier inversion. (iii) follows from
the decay properties of ϕ̂. (iv) For α + N

2
> 1 the function ϕ̂ ∈ L1(R2).

The claim follows by the inverse Fourier transform. The same arguments yield
(v). 2

Note 1 If α+ N
2
∈ N and ν is a trigonometric polynomial, then ϕ ∈ C2α−2+N .

In this case, ν has finitely many non-vanishing Fourier coefficients. Thus by
(4), ϕ is a finite sum of shifted ρ ∈ C2α−2+N .
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2.2 Explicit representation of ρ

We now give an explicit representation of ρ, i.e., the inverse Fourier transform
of the Hadamard partie finie, Pf(ρ̂).

Proposition 3 For α /∈ N

ρ(x1, x2) = d1(x
2
1 + x2

2)
α−1(x1 + ix2)

N , (5)

and for α ∈ N

ρ(x1, x2) =

= d2(x
2
1 + x2

2)
α−1(x1 + ix2)

N
(
ln π

√
x2

1 + x2
2 + d3

)
(6)

for coefficients d1, d2, d3 ∈ C depending on α and N only.

PROOF. Consider

ρ̂α,N(ω1, ω2) :=
1

(ω2
1 + ω2

2)
α(ω1 − iω2)N

.

Then the recurrence

(ω1 + iω2)
N ρ̂α+N,0(ω1, ω2) = ρ̂α,N(ω1, ω2)

holds. We are seeking the inverse Fourier transform of ρ̂ = ρ̂α,N . Since the
function is not integrable in a neighborhood of the origin for 2α+N ≥ 2, we
consider the Hadamard partie finie Pf(ρ̂α,N) [5,6]. This can be omitted for
2α+N < 2, because it does not change the result.

The polynomial (ω1 + iω2)
N acts as a differential operator of Wirtinger type

in the space domain:

ρα,N(x1, x2) =F−1{Pf(ρ̂α,N)}(x1, x2)

=F−1{Pf((ω1 + iω2)
N ρ̂α+N,0)}(x1, x2)

=

(
−i ∂
∂x1

+
∂

∂x2

)N

F−1{Pf(ρ̂α+N,0)}(x1, x2)

=

(
−i ∂
∂x1

+
∂

∂x2

)N (
1

(2π)2
F{Pf(ρ̂α+N,0)}(−x1,−x2)

)
. (7)
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Here, F denotes the Fourier transform operator. For radial functions of the
variable r ∈ R+ (see e.g. [5, pp. 44 ff. and 257 ff.]),

F(rm) =
1

πm+1
·
Γ(m+2

2
)

Γ(−m
2
)
r−(m+2) for 0 > Rem > −2,

F(Pf(rm)) =
1

πm+1
·
Γ(m+2

2
)

Γ(−m
2
)
r−(m+2) for Rem < −2,

F(rm) =
1

πm+1

Γ(m+2
2

)

Γ(−m
2
)
Pf(r−(m+2)) for Rem > 0,

as long as m /∈ Z. In the case m ∈ Z, further terms—logarithmic factors or
differential operators—have to be added; this we shall consider later.

First we consider the case α 6∈ N. The equations above yield with m = −2(α+
N)

F{Pf(ρ̂α+N,0)}(x1, x2) = F
{
Pf

(
1

r2(α+N)

)}∣∣∣∣
r=
√

x2
1+x2

2

=
1

π−2(α+N)+1
·
Γ
(
−2(α+N)+2

2

)
Γ
(
−−2(α+N)

2

) r−(−2(α+N)+2)

∣∣∣∣∣∣
r=
√

x2
1+x2

2

=π2(α+N)−1 Γ(−(α+N) + 1)

Γ(α+N)
(x2

1 + x2
2)

α+N−1. (8)

In the space domain we consider uα,N(x1, x2) := (x2
1 + x2

2)
α(x1 + ix2)

N . This
function fulfills the recursion formula(

−i ∂
∂x1

+
∂

∂x2

)
uα,N = (−2iα)uα−1,N+1.

For k ∈ N,

(
−i ∂
∂x1

+
∂

∂x2

)k

uα+N−1,0 = (−2i)k Γ(α+N − 1)

Γ(α+N − 1− k)
uα+N−1−k,k. (9)

Using (7), (8) and (9) we get

ρ(x1, x2) = ρα,N(x1, x2) = d1(α,N)(x2
1 + x2

2)
α−1(x1 + ix2)

N
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with

d1(α,N) =
π2(α+N−1)−1

4
(−2i)N Γ(−(α+N) + 1)

Γ(α+N)
· Γ(α+N − 1)

Γ(α− 1)
. (10)

This gives (5).

Now, we come to the second case α ∈ N. For h ∈ N0 := {0, 1, 2, . . .} [5],

F
{
Pf

(
1

r2+2h

)}
=

π1+2h

Γ(1 + h)
· 2(−1)h

h!
r2h ×(

ln
1

πr
+

1

2

(
1 +

1

2
+ . . .+

1

h
− γ

)
+

1

2

Γ′(1 + h)

Γ(1 + h)

)
.

Here, γ = limn→∞
(∑n

k=1
1
k
− lnn

)
= 0.5772 . . . is the Euler–Mascheroni con-

stant. For h = 0 the sum 1 + 1
2
+ . . .+ 1

h
must be replaced by zero. Hence, for

α ∈ N and N ∈ N, we have with (7) and h = α+N − 1

ρα,N(x1, x2) =

=F−1{Pf(ρ̂α,N)}(x1, x2)

=

(
−i ∂
∂x1

+
∂

∂x2

)N (
1

(2π)2
F{Pf(ρ̂α+N,0)}(−x1,−x2)

)

=

(
−i ∂
∂x1

+
∂

∂x2

)N (
1

(2π)2
F
{
Pf

(
1

r2(α+N)

)}∣∣∣∣
r=
√

x2
1+x2

2

)

=

(
−i ∂
∂x1

+
∂

∂x2

)N (
c1(α,N)(x2

1 + x2
2)

α+N−1 ×ln 1

π
√
x2

1 + x2
2

+ c2(α,N)

),
where

c1(α,N) =
1

(2π)2

π2(α+N−1)+1

Γ(α+N)
2

(−1)α+N−1

(α+N − 1)!

and

c2(α,N) =
1

2

(
1 +

1

2
+ . . .+

1

α+N − 1
− γ

)
+

1

2

Γ′(α+N)

Γ(α+N)
.

Then the Leibniz formula yields
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ρα,N(x1, x2) =

= c1(α,N)c2(α,N)

(
−i ∂
∂x1

+
∂

∂x2

)N

uα+N−1(x1, x2)

− c1(α,N)

(
−i ∂
∂x1

+
∂

∂x2

)N (
uα+N−1,0(x1, x2) ln

(
π
√
x2

1 + x2
2

))

= c1(α,N)c2(α,N)(−2i)N Γ(α+N − 1)

Γ(α− 1)
uα−1,N(x1, x2)

− c1(α,N)
N∑

k=0

(
N

k

)
(−2i)k Γ(α+N − 1)

Γ(α+N − 1− k)
uα+N−1−k,k(x1, x2)×(

−i ∂
∂x1

+
∂

∂x2

)N−k

ln
(
π
√
x2

1 + x2
2

)
.

For k ∈ N,

(
−i ∂
∂x1

+
∂

∂x2

)k

ln
(
π
√
x2

1 + x2
2

)
= β(k)

1

(x1 − ix2)k
,

with β(1) = −i and β(k + 1) = 2ikβ(k) = (2i)kk!(−i). This can be seen by
induction.

Thus,

ρα,N(x1, x2) =

= c3(α,N)uα−1,N(x1, x2) ln
(
π
√
x2

1 + x2
2

)
+ c4(α,N)uα−1,N(x1, x2),

where

c3(α,N) = −c1(α,N)(−2i)N Γ(α+N − 1)

Γ(α− 1)

and

c4(α,N) = c1(α,N)Γ(α+N − 1)(−2i)N ×(
c2(α,N)

Γ(α− 1)
−

N−1∑
k=0

(
N

k

)
(−1)k (N − k)!(−i)

Γ(α+N − 1− k)

)
.

