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Abstract

We propose a general approach for the design of 2-D feature detectors from a class of steerable

functions based on the optimization of a Canny-like criterion. In contrast with previous computational

designs, our approach is truly 2-D and provides filters that have closed-form expressions. It also yields

operators that have a better orientation selectivity than the classical gradient or Hessian-based detectors.

We illustrate the method with the design of operators for edge and ridge detection. We present some

experimental results that demonstrate the performance improvement of these new feature detectors. We

propose computationally efficient local optimization algorithms for the estimation of feature orientation.

We also introduce the notion of shape-adaptable feature detection and use it for the detection of image

corners.

Index Terms

steerable, feature, edge, detection, ridge, contours, boundary, lines.

I. I NTRODUCTION

In his seminal paper on computational edge detection, Canny identified the desirable qualities

of a feature detector and proposed an appropriate optimality criterion. Based on this criterion,

he developed a general approach to derive the optimal detector for specific image features such

as edges [1]. This work had a great impact on the field and stimulated further developments in

this area, particularly on alternate optimality criteria and design strategies [2], [3].

All the above authors considered the derivation of optimal 1-D operators. For 2-D images,

they applied the optimal 1-D operator orthogonal to the feature boundary while smoothing in the

perpendicular direction (along the boundary). This extension is equivalent to computing inner-

products between the image and a series of rotated versions of a 2-D reference template (tensor

product of the optimal 1-D profile and the smoothing kernel). With this detector, the rotation

angle of the template that yields the maximum inner product, gives the feature orientation. Since

the optimal 1-D template did not have explicit formulae, they were typically approximated by

simple first or second order differentials of a Gaussian. In practice, they were extended using

Gaussian kernels of the same variance since the resulting 2-D template could be applied in a

directional manner inexpensively via the computation of smoothed image gradients or Hessians.

An alternative to these differential approaches to rotation independent feature detection is

provided by the elegant work of Freeman and Adelson on steerable filters [4]. The underlying
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principle is to generate the rotated version of a filter from a suitable linear combination of basis

filters; this sets some angular bandlimiting constraints on the class of admissible filters. Perona

et. al., Simoncelli and Teo et. al. used this framework to approximate and design orientation-

selective feature detectors [5]–[8]. The concept of steerablity was also applied successfully in

other areas of image processing such as texture analysis [9], [10] and image denoising [11].

In this paper, we propose to reconcile the two methodologies—computational approach and

steerable filterbanks— by presenting a general strategy for the design of 2-D steerable feature

detectors. We derive the filter directly in 2-D as opposed to the 1-D schemes (1-D optimization

followed by an extension to 2-D) of Canny and others. Moreover, in contrast with the work

of Perona [5], we do not approximate a given template within a steerable solution space, but

search for the filter that gives the best response according to an optimality criterion. Our filter is

specified so as to provide the best compromise in terms of signal-to-noise ratio, false detections

and localization. We illustrate the method with the design of optimal edge and ridge templates.

The detectors that we obtain analytically have better performance and improved orientation

selectivity, yet they are still computationally quite attractive.

The paper is organized as follows. In Section II, we introduce the concept of steerable matched

filtering and reinterpret some of the classical detectors within this framework. In Section III, we

propose an optimality criterion and show how to determine the best filter from a class of steerable

functions. In Section IV, we concentrate on specific 2-D feature detectors and demonstrate their

use in different applications. Though our algorithm is general, in this paper, we focus only on the

detection of edge and ridge features. In Section V, we introduce the concept of shape adaptive

feature extraction and illustrate it with an example.

II. ORIENTATION INDEPENDENT MATCHED FILTERING

A. Detection by rotating matched filtering

Suppose our task is to detect some feature in an imagef (x, y) at some unknown position

and orientation. The detection procedure can be formulated as a rotated matched filtering. It

involves the computation of inner-products with the shifted and rotated versions of a 2-D feature

templatef0 (x, y) = h (−x,−y) at every point in the image. A high magnitude of the inner-

product indicates the presence of the feature and the angle of the corresponding template gives

the orientation. Some simple examples of templates are shown in Fig. 1. Mathematically, the
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estimation algorithm is

θ∗ (x) = arg max
θ

(f (x) ∗ h (Rθ x)) (1)

r∗ (x) = f (x) ∗ h (Rθ∗ x) , (2)

wherer∗ is the magnitude of the feature andθ∗ its orientation at the positionx = (x, y); Rθ is

the rotation matrix

Rθ =

 cos (θ) sin (θ)

− sin (θ) cos (θ)

 (3)

andu ∗ v stands for the convolution betweenu andv. Equations (1) and (2) correspond to the

matched filter detection. They give the maximum likelihood estimation of the angleθ and weight

r for the signal model

f (x) = r · f0 (Rθ (x− x0) + x0) + n (x0) ,

wheren (x) denotes Gaussian white noise. However, this scheme of detection is not very prac-

tical, for it requires the implementation of a large number of filters (as many as the quantization

levels of the angle).