This gives (6) with d2(α,N) = c3(α,N) and d3(α,N) = c4(α,N)/c3(α,N). 2
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3 Multiresolution analyses

Now we show that the function ϕ constructed in (2) is a valid scaling function,
and that it generates a multiresolution analysis of L2(R2) for a set of dilation
matrices. We state the conditions for ϕ to be a scaling function, and specify
the corresponding multipliers ν.

The function ϕ in (4) satisfies a refinement relation

ϕ(A−1•) =
∑

k∈Z2

hkϕ(• − k) in L2(R2) (11)

for a set of dilation matrices A. Consider the scaled rotation matrices A ∈
GL(2,R) of the form

A =

 a b

−b a

 =
√
| detA|

 cos θ sin θ

− sin θ cos θ

 =
√
a2 + b2

 cos θ sin θ

− sin θ cos θ

 ,(12)

with a, b ∈ Z, θ = arccos a√
a2+b2

, and eigenvalues 1 < |λ1| = |λ2|. This includes

the quincunx case a = b = 1. Relation (11) is equivalent to the existence of a
2πZ2–periodic function H ∈ L2(T2) of the form

H(eiω) = | detA| ϕ̂(ATω)

ϕ̂(ω)
= | detA| ρ̂(A

Tω)ν(ATω)

ρ̂(ω)ν(ω)

=
ν(ATω)

ν(ω)
· 1

(a2 + b2)α−1(a− ib)N
, ω ∈ R2. (13)

The function H is a refinement filter with Fourier coefficients hk defined in
(11). We can formulate for general multipliers ν:

Theorem 4 Let α ∈ R+ and N ∈ N be fixed. Let the multiplier ν(ω1, ω2) be
a bounded, 2πZ2-periodic function in R2 that fulfills the following properties:

(i)

∣∣∣∣∣ ν(ω1, ω2)

(ω2
1 + ω2

2)
α(ω1 − iω2)N

∣∣∣∣∣→ c for ‖(ω1, ω2)‖ → 0, and a positive constant c.

(ii) ν(ω1, ω2) 6= 0 for all (ω1, ω2) ∈ [−π, π ]2 \ {(0, 0)}.

Then ϕ̂ = ν · ρ̂ is the Fourier transform of a scaling function ϕ which generates
a multiresolution analysis {Vj}j∈Z of L2(R2) with dilation matrix A:

Vj = span{| detA|j/2ϕ(Aj • −k), k ∈ Z2}.
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Note 2 This construction of localizing homogeneous polynomials ρ−1(ω) =
p(ω) =

∑
|β|=m aβω

β, ω ∈ R2, β multi-index with |β| = m > 2, is similar to
the one for real-valued polyharmonic B-splines in [7]. However, condition (i)
in our Theorem 4 is weeker than the respective condition in [7, (1.17)]. In fact,
there it is supposed that ν(ω)− ρ−1(ω) = O(‖ω‖m+1+n

∞ ) for ω →∞ and some
n ∈ N0. In our case, for real-valued multipliers ν and N ≥ 1, this condition is
never met. Nonetheless, we generate valid multiresolution analyses.

Before we prove Theorem 4, we show that the translates of ϕ form a Riesz
sequence; i.e., a Riesz basis in their span:

Proposition 5 Under the assumptions of Theorem 4, the autocorrelation func-
tion

M(ω) :=
∑

k∈Z2

|ϕ̂(ω + 2πk)|2 (14)

is bounded by

0 < c≤
∑

k∈Z2

|ϕ̂(ω + 2πk)|2

≤C +B
(

2π

4α+ 2N − 2
+ 8ζ(4α+ 2N) + 3 · 42α+N

)
, (15)

where c is the minimum of
∣∣∣ ν(ω1,ω2)
(ω2

1+ω2
2)α(ω1−iω2)N

∣∣∣, C the maximum of the same

term, and B the maximum of |ν| in [−π, π ]2, respectively. The function ζ
denotes the Riemann zeta function.

PROOF. We show that {ϕ(• − k), k ∈ Z} is a Riesz sequence by bounding
the autocorrelation function. First, we estimate the function

∑
k∈Z2 |ϕ̂(ω +

2πk)|2 almost everywhere from above. Because of its (2π, 2π)–periodicity, it is
sufficient to consider ω ∈ [−π, π]2 only.

∑
k∈Z2

|ϕ̂(ω + 2πk)|2 =

=

∣∣∣∣∣ ν(ω1, ω2)

(ω2
1 + ω2

2)
α(ω1 − iω2)N

∣∣∣∣∣
2

+
∑
k∈Z2

k 6=(0,0)

|ν(ω1, ω2)|2

|(ω1 + 2πk1)2 + (ω2 + 2πk2)2|α+N
2

By (i), the first term is bounded for all ω ∈ [−π, π ]2, since the singularity of

11



the denominator is cancelled by ν:∣∣∣∣∣ ν(ω1, ω2)

(ω2
1 + ω2

2)
α(ω1 − iω2)N

∣∣∣∣∣
2

< C

for some bound C ∈ R+. Since the trigonometric polynomial ν is bounded,
there is a positive constant B ≥ |ν(ω1, ω2)|2 such that

∑
k∈Z2

|ϕ̂(ω + 2πk)|2 =

≤C +B
∑

k∈Z2\{(0,0)}

∣∣∣∣∣ 1

(ω1 + 2πk1)2 + (ω2 + 2πk2)2

∣∣∣∣∣
2α+N

(16)

≤C +B
(

2π

4α+ 2N − 2
+ 8ζ(4α+ 2N) + 3 · 42α+N

)
. (17)

This is deduced using the fact that the sum in (16) is invariant with respect
to the transforms (ω1, ω2) 7→ (±ω1,±ω2). Thus it is sufficient to consider this
function for ω ∈ [ 0, π ]2 only. Splitting the sum in (16) into sums over each
of the four quadrants, and considering the axes k1 = 0 and k2 = 0 separately
yields (17). The sum

∑
k1>0

1

k4α+N
1

= ζ(4α+N), where ζ(x) =
∑

n≥1
1

nx denotes

Riemann’s zeta-function, which exists for x > 1, and converges to 1 for x→∞.
The sum

∑
k1>0,k2>0

1
(k2

1+k2
2)2α+N is a lower Riemann sum for the integral

∞∫
1

∞∫
1

1

(x2 + y2)2α+N
dx dy ≤

≤
∞∫
1

π
2∫

0

1

(r2)2α+N
r dϕ dr =

π

2

∞∫
1

r−4α−2N+1 dr =
π

2

1

4α+ 2N − 2
.

The autocorrelation function is strictly positive:

∑
k∈Z2

|ϕ̂(ω + 2πk)|2 ≥
∣∣∣∣∣ ν(ω1, ω2)

(ω2
1 + ω2

2)
α(ω1 − iω2)N

∣∣∣∣∣
2

> 0,

since at the point (0, 0) the value is positive by (i) and there are no other zeros
of ν in [−π, π ]2 by (ii). 2

PROOF of Theorem 4. It only remains to show that the union of the
spaces Vj = span{ϕ(Aj •−k), k ∈ Z}, j ∈ Z, is dense in L2(R2) for all dilation

12



matrices A of the form (12). By (15) the translates {ϕ(• − k), k ∈ Z2} form
a Riesz sequence in L2(R2). Thus the function ϕ can be orthonormalized by
suitable normalization in the frequency domain:

Φ̂ =
ϕ̂√
M

=
ϕ̂√∑

k∈Z2 |ϕ̂(•+ 2πk)|2
.

Then the integer shifts of Φ form an orthonormal basis of V0. Moreover,
|Φ̂(0, 0)| = 1 and |Φ̂| is continuous in R2. Thus, the Riesz basis condition
together with a density argument gives the result following the method of
proof in [8]. Specifically, we denote by Pj : L2(R2) → Vj the orthonormal
projection. Let

g ∈ G := {f ∈ L2(R2), f̂ ∈ C∞(R2), f̂ has compact support}.

G is dense in L2(R2). There exists n ∈ N such that supp ĝ ∈ [−2nπ, 2nπ ].
Using Parseval’s equality, we deduce

‖g − Pjg‖2 = ‖g‖2 −
∑

k∈Z2

∣∣∣〈g, | detA|
j
2 Φ(Aj • −k)〉

∣∣∣2
= ‖g‖2 − 1

(2π)2
‖ĝΦ̂(A−j•)‖2 → 0 for j →∞.

This proves the theorem. 2

4 Several solutions for choosing localization filters for nearly rotation-
covariant scaling functions

As mentioned before, the 2πZ2–periodic function

ν1(ω1, ω2) =
(
4
(
sin2

(
ω1

2

)
+ sin2

(
ω2

2

)))α+N
2

(18)

is a valid multiplier, since ν1 makes the singularity of ρ̂ at the origin inte-
grable. Moreover, ν1 is non-negative, and vanishes only on the grid 2πZ2. The
trigonometric polynomial has regularity ν1 ∈ Cb2α+Nc(T2), and behaves as
ν1(ω1, ω2) = (ω2

1 + ω2
2)

α+N/2 + O(‖ω‖2α+N+1) in a neighborhood of the ori-
gin. The rotation-invariant terms influences the rotation-covariance of scaling
functions and wavelets. To examine this more thorougly, we define:

13



Definition 6 Let f : R2 → C be continuous. Let g be a radial polynomial,
i.e., g(r) = a0 + a1r + . . . + amr

m with constant coefficients a0, . . . , am ∈ C.
In polar coordinates (ω1, ω2) = (r cos θ, r sin θ), let

f(r cos θ, r sin θ)− g(r) = Rm(r cos θ, r sin θ)rm+1

for some bounded rest term Rm(r sin θ, r cos θ) with

lim
r→0

Rm(r cos θ, r sin θ) 6= 0.

Then f is called approximately rotation-invariant of order m in a neighborhood
of the origin.

Remark 7 If f is approximately rotation-invariant of order m, then the k-th
radial derivatives ∂

∂r
f(r cos θ, r sin θ), 0 ≤ k ≤ m − 1, are still approximately

rotation-invariant of order m− k.

Example 8(i) The multiplier (18) is of the form ν1 = (η1)
α+N

2 with

η1(ω1, ω2) = 4
(
sin2

(
ω1

2

)
+ sin2

(
ω2

2

))
= 4

(
sin2

(
r cosϕ

2

)
+ sin2

(
r sin θ

2

))

= r2 − cos(4θ) + 3

48
r4 +R5(r sin θ, r cos θ)r6. (19)

This trigonometric polynomial is approximately rotation-invariant of order
3 in a neighborhood of the origin.

(ii) Another possible choice for such a trigonometric polynomial is

η2(ω1, ω2) =
8

3

(
sin2

(
ω1

2

)
+ sin2

(
ω2

2

))
+

2

3

(
sin2

(
ω1 + ω2

2

)
+ sin2

(
ω1 − ω2

2

))
= r2 − 1

12
r4 +

5− cos 4θ

1440
r6 +R7(r cos θ, r sin θ)r8. (20)

This function is approximately rotation-covariant of order 5 in a neighbor-
hood of the origin.

Multipliers of higher order of approximate rotation-invariance can be found
by the same formula

ν = (η)α+N
2 (21)

by considering the ansatz

14



η(ω1, ω2) =
M∑

n=1

an

(
sin2n

(
ω1

2

)
+ sin2n

(
ω2

2

))
+bn

(
sin2n

(
ω1 + ω2

2

)
+ sin2n

(
ω1 − ω2

2

))
= r2 +

m∑
k=2

ckr
2k +R2m+1(r cos θ, r sin θ)r2(m+1), (22)

for M ∈ N large enough and (ω1, ω2) = (r cos θ, r sin θ) as above. Then an

and bn can be calculated such that the coefficients cn do not depend on θ.
This leads to a system of linear equations, which can be easily solved with e.g.
Gauß elimination. Table 1 gives the coefficients for multipliers of order up to
11. They all satisfy the conditions of Theorem 4, since all η(ω1, ω2) > 0, except
for (ω1, ω2) ∈ 2πZ2. This can be easily seen by noting a1 >

∑M
k=2 akδ−1,sign ak

,
b1 >

∑M
k=2 bkδ−1,sign bk

for the negative coefficients, and the fact that sin2k(x) ≥
sin2(k+1)(x) ≥ 0 for all k ∈ N, x ∈ R.

Order Form of η a1 b1 a2 b2 a3 b3 a4

3 r2 +O(‖r‖4) 4

5 r2 − r4

12 +O(‖r‖6) 8
3

2
3

7 r2 − r4

10 + r6

180 +O(‖r‖8) 12
5

4
5 − 4

15

7 r2 − r4

9 + r6

135 +O(‖r‖8) 104
45

38
45 − 56

135 − 2
135

9 r2 − 9
91r4 + 2

455r6 +O(‖r‖10) 152
65

54
65 − 376

1365
6

455 − 256
4095

9 r2 − 3
29r4 + r6

203 +O(‖r‖10) 200
87

74
87 − 88

261
2

261 − 2048
27405 − 32

27405

11 r2 − 42
425r4 + 12

2975r6 +O(‖r‖12) 2932
1275

1084
1275 − 44

153
76

3825 − 35104
401625

512
401625 − 48

2125

Table 1
Coefficients in ansatz (22) for multipliers of higher order of rotation-covariance.

With the same ansatz (22), we can construct trigonometric polynomials η
with terms r2k vanishing up to a certain order. Table 2 gives some examples
with a1 = 1 fixed. Obviously, all those multipliers satisfy the conditions of
Theorem 4, since all coefficients are positive. Later, we shall use this special
class of η to generate smooth lowpass filters and faster decaying wavelets.
Moreover, they can be used to generate classical real-valued polyharmonic
B-splines with higher smoothness in Fourier domain.

Multipliers of the form (21), (22) are real-valued. Thus ϕ̂ is bounded at the
origin, but not continuous (see Figure 1). Moreover, ϕ /∈ L1(R2). Nonetheless,
valid multiresolution analyses are generated. For the difference in the order
of rotation-covariance and its effects on the scaling functions, compare the
graphs in Figure 1 . For symmetry reasons, ϕ(0) = 0 for these multipliers and
all N ∈ N, α ∈ R+, since

ϕ̂(−ω1, ω2) = (−1)N ϕ̂(ω1,−ω2) and ϕ̂(ω2, ω1) = (i)N ϕ̂(ω1, ω2).
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Form of η a1 b1 a2 b2 a3 b3 a4 b4 a5 b5

r2 +O(r6) 1 3
2

1
3

1
2

r2 +O(r8) 1 3
2

1
3

1
2

8
45

4
15

r2 +O(r10) 1 3
2

1
3

1
2

8
45

4
15

4
35

6
35

r2 +O(r12) 1 3
2

1
3

1
2

8
45

4
15

4
35

6
35

128
1575

64
525

Table 2
Coefficients in ansatz (22) for trigonometric polynomials η of the form
η(r cos θ, r sin θ) = r2 +O(r2m), m ∈ N.

From Figures 1 and 2 we also see that real (resp. imaginary) part of ϕ in space
domain as well as frequency domain behave as edge detectors along the real
(resp. the imaginary) axis. Since these directions are perpendicular, rotation
reveals edges in every direction.

Note that polyharmonic splines correspond to the special case N = 0. For
a good overview an polyharmonic splines, their properties and variants of
polyharmonic splines we refer to [9–11].

Proposition 9 The class of scaling functions of the form ϕ as defined in
Theorem 4 with multipliers of the form (21) is closed under convolution.

Let ϕ = ϕα,N,η with ϕ̂ = (η)α+N/2ρ̂.

(i) ϕα,N,η ∗ ϕα1,N1,η = ϕα+α1,N+N1,η.
(ii) ϕα,N,η ∗ ϕα,N,η1 = ϕα,N,ηη1.

PROOF. This can be directly seen from the Fourier representation of the
convolution products. 2

We can write

ϕ̂(ω1, ω2) =
(η(ω1, ω2))

α+N/2

(ω2
1 + ω2

2)
α(ω1 − iω2)N

· (ω1 + iω2)
N

(ω1 + iω2)N

=
(ω1 + iω2)

N

(ω2
1 + ω2

2)
N/2

(
η(ω1, ω2)

(ω2
1 + ω2

2)

)α+N/2

= eiN arg(ω1+iω2)

(
η(ω1, ω2)

ω2
1 + ω2

2

)α+N/2

.
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Localization with a multiplier of order 3

(a) (b) (c)

(d) (e)

Localization with a multiplier of order 5

(a) (b) (c)

(d) (e)

Fig. 1. The function ϕ̂ = (η)α+N
2 ρ̂ with η of different order of rotation invariance.