B. Steerable filters

To cut down on the computational load, we select our detector within the class of steerable

filters introduced by Freeman et. al [4]. These filters can be rotated very efficiently by taking a

suitable linear combination of a small number of filters. Specifically, we consider templates of

the form

h (x, y) =
M∑

k=1

k∑
i=0

αk,i
∂k−i

∂xk−i

∂i

∂yi
g (x, y) , (4)

whereg (x, y) is an arbitrary isotropic window function. We call such ah (x, y) an M th order

detector.

Proposition 1: The filter h (x, y) is steerable. In other words, the convolution of a signal

f (x, y) with any rotated version ofh (x, y) can be expressed as

f (x) ∗ h (Rθx) =
M∑

k=1

k∑
i=0

bk,i (θ) fk,i (x) , (5)
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(a) Idealized edge

template

(b) Idealized ridge

template

(c) Popular edge

template

(d) Popular ridge

template

Fig. 1. Examples of feature templates. Feature detection is performed by convolution of the rotated versions of the template

with the image

where the functionsfk,i (x, y) are filtered versions of the signalf (x, y)

fk,i (x, y) = f (x, y) ∗
(

∂k−i

∂xk−i

∂i

∂yi
g (x, y)

)
︸ ︷︷ ︸

gk,i(x,y)

. (6)

The orientation-dependent weightsbk,i (θ) are given by

bk,i (θ) =

 k∑
j=0

αk,j

∑
l,m∈S(k,j,i)

(
k − j

l

)(
j

m

)
(−1)m cos (θ)j+(l−m) sin (θ)(k−j)−(l−m)

 (7)

where,S (k, i, j) is the setS (k, i, j) = {l,m | 0 < l < k − i; 0 < m < i; k − (l + m) = j}.

The proof is given in the Appendix-A. A graphical representation of the implementation is

given in Fig. 2. Once thefk,i (x, y) is available,f (x)∗h (Rθx) can be evaluated very efficiently

via a weighted sum with its coefficients that are trigonometric polynomials ofθ. Since the

number of partial differentials in (5) for a generalM th order template isM (M + 3) /2, h (x)

is steerable in terms of as many individual separable functions. Using some simplification, we
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g0,0 (x)

gM,M (x)

f0,0 (x)

fM,M (x)

f (x)

bM,M(  )0

b0,0(  )0
g(R x)*f 0

Fig. 2. Implementation of steerable filtering (c.f (5) )

can show that such a generalh (x) can also be rotated using2M + 1 non-separable filters1 (an

example of such a simplification is given by (39)—(42)).

A case of special interest corresponds tog (x) being the Gaussian; indeed the Gaussian is

optimally localized in the sense of the uncertainty principle and the corresponding filters in (6)

are all separable. Interestingly, the Gaussian family is equivalent to the class of moment filters

(polynomials multiplied by Gaussian window) discussed in [4], but the filters are not identical.

We will now show that the family described by (4) includes some popular feature detectors as

particular cases.

C. Conventional Detectors revisited

1) Canny’s Edge Detector:As already observed by Freeman et. al., the widely-used Canny

edge detection algorithm can be reinterpreted in terms of steerable filters [4]. This algorithm in-

volves the computation of the gradient-magnitude of the Gaussian-smoothed image. The direction

of the gradient gives the orientation of the edge. Mathematically,

θ∗ = arctan

(
(f ∗ g)y

(f ∗ g)x

)
(8)

r∗ =

√
((f ∗ g)x)

2 +
(
(f ∗ g)y

)2

, (9)

1This is the minimum number of filters required to steer a generalM th order tempate.
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wheregx = ∂g/∂x and gy = ∂g/∂y; g is a 2-D Gaussian of a specified variance. The above

set of equations can be shown to be the solution of (1) and (2), withh = gx. Substituting

M = 1; α1,0 = 1, α1,1 = 0 in (7) we getb1,0 (θ) = cos (θ) , b1,1 (θ) = sin (θ). Thus,

θ∗ (x) = arg max
θ

(f (x) ∗ gx (Rθx)) (10)

= arg max
θ

(f ∗ (gx cos (θ) + gy sin (θ))) . (11)

Here, we used the steerability ofgx from (5). To compute the maximum of the above expression,

we set the differential of (11) with respect toθ to zero:

(f ∗ gx) sin (θ)− (f ∗ gy) cos (θ) = 0, (12)

which results in (8) and (9). The corresponding feature template is shown in Fig.1-c.