The parameters are α = 1.5, N = 1. Upper part: η as in (19) of order 3. Lower
part: η as in (20) of order 5. (a) Absolute value. (b) Top view on the absolute
value. Larger values are black, zeros are white. (c) Phase. The multiplier of higher
order 5 yields a more isotropic |ϕ̂|. (d) Real and (e) imaginary part. The function
is discontinuous at the origin.
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Localization with a multiplier of order 3

(a) (b) (c)

(b) (c)

Localization with a multiplier of order 5

(a) (d) (e)

(b) (c)

Fig. 2. The scaling function ϕ in space domain for parameters α = 1.5 and N = 1.
Upper part: η as in (19) of order 3. Lower part: η as in (20) of order 5. (a) Abso-
lute value, (b) top view of the absolute value, (c) phase. (d) real and (e) imaginary
part. Both functions are rotation-covariant in a neighborhood of the origin. But
outside this small neighborhood, the function localized with the multiplier of order
3 clearly shows deficiencies in the homogenity of the phase, and yields a strongly
non-isotropic |ϕ|. The multiplier of higher order 5 yields a ϕ, which has rotation–
covariant behaviour in a much larger neighborhood of zero.
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Thus ϕ̂(ω1, ω2) is of the form of a polyharmonic B-spline equipped with a
phase factor. It has been shown in [12] that the functionη( ω1√

γ
, ω2√

γ
)

ω2
1 + ω2

2

· γ

γ

converges to a Gaussian for η = η2 as γ increases, whereas for η = η1 this is
not the case. In our setting, for η = η2, ϕ̂( ω1√

γ
, ω2√

γ
) converges to a modulated

Gaussian as γ = α+ N
2

increases.

For our ansatz (22) we have

η(ω1, ω2)

ω2
1 + ω2

2

= 1 +
m∑

k=2

ck(ω
2
1 + ω2

2)
k−1 +O(‖ω‖2m)

for ‖ω‖ → 0. In a neighborhood of x = 1 the logarithm has the asymptotic
expansion

lnx = (x− 1)− (x− 1)2

2
+

(x− 1)3

3
± . . .± (x− 1)k

k
+O(xk+1)

for x→ 1. Thus

ln

(
η(ω1, ω2)

ω2
1 + ω2

2

)
= c2(ω

2
1 + ω2

2) +
m∑

k=3

dk(ω
2
1 + ω2

2)
k−1 +O(‖ω‖2m)

and

η(ω1, ω2)

ω2
1 + ω2

2

= exp(c2(ω
2
1 + ω2

2) +
m∑

k=3

dk(ω
2
1 + ω2

2)
k−1 +O(‖ω‖2m))

for ‖ω‖ → 0 and appropriate coefficients dk ∈ R, k = 3, . . . ,m. Hence,
ϕ̂( ω1√

γ
, ω2√

γ
) generated from (22) converges to a modulated Gaussian as γ =

α + N/2 increases if and only if c2 < 0. Obviously, all multipliers of Table 2
yield scaling functions ϕ that don’t converge to Gaussians, whereas all multi-
pliers of Table 1 yield scaling functions ϕ that do converge to Gaussians.

5 Decay and order of approximation

5.1 Decay

We already saw in Proposition 2 that ϕ is bounded, uniformly continuous and
lim‖x‖→∞ |ϕ(x)| = 0, as long as α+ N

2
> 1. This is due to the fact that for these

parameters α and N the function ϕ̂ is integrable: ϕ̂ ∈ L1(R2). But since ϕ̂ is
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not continuous, ϕ /∈ L1(R2). Thus, ϕ decays slower than 1
‖x‖2 for ‖x‖ → ∞.

However, since ϕ̂ ∈ L2(R2), ϕ decays better 1
‖x‖ as ‖x‖ → ∞. Note that these

decay rate bounds are independent of α and N . For an illustration see Figure
3.

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x 0 50 100 150 200 250 300 350
!2.6

!2.4

!2.2

!2

!1.8

!1.6

!1.4

!1.2

!1

Fig. 3. The decay of the scaling function ϕ is slower than 1/‖x‖2, but faster than
1/‖x‖. On the left, ϕ(x, 0) is shown for N = 1 and various α ≥ 1. On the right, the
branch lnϕ(x, 0)/ ln(x) for positive x is given. The dotted lines denote the decay
exponents -1 and -2.

5.2 Order of approximation

The space V0 provides approximation order γ if, for every f ∈ W γ
2 (R2),

E(f, V0, h) := min
{∥∥∥∥f − s

(•
h

)∥∥∥∥ , s ∈ V0

}
≤ const (V0)h

γ‖f‖W γ
2 (R2).

Theorem 10 Let η(ω1, ω2) be a trigonometric polynomial with Taylor expan-
sion

η(ω1, ω2) = ω2
1 + ω2

2 +O(‖ω‖3),

such that ν = ηα+N/2 is the localizing multiplier of the scaling function ϕ̂(ω1, ω2) =
ν(ω1, ω2)/(ω

2
1 +ω2

2)
α/(ω1 + iω2)

N . Then the space V0, which is spanned by Z2-
shifts of ϕ, provides approximation order 2α+N .

PROOF. To establish the order of approximation we make use of a result
by De Boor et al. [13, Theorem 1.15]. By construction, the function 1/ϕ̂ is
bounded on some neighborhood of the orgin. All derivatives of ϕ̂ of order less
or equal than b2α + Nc + 2 are in L2(R2 \ Bε(0, 0)) for some ε > 0. Since ν
has zeros of order 2α + N on the grid 2πZ2, the derivatives Dγϕ̂(ω) = 0 for
all |γ| < 2α+N and all ω ∈ 2πZ2 \ {(0, 0)}. Our result then follows from the
theorem of De Boor et al. 2

20



6 Multiresolution filters

6.1 Lowpass filter and convergence of infinite products

Although ϕ̂ has a singularity at the origin, the lowpass filter H is continuous.
However, we can establish the following property:

Proposition 11 The modulus
∏∞

j=1 |H(A−jω)| of the infinite product con-
verges pointwise and uniformly on all compact subsets.

PROOF. Let ω ∈ R2 be fixed. Then |H(0, 0)| = 1 and ||H(ω)| − 1| < ‖ω‖ε

for some ε > 0. It holds that

m∏
j=1

|H(A−jω)| = exp

 m∑
j=1

ln |H(A−jω)|

 .

Let j0 be such that ||H(A−jω)| − 1| ≤ 1
2
. Then, for j > j0,

ln |H(A−jω)|= ln |1 + |H(A−jω)| − 1| ≤ const ||H(A−jω)| − 1|
≤ | detA|−jε‖ω‖ε.

Thus

N∑
j=1

ln |H(A−jω)| ≤
j0∑

j=1

ln |H(A−jω)|+ const
m∑

j=j0+1

| detA|−jε‖ω‖ε

≤ const

(
1 + ‖ω‖ε 1

1− | detA|−ε

)
.

Taking the limit m → ∞ on the left hand side proves the pointwise conver-
gence of

∏∞
j=1 |H(A−jω)|. By the same arguments, uniform convergence on

compacta is true (compare with [14, Satz 2.4.3]). 2

The infinite product
∏∞

j=1H(A−Jω) does not converge pointwise due to the
singularity in the origin. Since the phase of H is independent of ω, the phase
of the infinite product does not converge, but periodically runs through the
finite set {eik arg(a+ib)N}k.

For example, for the quincunx case with a = b = 1 and N = 1, the set S
has cardinality #S = 8: S = {eik π

4 : k = 0, . . . , 7}. For N = 2, the set S has
cardinality #S = 4: S = {eik π

2 : k = 0, . . . , 3}.
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6.2 Regularity of the lowpass filter

The smoothness of the lowpass filter H depends on the smoothness and the
order of approximate rotation-covariance of the multiplier ν. With an appro-
priate choice of real-valued multipliers, we can adjust the smoothness of the
lowpass filter H.

We assume that η ∈ C∞ is a real-valued multiplier, and has zeros at 2πZ2.
Since η(ATω) cancels the zeros of η(ω), the fraction η(ATω)/η(ω) is continu-
ous. Then

H(ω) =
1

(a2 + b2)α(a− ib)N

(
η(ATω)

η(ω)

)α+N
2

is continuous.

We now consider the differentiability of η(ATω)/η(ω). Due to periodicity it is
enough to consider the fraction in a neighborhood of the origin. Let η be of
the form of ansatz (22):

η(ω) = η(ω1, ω2) = r2 +
m∑

k=2

ckr
2k +R2m+1(ω)r2(m+1)

with r =
√
ω2

1 + ω2
2 and bounded R2m+1(ω). Then

η(ATω) = (a2+b2)

(
r2 +

m∑
k=2

ck(a
2 + b2)k−1r2k +R2m+1(A

Tω)(a2 + b2)mr2(m+1)

)
,

and the fraction is of the form

η(ATω)

η(ω)
= (a2 + b2)

(
1 +∑m

k=2 ck((a
2 + b2)k−1 − 1)r2k + (R2m+1(A

Tω)(a2 + b2)m −R2m+1(ω))r2(m+1)

r2 +
∑m

k=2 ckr
2k +R2m+1(ω)r2(m+1)

)
= (a2 + b2)(1 + r2B(ω))

= (a2 + b2)(1 +O(‖ω‖2))

for some function B(ω) bounded in a neighborhood of the origin.

If B is even continuous, then η(ATω)/η(ω) ∈ C2. If B is not continuous, i.e.,
if m = 1, then the sum terms are void, and η(ATω)/η(ω) ∈ C1.

In the case ck = 0 for k = 2, . . . , l, we get

η(ATω)

η(ω)
= (a2 + b2)(1 +O(‖ω‖2l)
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in a neighborhood of the origin. Thus, multipliers of the form η(ω) = r2 +
O(r2l), l > 2, generate smoother filters than those of the form η(ω) = r2 +
O(r4).

We sum up:

Theorem 12 Let ν(ω1, ω2) = (η(ω1, ω2))
α+N

2 be a localizing multiplier, where
η is according to the ansatz (22):

η(ω) = η(ω1, ω2) = r2 +
m∑

k=2

ckr
2k +R2m+1(ω)r2(m+1) (23)

with r =
√
ω2

1 + ω2
2 = ‖ω‖ and R2m+1(ω) bounded.

(i) Then the lowpass filter H is CK1, where K1 = min{bα+ N
2
c, 2m− 1, 2}.

(ii) If, in addition, η is of the particular form η(ω) = r2 + R2m+1(ω)r2(m+1),
then H is CK2 with K2 = min{bα+ N

2
c, 2m− 1}.

(iii) If bα+ N
2
c ∈ N, then this term can be omitted from the minima K1, K2.

Note 3 Multipliers η of the special form η(ω) = r2 + O(r2m), m ≥ 2, can
also be used for the localization of classical polyharmonic splines. E.g., in [15],
polyharmonic B-splines in Rn are defined via their Fourier representation

ϕ̂(ω) =

(
n∑

i=1

sin2 ωi

2

)k

/‖ω
2
‖2k for ω ∈ Rn, n, k ∈ N.

These functions have a representation ϕ̂(ω) = 1 +O(‖ω‖2) in a neighborhood
of the origin. Thus ϕ̂ ∈ C1 (not C2, as incorrectly concluded from an otherwise
correct proof in [15]), and reproduce polynomials up to degree 1.

For n = 2, with our choice of η in R2, we get ϕ̂1(ω) = 1+O(‖ω‖2(m−1)). This
yields a smoother ϕ̂1 ∈ C2(m−1)−1(R2). In particular, ϕ1 allows the reproduc-
tion of polynomials up to degree 2(m − 1) − 1. This is due to the fact that
Dβϕ̂1(0) = 0, if |β| ≤ 2(m− 1)− 1. Such an approach can also be pursued for
polyharmonic B-splines in higher dimensions n > 2.

Example 13(i) The trigonometric polynomial η1 (19) of the form

η1(ω1, ω2) = r2 − cos(4θ) + 3

48
r4 +R(ω)r6 = r2 +R3(ω)r4

is approximately rotation-invariant of order 3. Thus, the corresponding low-
pass filter H is at most CK with K = min(bα+ N

2
c, 1), because

η1(A
Tω)

η1(ω)
= (a2 + b2)(1 + r2 r

2(R3(A
Tω)(a2 + b2)−R3(ω))

r2 +R3(ω)r4
)
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= (a2 + b2)(1 + r2B(ω))

with bounded, but discontinuous B.
(ii) The trigonometric polynomial η2 (20) of the form

η2(ω) = r2 − 1

12
r4 +R5(ω)r6

yields

η2(A
Tω)

η2(ω)

= (a2 + b2)

(
1 + r2−

1
12

(a2 + b2 − 1)r2 + (R5(A
Tω)(a2 + b2)−R5(ω))r4

r2 − 1
12
r4 +R5(ω)r6

)
= (a2 + b2)

(
1 + r2B(ω)

)
= (a2 + b2)(1 +O(‖ω‖2))

with B continuous at the origin. Therefore, η2(AT ω)
η2(ω)

∈ C2.

(iii) For the multipliers in Table 2 of the form η(ω) = r2 +R2m−1(ω)r2m, we get

η(ATω)

η(ω)
= (a2 + b2)

(
1 + r2(m−1) r

2(R2m−1(A
Tω)(a2 + b2)−R2m−1(ω))

r2 +R2m−1(ω)r2m

)
.

Thus η(AT ω)
η(ω)

∈ C2m−3.

6.3 Regularity of the autocorrelation filter

For the construction and orthonormalization of the corresponding wavelet
functions, which span the space Wj with Vj ⊕ Wj = Vj+1, we have to con-
sider the autocorrelation filter

M(ω) =
∑

k∈Z2

|ϕ(ω + 2πk)|2.

In the same way as for H it is interesting to investigate how smooth M is with
respect to the choice of η.

Theorem 14 Let ν, η be as in Theorem 12. If η(ω) = r2 +
∑m

k=2 ckr
2k +

R2m+1(ω)r2(m+1) with ck 6= 0 for all k, then M is at most continuous. I.e.
M ∈ CK3 with K3 = min{bα+ N

2
c, 1} − 1.

If η is of the particular form η(ω) = r2 + R2m+1(ω)r2(m+1), then M is CK4,
K4 = min{bα+ N

2
c, 2m− 1} − 1.

For the case α+ N
2
∈ N, the first term can be omitted from both minima.
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PROOF. We prove the theorem by considering the decay of the Fourier co-
efficients of M . We have M ∈ L1([ 0, 2π ]2), since by Lebesgue’s dominated
convergence theorem

1

(2π)2

∫
[ 0,2π ]2

|M(ω)| dω =
1

(2π)2

∫
[ 0,2π ]2

∑
k∈Z2

|ϕ̂(ω + 2πk)|2 dω

=
1

(2π)2

∫
R2

|ϕ(x)|2 dω <∞,

if 2α+N > 1, which is always true in our setting N ≥ 1, α > 0.

By the same arguments the Fourier coefficients of M by the same arguments
are

M̂(l) =
1

(2π)2

∫
[ 0,2π ]2

∑
k∈Z2

|ϕ̂(ω + 2πk)|2e−i〈ω,l〉 dω, l ∈ Z2.

We consider two cases for the function

|ϕ̂(ω)|2 =

(
η(ω)2

‖ω‖4

)α+N
2

.

Due to the period zeros of the numerator we deduce that |ϕ̂|2 is at most

Cbα+N
2
c, if α+ N

2
/∈ N.

1. Case: η is of the general form (23). Then

η(ω)2 = (r2 +
m∑

k=2

ckr
2k +R2m+1(ω)r2(m+1))2

= r4 +
m∑

k=2

dkr
2(k+1) + R̃2m+3(ω)r2m+4

in a neighborhood of the origin. Here, dk are certain coefficients, R̃2m+3 is a

bounded term and r =
√
ω2

1 + ω2
2 = ‖ω‖. Thus

|ϕ̂(ω)|2 =

(
r4 +O(r6)

r4

)α+N
2

= (1 +O(r2))α+N
2 ,

from which we deduce |ϕ̂|2 ∈ CK′
3 , K ′

3 = min{bα+ N
2
c, 1}.
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2. Case: η is of the particular form η(ω) = r2 +R2m+1(ω)r2(m+1), then η(ω)2 =
r4 + R̃2m+3(ω)r2(m+2) for a bounded term R̃2m+3. Then

|ϕ̂(ω)|2 = (1 +O(‖ω‖2m))α+N
2 ∈ CK′

4 ,

with K ′
4 = min{bα+ N

2
c, 2m− 1}.