2) Ridge Detector:Less well known is the fact that a popular ridge estimator based on the

eigen-decomposition of the Hessian matrix [12]–[14] can also be interpreted in terms of steerable

filters. Assuming the template to begxx (the second derivative of a Gaussian), ridge detection

can be formulated exactly as (1) and (2). The corresponding detector is shown in Fig.1-d. In

this case, the steerability relation (5) can be expressed in a matrix form as

gxx (Rθx) = uT
θ

 gxx (x) gxy (x)

gxy (x) gyy (x)


︸ ︷︷ ︸

Hg

uθ, (13)

whereHg is the Hessian matrix anduθ = (cos (θ) , sin (θ)). Using the linearity of convolution,

f (x) ∗ gxx (Rθx) = uT
θ Hf∗g uθ. We would like to obtain the maximum ofuT

θ Hf∗g uθ, subject

to the constraintuT
θ uθ = 1. We solve this constrained optimization problem using Lagrange’s

multiplier method by setting the gradient ofuT
θ Hf∗guθ + λ uT

θ uθ to zero:

Hf∗guθ = −λ uθ. (14)

This implies that−λ is an eigen value ofHf∗g; the corresponding normalized eigenvectors are

the possible solutions to the problem. Since we are looking for the maximum ofuT
θ Hf∗g uθ,

the optimal response and the angle are given by

r∗ = λmax (15)

uθ∗ = vmax. (16)
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Hereλmax andvmax are the maximum eigenvalue and the corresponding eigenvector respectively.

It can be seen from Fig.1-c and 1-d that these classical detectors do not have a good orientation

selectivity. In the next section, we propose a new approach for the design of detectors that

attempts to correct for this deficiency.

III. D ESIGN OFSTEERABLE FILTERS FOR FEATURE DETECTION

The widely-used contour extraction algorithm [1] has three steps: (a) feature detection, (b)

non-maximum suppression, and, (c) thresholding. In this section, we present a general strategy

for the design of steerable filters for feature detection, while keeping in mind the subsequent

steps. We propose a criterion similar to that of Canny and we analytically derive the optimal

filter—or equivalently the optimal weights—within our particular class of steerable functions

specified by (4).

A. Optimality Criterion

We now review Canny’s criterion and modify it slightly to enable analytical optimization. To

derive the optimal 2-D operator, we assume that the feature (edge/ridge) is oriented in some

direction2 (say along thex axis) and derive an optimal operator for its detection. As the operator

is rotation-steerable by construction, its optimality properties will be independent of the feature

orientation.

The 3 different terms in Canny’s criterion are as follows:

1) Signal-to-Noise Ratio:The key term in the criterion is the signal-to-noise ratio. The

response of a filterh (x) to a particular signalf0 (x) (e.g. an idealized edge) centered at the

origin is given by

S =

∫
R2

f0 (x, y) h (−x,−y) dx dy (17)

S is given by the height of the response at its maximum. If the input is corrupted by additive

white noise of unit variance, then the variance of the noise at the output is given by the energy

of the filter:

Noise =

∫
R2

|h (x, y)|2 dx dy (18)

2In 2-D the features of interest have boundaries of dimension 1.
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We desire to have a high value ofS for a given value ofNoise; S2

Noise
is the amplification of the

desired feature provided by the detector.

2) Localization:The detection stage is preceded by non-maximum suppression. The estimated

feature position corresponds to the location of the local maximum of the response in the direction

orthogonal to the feature boundary (y axis in our case). The presence of noise can cause an

undesirable shift in the estimated feature location. The direct extension of Canny’s expression

for the shift-variance (due to white noise of unit variance) to 2-D gives

E
[
(∆y)2] =

∫
R2 |hy (x, y)|2 dx dy∣∣∫

R2 f0 (x, y) hyy (−x,−y) dx dy
∣∣2 (19)

Canny has proposed to maximize the reciprocal of this term. The numerator of (19) is a

normalization term which will be small automatically if the impulse response of the filter is

smooth along the y axis (low norm for the derivative). Since we are imposing this type of

smoothness constraint elsewhere via an additional regularization term (see next subsection), it is

not necessary to optimize this term here, which also keeps the effects well separated. Therefore,

we propose to maximize the second derivative of the response, orthogonal to the boundary, at

the origin

Loc = − d2

dy2
(f0 ∗ h)

= −
∫
R2

f0 (x, y) hyy (−x,−y) dx dy (20)

which is the square-root of the denominator in (20). The above expression is ensured to be

positive because the second derivative of the response is negative at the maximum (assuming

S > 0). Note that the new localization term is a measure of the width of the peak. The drift in

position of the maximum due to noise will decrease as the response becomes sharper. In this

work, we are neglecting the effect of neighboring signals on the localization.

3) Elimination of false oscillations:Canny observed that when the criterion is optimized

only with the SNR and the localization constraint, the optimal operator has a high bandwidth;

the response will be oscillatory and hence have many false maximas. In 2-D, we desire that

the response be relatively free of oscillations orthogonal to the feature boundary. This can be

achieved by penalizing the term:

Ro =

∫
R2

|hyy (x, y)|2 dx dy (21)
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Note that this term is the numerator of the expression for the mean distance between zero

crossings proposed by Canny. It is a thin-plate spline like regularization which is a standard

technique to constrain a solution to be smooth (low bandwidth).

The thresholding step is easier if the response is flat along the boundary. The oscillation of

the response along the boundary (x axis) can be minimized by penalizing

Rp =

∫
R2

|hxx (x, y)|2 dx dy (22)

These terms will force the filter to be smooth making the response is less oscillatory, thus

resulting in fewer false detections.

B. Derivation of the optimal detector

We combine the individual terms to obtain a single criterion

C = S · Loc− µ (Ro + Rp)︸ ︷︷ ︸
R

(23)

The filter in the family described by (4) that maximizes this criterion, subject to the constraint3

Noise = 1, is our optimal detector. The free parameterµ > 0 controls the smoothness of the

filter; a high value makes the response less prone to false maxima and reduces oscillation along

the ridge. However, these properties impose a tradeoff on the localization of the response.

In this work, we are also interested in performing a scale-independent design. In other words,

if we dilate the window by a factorσ, usinggσ (x) = σ−
1
2 g
(

x
σ

)
, we want our solution to retain

the shape independently ofσ. This requires that we weight each of the terms in (23) using an

appropriate power of the dilation factor. This issue is discussed later for each feature model

separately.

For the ease of notation, we collect the component functions of (4) into a function vectorg

of length
(

M(M+3)
2

)
, whose components are

[g]i (x, y) =
∂k−n

∂xk−n

∂n

∂yn
g (x, y) with i =

(k − 1) (k + 2)

2
+ n

k = 0...M, n = 0..k.

3This constraint is just a normalization factor. SettingNoise to another constant will give detectors of the same shape, but

with a different energy.
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Hence, an arbitrary function in the family is represented in a compact form as

h (x) = aTg (x) (24)

wherea is the vector containing theαi,k’s in (4); it has the same length as the function vector.

Now we express the terms of the criterion in a matrix form asS = aTs, Loc = aTq, Noise =

aTPa andR = aTRa, where

[s]i = 〈f0 (x) , [g (−x)]i〉 (25)

[q]i =
〈
f0 (x) , ([g (−x)]i)yy

〉
(26)

[P]i,j =
〈
[g]i , [g]j

〉
(27)

[R]i,j =

〈
([g]i)yy

,
(
[g]j

)
yy

〉
+
〈
([g]i)xx ,

(
[g]j

)
xx

〉
. (28)

gyy (x, y) and gxx (x, y) denote∂2g (x, y) /∂y2 and ∂2g (x, y) /∂x2 respectively.P and R are

matrices of sizeM(M+3)
2

× M(M+3)
2

, while the vectorsq and s are of lengthM(M+3)
2

. HereP

is ensured to be nonsingular. In the above expressions, the inner product of two functions is

defined as

〈f1, f2〉 =

∫
R2

f1 (x, y) f2 (x, y) dx dy.

Thus, the criterion (23) can be expressed in the matrix form as

C = aT [Q− µR] a, (29)

where

Q = s qT (30)

Since all the terms in the criterion are quadratic, the solution for the optimal parameters can be

found analytically by using Lagrange’s multiplier method. To maximize the criterion subject to

the constraint, we set the gradient ofC + λ Noise to zero:

2 [Q− µR + λ P] a = 0 (31)

Rearranging the terms, we get

P−1 [Q− µR] a = −λ a (32)
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which implies thatλ is an eigenvalue of the matrix(−P−1[Q− µR]). The total number of

eigenvalues is given by the dimension ofa. The corresponding eigenvectorsaλi
need to be

scaled so that the constraintaT
λi
Paλi

= 1 is satisfied. The optimal solution is therefore given by

a = max
{
aT

λi
[Q− µR] aλi

; i = 0...M (M + 3) /2
}

(33)

Thus the design of the optimal feature detector boils down to an eigen-decomposition followed

by an appropriate weighting of the eigen-vectors so as to satisfy the constraint.