In both cases we get for the decay of the Fourier transform∫
R2

|ϕ̂(ω)|2e−ikω dω ≤ const

1 + |k|γ
, γ ≤ K ′

j + 1, j = 3, 4.

Hence, M ∈ CK′
j−1. 2

7 Wavelet bases

In this section, we construct Riesz bases spanning the orthogonal complement
Wj in Vj+1 = Wj⊕Vj, i.e., prewavelet bases. It is well known that the minimal
number of prewavelets ψd, d = 1, . . . , D, which span have

Wj = span{2j/2ψd(Aj • −k), k ∈ Z2, d = 1, . . . , D}
L2(R2)

depends on the number of cosets q = | detA| of A(Z2) in Z2. In fact, D = q−1.
A detailed proof of this fact can be found in [8]. Corresponding wavelet bases
can be constructed in orthonormalizing the prewavelet bases.

In the following, we focus on prewavelet bases in the quincunx case with
dilation matrix

A =

 1 1

−1 1

 . (24)

Since detA = 2, only one wavelet ψ spans the space W−1. This case is espe-
cially interesting for image processing, since the data is subsampled by a factor
of only detA = 2 in each decomposition step, in comparision to 4 in a tensor
product approach. However, we note that our approach does not work with
other dilation matrix also representing the quincunx lattice, as for example 1 1

1 −1

 and

 0 −1

2 0

 ,

26



since they are not scaled rotations. Further details on similarities and differ-
ences of multiresolutions based on these dilation matrices may be found e.g.
in [16,17].

For arbitrary dilation matrices, a general method to construct the correspond-
ing (pre-)wavelets uses unitary polyphase matrices. For a comprehensive in-
troduction, we refer to [8,18].

7.1 Prewavelets in the quincunx case

There are several possibilities to construct prewavelet bases {ψj,k = 2j/2ψ(Aj •
−k), k ∈ Z2} spanning the space Wj for dilations A as in (24). For example,
it is well known that

ψ̂(ATω) = e−iω1H(ω + (π, π)T )M(ω + (π, π)T )ϕ̂(ω) (25)

generates a Riesz basis of Wj for the quincunx case. In general, this basis is
not orthonormal 〈ψj,k, ψj,l〉 6= δk,l. The corresponding dual basis is given by

̂̃
ψ(ATω) = e−iω1H(ω + (π, π)T )

M(ω + (π, π)T )

M(ATω)

ϕ̂(ω)

M(ω)
,

where M is the autocorrelation function (14). Then all f ∈ L2(R2) can be
represented as

f =
∑
j,k

〈f, ψ̃j,k〉ψj,k =
∑
j,k

〈f, ψj,k〉ψ̃j,k.

An orthonormal wavelet basis is generated by

ψ̂⊥(ATω) =

√√√√M(ω + (π, π)T )

M(ATω)
ψ̂(ω).

In this case, a corresponding orthonormal basis of V0 is generated by integer

shifts of the scaling function ϕ̂⊥(ω) = ϕ̂(ω)/
√
M(ω).

In the following we concentrate on the prewavelets (25), since the other wavelet
functions mentioned above are variations of the form ψ̂∗(A

Tω) = ψ̂(ATω)S∗(ω)
for some fraction S∗ of shifted and scaled autocorrelation functions M .
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7.2 Smoothness and decay

Let us consider the prewavelets (25) constructed from the real multipliers (22).
These functions have the same decay properties as ϕ̂:

ψ̂(ω) = O
(

1

‖ω‖2α+N

)
as ‖ω‖ → ∞.

For r = ‖ω‖ =
√
ω2

1 + ω2
2, we get in a neighborhood of the origin

H(ω + (π, π)T ) =

=
1

2α(1− i)N

(
η(ω1 − ω2, ω1 + ω2)

η(ω1 + π, ω2 + π)

)α+N
2

=
1

2α(1− i)N

(
2r2 +

∑m
k=2 ck(2r

2)k +R2m+1(ω1 − ω2, ω1 + ω2)2
m+1r2(m+1)

η(ω1 + π, ω2 + π)

)α+N
2

=
2α+N

2

2α(1− i)N

(
2r2 +

∑m
k=2 ck(2r

2)k +R2m+1(ω1 − ω2, ω1 + ω2)2
m+1r2(m+1)

η(ω1 + π, ω2 + π)

)α+N
2

= ei π
4
N

(
r2 +

m∑
k=2

ck2
k−1r2k +R2m+1(ω1 − ω2, ω1 + ω2)2

mr2(m+1)

)α+N
2

· η(ω1 + π, ω2 + π)−(α+N
2

). (26)

Therefore, the Fourier transform of the wavelet ψ̂ in a neighborhood of the
origin behaves as

ψ̂(ATω) = e−iω1H(ω + (π, π)T )M(ω + (π, π)T )ϕ̂(ω)

= e−i π
4
N

(
r2 +

m∑
k=2

ck2
k−1r2k +R2m+1(ω1 − ω2, ω1 + ω2)2

mr2(m+1)

)α+N
2

· η(π, π)−(α+N
2

)M(ω + (π, π)T )ϕ̂(ω).

A closer look at the scaling function ϕ̂ and its behaviour at the origin yields

ϕ̂(ω) =

(
r2 +

∑m
k=2 ckr

2k +R2m+1(ω)r2(m+1)
)α+N

2

(ω2
1 + ω2

2)
α(ω1 − iω2)N

= (ω1 + iω2)
N

(
r2 +

∑m
k=2 ckr

2k +R2m+1(ω)r2(m+1)
)α+N

2

r2αr2N
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=
(ω1 + iω2)

N

rN

(
r2 +

∑m
k=2 ckr

2k +R2m+1(ω)r2(m+1)

r2

)α+N
2

= eiN arg ω

(
1 +

m∑
k=2

ckr
2(k−1) +R2m+1(ω)r2m

)α+N
2

,

where argω denotes the angle of the vector ω with the ω1-axis. Thus

ψ̂(ATω) = e−i π
4
N

(
r2 +

m∑
k=2

ck2
k−1r2k +R2m+1(ω1 − ω2, ω1 + ω2)2

mr2(m+1)

)α+N
2

· η(π, π)−(α+N
2

)M(π, π)eiN arg ω

(
1 +

m∑
k=2

ckr
2(k−1) +R2m+1(ω)r2m

)α+N
2

= e−i π
4
NeiN arg ω(r2 +O(r4))α+N

2 · η(π, π)−(α+N
2

)M(π, π) (27)

for ‖ω‖ → 0. If, in particular, η(ω) = r2 +R2m+1(ω)r2(m+1), then

ψ̂(ATω) = e−i π
4
N
(
r2 +R2m+1(ω1 − ω2, ω1 + ω2)2

mr2(m+1)
)α+N

2

· η(π, π)−(α+N
2

)M(π, π)eiN arg ω(1 +R2m+1(ω)r2m)α+N
2

= e−i π
4
NeiN arg ω(r2 +O(r2m))α+N

2 η(π, π)−(α+N
2

)M(π, π).

Hence, ψ̂ is continuous at the origin, and there shows rotation-covariant be-
haviour. To see this, let Rθ be a rotation operator of the form (1).

ψ̂(ATRθω) = e−i π
4
NeiN(θ+arg ω)(r2+O(r4))α+N

2 η(π, π)−(α+N
2

)M(π, π) ∼ eiNθψ̂(ATω).

We sum up:

Theorem 15 Let η be as in Theorem 12. Then the following is true:

(i) ψ ∈ W s
2 (R2) with s < 2α+N − 1.

(ii) ψ̂ ∈ L1(R2) for α+ N
2
> 1.

(iii) If α+N
2
> 1, then ψ is uniformly continuous, bounded, and lim‖x‖→∞ ψ(x) =

0.
(iv) Let Rθ be the rotation operator of form (1). Then ψ̂(ATRθω) ∼ eiNθψ̂(ATω)

in a neighborhood of the origin.
(v) ωβψ̂(ω) ∈ L1(R2) for |β| < 2α + N − 2. Thus, in these cases, Dβψ is

bounded, uniformly continuous, and vanishes at infinity.
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(vi) ψ̂ has a zero of order 2α + N at the origin and has regularity ψ̂ ∈ CK

with K = min{K1, K3} if η(ω) as in (23) with ck 6= 0 for all k, or K =
min{K2, K4} for η(ω) = r2 +O(r2(m+1)).