C. Feature detection by local optimization

Due to (5), the optimal angleθ∗ in (1) is obtained as the solution of

∂

∂θ
(f (x) ∗ h (Rθ∗x)) =

M∑
k=1

k∑
i=0

fk,i (x, y)
∂

∂θ
(bk,i (θ)) |θ=θ∗︸ ︷︷ ︸

ck,i(θ∗)

(34)

= 0

It is easy to see from (7) that each of the terms inbk,i (θ) are of degreek in cos (θ) andsin (θ);

ck,i (θ) is of degreek as well. Hence, (34) is a polynomial of orderM (in cos (θ) and sin (θ))

and thus the estimation of the optimal angle involves the solution of anM th order polynomial

in two variables.

If h (x, y) has only odd/even order partial derivatives (this is the case for many detectors), then

bk,i (θ) will be a polynomial with only odd/even degree terms (ofcos (θ) and sin (θ)) present.

Consequently, (34) can be reduced4 to a form where only terms of degreeM are present. In this

case, (34) can be further simplified (by dividing both the sides by(cos (θ))M ) to a polynomial

in only one variable—tan (θ). We then have an analytic solution ifM <= 3 [15]. This case

is illustrated in section IV-A.3. WhenM = 2, the solution can also be computed as an eigen-

decomposition of the Hessian matrix, which is better known (but also boils down to the above

mentioned solution). This case is described in IV-B.2. When the solution of (34) is not trackable

analytically, it can be solved numerically using an an iterative root finder such as the Newton-

Raphson method.

4if there is a term of degreeM − 2n, we can multiply it by
`
cos (θ)2 + sin (θ)2

´n
to make it of degreeM
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IV. 2-D FEATURE DETECTORS

We now design operators optimized for the detection of different 2-D features. We chose the

window function to be a Gaussian5 g (x; σ), whereσ is the standard deviation. When it is clear

from the context, we will suppress the dependence onσ to simplify the notation.

A. Edge Detection

As model for the edge, we choose the ideal step function

f0 (x, y) =

 1 if y ≥ 0

0 else
(35)

Since it is an odd function ofy, the even order derivatives do not contribute to the signal energy;

we therefore ignore6 them in (4).

1) Case 1:M = 1: To illustrate the derivation of the optimal filter, we explain all the steps

in detail in this simple case. Substituting the function vectorg = [gx, gy] in the corresponding

expressions, we get

s = −σ
√

π [0, 1]

q = −2
√

π

σ
[0, 1]

P =
π

2

 1 0

0 1


R =

9π

σ4

 1 0

0 1


Thus,

Q = qTs = 2π

 0 0

0 1


The matricesQ and P are independent ofσ while R is inversely proportional toσ4. So we

weigh R by σ4 to have a scale-invariant solution. Hence

P−1
[
Q− µσ4R

]
=

 −18µ 0

0 4− 18µ

 (36)

5it is the only function that is isotropic and separable.

6If we were to include them in the solution, their optimal coefficients would turn out to be zero anyway.
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The eigenvalues ofP−1 [Q− µσ4R] are λ1 = −18µ and λ2 = 4 − 18µ, respectively. The

corresponding scaled eigenvectors (so as to satisfy the constraint) are
[
0,−

√
2
π

]
and

[
−
√

2
π
, 0
]
,

respectively. When substituted in the criterion, they yield4−18µ and−18µ, respectively. Thus,

the optimal solution is

a =

[
0,−

√
2

π

]
(asµ > 0), which corresponds to Canny’s edge detector (c.f. Fig. 1-c).

(a) Canny’s edge detector (b) M = 3; µ = 0.09

(c) M = 3; µ = 0.2 (d) M=5; µ = 0.15

Fig. 3. Edge Detectors for different parameters. The detectors become more orientation selective asM increases.