(vii) In spacial domain, ψ(x) = O( 1
‖x‖γ ) for ‖x‖ → ∞, γ ≤ K+1 and α+ N

2
> 1.

PROOF. Claims (i) and (ii) are direct consequences of the decay (3) of ϕ̂,
which is handed down to the wavelet ψ̂, and the continuity of ψ̂. (iii) follows
from (ii) by properties of the Fourier transform. (iv) is proved above. (v)
follows directly from the properties of the Fourier transform.

(vi) ψ̂(ω) = O(‖ω‖2α+N) for ‖ω‖ → 0. Thus ψ̂ is (2α+N)− 1 times differen-
tiable at the origin. For the general estimate of the regularity we consider the
representation

ψ̂(ATω) = e−iω1H(ω + (π, π)T )M(ω + (π, π)T )ϕ̂(ω).

Since translations and dilations are C∞ transforms, Theorems 12 on H and
14 on M yield the regularity ψ̂ ∈ Cmin{K1,K3} if η(ω) as in (23) with ck 6= 0
for all k, resp. ψ̂ ∈ Cmin{K2,K4} for η(ω) = r2 +O(r2(m+1)).

(vii) Now let K = min{K1, K3} or K = min{K2, K4} respectively. Then
Dβψ̂ ∈ L1(R2), if α + N

2
> 1 and |β| ≤ K + 1. In this case, xβψ is bounded,

uniformly continuous, and vanishes at infinity. Consequently, ψ(x) = O( 1
‖x‖|β| )

for ‖x‖ → ∞ and the claim is proved. 2

7.3 Derivatives

To associate the wavelets with certain differential operators, we write ψ̂ in a
different form, starting out from (27).

ψ̂(ATω) = e−i π
4
NeiN arg ω(r2 +O(r4))α+N

2 η(π, π)−(α+N
2

)

= e−i π
4
NeiN arg ω((ω2

1 + ω2
2)

α+N
2 +O(rα+2N+2))η(π, π)−(α+N

2
)

= e−i π
4
N(ω2

1 + ω2
2)

α(
√
ω2

1 + ω2
2e

i arg ω)N M(π, π)

η(π, π)α+N
2

+O(r4α+2N+2)

= e−i π
4
N(ω2

1 + ω2
2)

α(ω1 + iω2)
Nη(π, π)−(α+N

2
) +O(r4α+2N+2).

This implies

ψ̂(ω) =

√
2

N

2α
(ω2

1 + ω2
2)

α(ω1 + iω2)
Nη(π, π)−(α+N

2
) +O(r4α+2N+2).
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Therefore, the wavelet transform of a test function f ∈ D(R2),

〈f, ψ(• − k)〉 =
1

(2π)2
〈f̂ , (ψ(• − k))̂ 〉

=
1

(2π)2

∫
R2

f̂(ω)ei〈ω,k〉ψ̂(ω) dω

=
1

(2π)2

∫
R2

f̂(ω)(ω2
1 + ω2

2)
α(ω1 − iω2)

N Φ̂(ω)ei〈ω,k〉 dω

= (−∆)α

(
−i ∂
∂x1

− ∂

∂x2

)N

{f ∗ Φ}(k)

behaves as a Laplacian of order α modified by a differential operator of
Wirtinger type of order N . Here,

Φ̂(ω) =
ψ̂(ω)

(ω2
1 + ω2

2)
α(ω1 + iω2)N

= e−
i
2
(ω1+ω2)(1 +O(‖ω‖))ϕ̂(A−Tω) for ‖ω‖ → 0

is a lowpass smoothing kernel with approximate rotation-covariant behaviour
in a neighborhood of the origin. Thus, we have the following result:

Proposition 16 The wavelet ψ can be represented as

ψ(x1, x2) = (−∆)α

(
−i ∂
∂x1

− ∂

∂x2

)N

Φ(x1, x2),

i.e., the derivative of order 2α+N of the smoothing kernel Φ ∈ L2(R2) in the
sense of distributions.

8 Implementations aspects

The coefficients of the refinement filterH depend on the choice of the (2π, 2π)–
periodic localizing function ν. Moreover, for non-integer α, the filter H has in
general an infinite impulse response and is non-causal. Therefore, a classical
implementation by convolution in space domain would tend to be rather costly
and would lead to accuracy problems because of the necessity to truncate the
filters.

Since the filter H is given explicitly in Fourier domain (13), it is more conve-
nient to implement the corresponding wavelet transform in the Fourier domain
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using FFTs. We again consider the quincunx case, where we have to take into
account just one wavelet filter. The discrete Fourier transform of the image
data is filtered by multiplying with the refinement and the wavelet filter. Ex-
ploiting symmetries, we can downsample the data by a factor of 2 and use an
inverse discrete Fourier transform on the reduced data. This yields a fast and
stable algorithm, which is the same as the one described in [19], except that
the filters are different.

As an example, we calculated the image of a wavelet with the fast algorithm
(see Fig. 4). We measured for the precalculation of the filters, which is done
only once, for a sample size of 128×128 a duration of 68,71 sec (on a 1.67 GHz
PowerPC G4). The calculation of the wavelet then needs only 0,09 sec. For a
test image of size 256×256, the precalculation of the filters requires 543,98 sec.
After that, wavelet analysis and synthesis only take 0,71 sec resp. 0,44 sec and
yield an l∞-reconstruction error of 5, 12 · 10−13. For a larger test image of size
512 × 512 precalculation of the filters requires 7028,50 sec. Wavelet analysis
and synthesis take 3,17 sec resp. 2,03 sec and yield an l∞-reconstruction error
of 5, 03 ·10−13. Both wavelet analysis and synthesis steps were calculated with
the same parameters as in Fig. 4.

In Figure 5 we give an example of the transform for the test image ‘cameraman’
(256×256). We assumed that the image is band-limited and projected it on

the space V0 = span{ϕ(• − k), k ∈ Z2}L2(R2)
via the linear operator

PV0 : L2(R2) → V0, f 7→ 1

2π

∑
n∈Z2

〈F(f),F(ϕ̃(• − n))〉ϕ(• − n),

where {ϕ̃(• − n), n ∈ Z2} denotes the dual basis. The projection on V0 gives
the advantage that the wavelet coefficients don’t depend on a particular choice
of the scaling function, i.e., orthogonal, semi-orthogonal, or biorthogonal scal-
ing function. We performed the wavelet decomposition with the corresponding
prewavelet as in (25). Figure 5 shows real and imaginary part of the wavelet
coefficients, respectively. Since it is a quincunx transform, we chose to display
the wavelet coefficients at odd scales on a grid rotated by 45 degrees to avoid
geometric distortions. The wavelet coefficients had their intensity rescaled lin-
early with zero mapped onto 127 (intermediate gray). These coefficients are
essentially zero within smooth regions and are taking large value on the edges.
The transform is qualitatively very similar to a multi-scale gradient with the
real part corresponding to the y-derivative and the imaginary one to the x-
derivative.
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Wavelet in space domain

a) b)

c) d)

Wavelet in Fourier domain

e)

Fig. 4. Wavelet calculated using the fast algorithm for the parameters α = 1, N = 1
and localizing multiplier ν based on the trigonometric polynomial η in(20). a) Mod-
ulus of wavelet function in space domain and b) top view. c) Real part and d)
imaginary part of wavelet in space domain. e) Top view on modulus of wavelet in
Fourier domain.

9 Conclusion

We presented a new family of complex multiresolution bases in L2(R2). Our
approach considered localizations of the rotation-covariant function of the
form ρ(x1, x2) = C(α,N)(x2

1 + x2
2)

α−1(x1 + ix2)
N (times a logarithmic fac-

tor if α ∈ N). This yields nonseparable complex-valued multiresolution bases
of L2(R2) for scaled rotation dilation matrices.