2) Higher Order cases:For higherM , we obtain a family of solutions that are increasingly

smooth whenµ goes up. A few examples of higher order templates are given in Table I with the

filter impulse responses shown in Fig. 3. By comparing Fig. 3-b and Fig. 3-c we observe that, as

µ increases, the filter becomes smoother at the cost of directionality. The higher order templates

are more elongated thus having higherSNR and localization (c.f. Table I); they should therefore
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S2/Noise Loc # Basis filters Expression Implementation

M = 1 2 σ2 1.63 2 separable −
√

2
π
gy Analytic

M = 3 4 non-separable

µ = 0.09 2.93 σ2 1.98 6 separable −0.966 gy − 0.256 σ2 gxxy Analytic

M = 3 4 non-separable −1.0655 gy − 0.20 σ2 gxxy

µ = 0.2 3.01 σ2 1.83 6 separable −0.042 σ2 gyyy Analytic

−1.1215 gy − 0.5576 σ2 gxxy

M = 5 3.69 σ2 2.15 6 non-separable−0.018 σ2 gyyy − 0.0415 σ4 gxxxxy Sampling/

µ = 0.15 12 separable −0.0038 σ4 gxxyyy Iterative

TABLE I

EDGE DETECTORS FOR DIFFERENT PARAMETERS.

result in better detections, at-least for idealized edges. The dependence of SNR onσ2 implies

that this figure can also be improved by increasing the variance of the Gaussian. However, the

ability to resolve two adjacent parallel edges decreases asσ increases.

3) Implementation:Here, we develop the implementation procedure mentioned in Section

III-C for the special case of3rd order edge detection. A general3rd order edge template (for

different values ofµ) is given by

h (x) = α1,0 gx + α3,0 gxxx + α3,2 gxyy (37)
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The rotated version7 of this templatehθ is given by

hθ = α1,0 (gx cos (θ) + gy sin (θ)) +

α3,0

(
gxxx cos3 (θ) + 3 gxxy cos2 (θ) sin (θ) +

3 gxyy cos (θ) sin2 (θ) + gyyy sin3 (θ)

)
+

α3,2

(
gxyy cos3 (θ) + (−2gxxy + gyyy) cos2 (θ) sin (θ) +

(−2gxyy + gxxx) cos (θ) sin2 (θ) + gxxy sin3 (θ)

)
Convolving the rotated template byf and simplifying, we get

(f ∗ hθ) (r) = q1 (r) cos (θ)3 + q2 (r) cos (θ)2 sin (θ) +

q3 (r) cos (θ) sin (θ)2 + q4 (r) sin (θ)3 , (38)

where

q1 (r) = α3,0 f3,0 (r) + α3,2 f3,2 (r) + α1,0 f1,0 (r) (39)

q2 (r) = (3α3,0 − 2α3,2) f3,1 (r) + α3,2 f3,3 (r) + α1,0 f1,1 (r) (40)

q3 (r) = (3α3,0 − 2α3,2) f3,2 (r) + α3,2 f3,0 (r) + α1,0 f1,0 (r) (41)

q4 (r) = α3,0 f3,3 (r) + α3,2 f3,1 (r) + α1,0 f1,1 (r) (42)

We multiplied the single degree terms incos (θ) andsin (θ) with
(
cos2 (θ) + sin2 (θ)

)
so that we

get a polynomial with only third degree terms. Note that the six functionsfk,i; k = {1, 3}, i =

0 . . . k, obtained by separable filtering, are combined to deriveqi; i = 1 . . . 4. They can also be

obtained by non-separable filtering:

q1 (r) = f∗
(
α3,0 g3,0 + α3,2 g3,2 + α1,0 g1,0

)
(r) (43)

q2 (r) = f∗
(
(3α3,0 − 2α3,2) g3,1 + α3,2 g3,3 + α1,0 g1,1

)
(r) (44)

q3 (r) = f∗
(
(3α3,0 − 2α3,2) g3,2 + α3,2 g3,0 + α1,0 g1,0

)
(r) (45)

q4 (r) = f∗
(
α3,0 g3,3 + α3,2 g3,1 + α1,0 g1,1

)
(r) (46)

7The expression for a general rotated template is given by (5) and (7). However, for simple templates, it may be easier to

derive it directly in the Fourier domain as in (60).
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(a) Noisy Image (b) Canny (Time taken 141 ms)

(c) M = 3; µ = 0.09 (Time taken 414 ms) (d) M = 5; µ = 0.15 (Time taken 1995 ms )

Fig. 4. Edge detection on a 256 x 256 noisy image (Gaussian white noise of variance 85). The thresholding is performed such

that there are 2000 detected pixels in each image. The variance of the Gaussian window is chosen as 1.7. Note that the higher

order detectors give less wiggly contours with fewer breaks. The algorithm was implemented in Java as a plugin for ImageJ.

The experiments were performed on a Intel Pentium processor at 2.66 GHz.
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We use the separable approach due to its computational efficiency. The non-separable approach

may be profitable for large values ofM .

For a particular value ofr, (f ∗ hθ (r)) is a function of only one variable—θ. At the local

maxima and the minima of(f ∗ hθ (r)), we have ∂
∂θ

(f ∗ hθ (r)) = 0. Substituting forf ∗hθ from

(38), we get

q2 cos (θ)3 + (2q3 − 3q1) cos2 (θ) sin (θ) +

(3q4 − 2q2) cos (θ) sin2 (θ)− q3 sin3 (θ) = 0,

We divide both sides of this equation bycos (θ)3 to get a cubic polynomial in one variable—

tan θ:

q2 + (2q3 − 3q1) tan (θ) + (3q4 − 2q2) tan2 (θ)− q3 tan (θ)3 = 0, (47)

The roots of this equation can be obtained analytically [15]. Sincetan (θ) = tan ((θ + π) mod 2π),

there are six possible values ofθ in the range[0, 2π] that satisfy (47). One of these values of

θ correspond to the global maximum; it can be found out by substituting all them into (38)

and picking the one which gives the maximum value. We breifly describe the steps of the local

optimization algorithm in Appendix-B.

For M > 3, theθ∗ estimated forM = 3 can act as an approximate solution. This initial guess

is further refined by performing a golden search [15] around the approximate solution.

4) Results:Because the scheme is optimized for noisy data, we perform edge detection on the

cameraman image corrupted with additive white noise (c.f. Fig. 4-a). The size of the Gaussian

window is the same in all the experiments. The detected edges after non-maximum suppression

and thresholding are presented in Fig. 4. It is seen that Canny’s edge detector has a lot of false

detections. Moreover, the detected edges are wiggly due to poor localization. The new detectors

have significantly lower false detections and better localization, thus confirming the theoretical

improvement.

Note the time taken for the various edge detection schemes from Fig. 4 b-d. The3rd order

scheme only takes around 2.5 times the time as the Canny’s detector. We believe that, for the

performance improvement achieved, it is a quite reasonable price to pay. Since we resorted to a

naive optimization algorithm using dichotomy, the5th order method took more time. We believe

that a better optimization scheme could drastically improve the computational efficiency.
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S2/Noise Loc # Basis filters Expression Implementation

M = 2

µ = 2 2.67 4.38/σ 3 separable −
√

2
3π

σ gyy Analytic

M = 2

µ = 0 3 4.64/σ 3 separable −
√

3
4π

σ (gyy − gxx/3) Analytic

−0.204σ gyy + 0.059σ gxx

M = 4 4.302 6.41/σ 5 non-separable +0.063σ3 gyyyy − 0.194σ3 gxxyy Analytic

µ = 0.1 8 separable +0.024σ3 gxxxx

−0.392σ gyy + 0.113σ gxx

M = 4 4.47 6.14/σ 5 non-separable +0.034σ3 gyyyy − 0.184σ3 gxxyy Analytic

µ = 1/4 8 separable +0.025σ3 gxxxx

TABLE II

RIDGE DETECTORS FOR DIFFERENT PARAMETERS

B. Ridge Detection

For simplicity, we choose the idealized line model as:

f0 (x, y) = δ (y) , (48)

whereδ denotes the Dirac delta function. A more realistic model can be assumed without any

change in the computational strategy. HereQ, P andR are inversely proportional toσ4, σ2 and

σ6, respectively. Hence, we scaleQ by σ2 andR by σ4.

1) Optimized detectors:Some examples of optimal templates are shown in Table II and Fig.

5. Interestingly, we see from the table that the optimal detector forM = 2 andµ = 0 is better

than the classical detector, both in terms of SNR and localization, at no additional cost. Also

note that the template in Fig. 5-b is more directional than the classical one in Fig. 5-a. The high

value ofµ = 2 (adjusted to get the equivalence) overconstrains the optimization, resulting in a

lower performance.

Two cases forM = 4 are also shown. It is seen that for smallµ, the template oscillates along

y producing undesirable sidelobes. However, it has a better localization at the expense of a lower
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(a) M = 2; µ = 2

(classical detector)

(b) M = 2; µ = 0

(c) M = 4; µ = 0.1 (d) M = 4; µ = 0.25

Fig. 5. Ridge Detectors corresponding to different orders and parameters.

SNR andR.