The parameter α ∈ R+ can be chosen arbitrarily; in particular, non-integer.
This gives flexibility: We can control the smoothness and decay of the result-
ing wavelets. With the integer parameter N , we are able to influence rotation-
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5

7

8

Fig. 5. Decomposition of the test image ‘cameraman’ (256 × 256) into eight levels.
The left resp. right matrices show the real resp. imaginary part of the wavelet
coefficients. The parameters of the corresponding scaling function ϕ are α = N = 1
and localization η as in (20).

covariance properties. Both degrees of freedom can be desirable for applica-
tions in image analysis.

The smoothness and decay properties of the resulting wavelets depend on the
choice of the localizing multiplier. There, we gave a new class of multipliers
of the form η(ω1, ω2) = ω2

1 + ω2
2 +O(‖ω‖2m), which yield smoother functions

and filters. These may also be used to improve the properties of the classical
polyharmonic B-splines (N = 0).

Since our new family of complex rotation-covariant functions yields multires-
olution bases, we can apply them in the DWT algorithm. We thus have a
non-redundant complex wavelet transform and perfect reconstruction. The
transform leads easily to an efficient filterbank implementation using Mallat’s
algorithm. The wavelet filters can also be specified to yield various types of
decompositions; i.e., orthogonal, semi-orthogonal, or bi-orthogonal. Moreover,
a FFT-based implementation can provide an efficient and fast algorithm.

In future work, we will consider the application of these wavelets to image pro-
cessing. We have preliminary evidence that they are well suited for extractions
of directional features such as edges.
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A Appendix: Considerations on complex multipliers

Of course, it is also valid to choose appropriate complex-valued multipliers
ν, and give up the restriction to approximately rotation-invariant real-valued
ones. But there are no complex-valued continuous 2πZ2-periodic multipliers
that localize ρ̂ in such a way that ϕ̂ is continuous. This is due to the fact
that multipliers that eliminate the singularity in the phase arg ρ̂(ω) at zero
must have a singularity in phase at zero, too. We can formulate for multipliers
localizing the complex-valued term 1/(ω1 − iω2)

N :

Proposition 17 Let ν : R2 → C be a 2πZ2-periodic function with

(i) ν(ω1, ω2) = ω1 − iω2 +O(ω2
1, ω1ω2, ω2) in a neighborhood of the origin, and

(ii) ν is continuous.

Then ν has zeros apart from the grid 2πZ2.

PROOF. In a neighborhood of the origin, we have by (i)

Re ν(ω1, ω2) =ω1 +O(ω2
1, ω1, ω2, ω

2
2), and

Im ν(ω1, ω2) =−ω2 +O(ω2
1, ω1, ω2, ω

2
2).

Thus, there exist four small ε-δ-sectors

C±
ε,δ(x, y) = {±(ω1 − x) ≥ ε|ω2 − y|, (ω1, ω2) ∈ B∗

δ (x, y)} ,
C±i

ε,δ(x, y) = {±(ω2 − y) ≥ ε|ω1 − x|, (ω1, ω2) ∈ B∗
δ (x, y)} ,

where B∗
δ (x, y) is the open δ-ball without its centre (x, y), δ < 1

3
, such that

Re ν(C+
ε,δ(0, 0)) > 0, Re ν(C+i

ε,δ(0, 0)) < 0,

Re ν(C−
ε,δ(0, 0)) < 0, Re ν(C−i

ε,δ(0, 0)) > 0.

Due to periodicity, we also have Re ν(C+
ε,δ(2πk, 2πl)) > 0, Re ν(C+i

ε,δ(2πk, 2πl)) <

0, Re ν(C−
ε,δ(2πk, 2πl)) < 0, and Re ν(C−i

ε,δ(2πk, 2πl)) > 0, for all k, l ∈ Z2,
compare Figure A.1 (a).

We consider a continuous homotopy Γ(a, t) of paths in [ 0, 2π ]2 with the fol-
lowing properties:

(a) Γ : [ 0, 1 ]× [ 0, 1 ] → [ 0, 2π ]2 is continuous.
(b) Γ(a, 0) = (0, 0), Γ(a, 1) = (2π, 2π).
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(c) For all a ∈ [ 0, 1 ], let Γ(a, t) ∈ C+
ε,δ(0, 0) for all t ∈] 0, δ [, and Γ(a.t) ∈

C−
ε,δ(2π, 2π) for all t ∈ ]1− δ, 1[.

(d) Γ(0, t) is a parametrization of the concatenated straight lines from (0, 0) over
(δ cosα, δ sinα) and (2π−δ cosα, 2π) to (2π, 2π), where tanα = 1

ε
. Γ(1, t) is

the corresponding parametrization of the concatenated straight lines from
(0, 0) over (2π − δ cosα, 0) and (2π − δ cosα, 2π − δ sinα) to (2π, 2π), see
Fig. A.1 (b).

Thus the family of paths (Γ(a, t))a∈[ 0,1 ] covers the polygone spanned by Γ(0, t)
and Γ(1, t), t ∈ [ 0, 1 ]. For a ∈ [ 0, 1 ], we have Re(ν(Γ(a, t))) > 0 for t ∈ ]0, δ ],
and Re(ν(Γ(a, t))) < 0 for t ∈ [ 2π − δ, δ [ . Because ν and Γ are continu-
ous, for all a ∈ [ 0, 1 ], there exists at least one ta ∈ [ δ, 2π − δ ], such that
Re(ν(Γ(a, ta)) = 0. Since Γ is a continuous homotopy, ta can be chosen such
that there exists a continuous curve γ : [ 0, 1 ] → Γ(a, ta) with Re(ν(γ(a))) = 0
with γ(0) ∈ ]δ, 2π − δ[×{0} and γ(1) ∈ ]δ, 2π − δ[×{2π}.

An analog argumentation holds for the imaginary part. From there follows
the existence of a continuous function γ̃ : [ 0, 1 ] → [ 0, 2π ]2 with γ̃(0) ∈
{0}× ]δ, 2π − δ[ and γ̃ ∈ {2π}×]δ, 2π − δ[ such that Im ν(γ̃(b)) = 0 for all
b ∈ [ 0, 1 ].

Hence, there exist b, a ∈ [ 0, 1 ] with γ(a) = γ̃(b), Re ν(γ(a)) = Im(ν(γ̃(b))) =
0, and γ(a) = γ̃(b) /∈ 2πZ2. This concludes our proof. 2

To display an example of a scaling function ϕ whose Fourier transform is
continuous at the origin, we may equip the real-valued multipliers (21) with a
phase factor:

P (ω1, ω2) =

(
p(ω1, ω2)

|p(ω1, ω2)|

)N

,

where p(ω1, ω2) = −i(1− e−iω1) + (1− eiω2) = ω1 + iω2 +O(‖ω‖2). Then

νc(ω1, ω2) = P (ω1, ω2)ν(ω1, ω2), (A.1)

where ν(ω1, ω2) as in (21). Obviously, (A.1) satisfies the conditions of Theorem
4 and thus ϕ = F−1(νc · ρ̂) generates a multiresolution analysis of L2(R2). By
construction, ϕ̂ is continuous at the origin, and ϕ̂(0, 0) = 1. However, the
multiplier νc is not continuous at all points

A = {(ω1, ω2) | cos(ω1)− sin(ω2) = 1 and cos(ω2)− sin(ω1) = 1} ⊃ 2πZ2.
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Fig. A.1. (a) ε-δ sectors C+
ε,δ and C−

ε,δ. (b) Scetch of homotopy curves Γ(a, t) (dashed)
for the real part for a = 0, a = 1 and some a ∈] 0, 1 [.

The set A is a true subset of 2πZ2. The function ϕ̂ is discontinuous at the
points A \ 2πZ2. Thus, also in the complex multiplier’s case, ϕ /∈ L1(R2).

Moreover, the lowpass filter H in this case is not continuous. Thus a well-
defined implementation of the filters for the discrete wavelet transform in
Fourier domain is not possible. For this reason, we set aside multipliers of
form (A.1).

Since multipliers νc with phase as in (A.1) are not continuous, H is not con-
tinuous in this case, either.

To sum up: It is not possible to construct a continuous multiplier ν, such that
1.) ϕ̂ is continuous in R2 and 2.) a valid multiresolution analysis is generated.
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The problem lies in the fact that to meet the continuity condition, ν must
have more zeros than only the set 2πZ2. But then, the conditions of Theorem
4 and Proposition 5 are not met: The autocorrelation function is not bounded.
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