In general, we found that it is better to have a low value ofµ for lower order templates; the

model has few degrees of freedom and hence a high value ofµ will overconstrain the system.

On the other hand, for higher order templates, we need a higher value ofµ to make them less

oscillatory.

2) Implementation:Any second order detector can be implemented as an eigen-decomposition,

similar to the classical Hessian (described in section II-C.2). For example, the detector withµ = 0

can be implemented as

θ∗ = arg max
θ

f ∗
(

guθ,uθ
−

guθ+ π
2

,uθ+ π
2

3

)
= arg max

θ

(
uT

θ Hmod uθ

)
,
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whereHmod = Hf∗g − 1
3

(
PT Hf∗g P

)
; hereP is the rotation matrix

P =

 0 1

−1 0

 , (49)

such thatPuθ = u(θ+π
2 )

. Thus the optimal direction and ridge magnitude can be computed

with the eigen-decomposition ofHmod; the computational complexity is the same as with the

classical scheme.

(a) DNA micrograph (b) Classical detector

(Time: 260 ms)

(c) M = 2; µ = 0 (Time:

260 ms)

(d) M = 4; µ = 0.25

(Time: 590 ms)

Fig. 6. Detection of DNA filament from its noisy cryo-electron micrograph. The features were ridges that were roughly 2-3

pixels wide. We chose the standard deviation of the Gaussian window to be 3. The images were thresholded such that there are

1000 detected pixels.
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For the4th order detector, we proceed exactly as in the case of the third order edge template.

The computation of the optimal angle involves the solution of a quartic polynomial, which is

also performed analytically [15].

3) Results:An interesting application, which motivated this whole development, is the de-

tection of DNA filaments (cf Fig. 6-a) from their stereo cryo-electron micrographs [13]. The

difficulty with these data is that the micrographs are extremely noisy because they are exposed

to a low electron dose to avoid the degradation of the specimen. The results (Fig. 6-b - 6-d)

correspond to the output of ridge detection algorithm followed by non-maximum suppression

and thresholding. Overall, theM = 4 detector gives the best qualitative results: there are few

breaks in the filament and the detection is less wiggly. Note that the performance improvement

costed only 2 times the time taken for the classical approach. The optimal second order detector

gave better results for the same computational complexity as the classical approach.

V. SHAPE ADAPTABLE FEATURE DETECTION

Steerability in rotation involves the representation of a template as a weighted linear com-

bination of a few filters; the weights are nonlinear functions of a single parameter—the angle.

This leaves us with extra degrees of freedom which can be utilized effectively. Perona used it

to make the template steerable in scale [5]. We propose to utilize this freedom for the design of

a shape-adaptable filter, thus making the system respond to different shapes depending on the

parameters.

In Section IV-A, we designed templates for the detection of ideal step edges. However, as

mentioned in [16], the edges are sometimes wedge shaped (close to image corners). Since this

contradicts our assumption, we have low SNR at the corners. A bias in the position of the corner

is also reported in the context of conventional corner detectors [17].

Corners are image regions with high surface curvature. They convey a lot of information about

the image shape [18]–[21]. Hence, we propose a new shape-adaptable, steerable corner detector

that addresses these issues.
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x

y

f

Fig. 7. Model of an ideal wedge.

A. Derivation of the wedge detector

We model a corner as a wedge shown in Fig. 7, where the wedge angleφ is a variable.

Analytically, we have

f0 (x, y) =

 1 if − x sin
(

φ
2

)
≤ y cos

(
φ
2

)
≤ x sin

(
φ
2

)
0 otherwise.

(50)

We focus on the derivation of a third order corner detector. Since the3rd order detectors cannot

oscillate much, we setµ = 0. We also get rid of the localization term—to obtain a simple

expression, we optimize the detector only with respect to the SNR.

Setting the gradient ofS + λ Noise to zero (to maximizeS subject toNoise = 1), we get

2λ Pa = −s, (51)

from which we obtain the optimal solution as

a = − P−1s√
sTP−1s

. (52)

For a 3rd order detector(g = [gx, gy, gxx, gyy, gxy]) and the idealized wedge model,P and s
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(a) φ = 0.6π (108◦) (b) φ = 0.8π (144◦) (c) φ = 1.2π (216◦) (d) φ = 1.4π (252◦)

Fig. 8. Wedge Detectors for different wedge angles.

defined by (27) and (25) are given by

P =

∫
R2

gT (x, y)g (x, y) dxdy (53)

=



π
2

0 0 0 0

0 π
2

0 0 0

0 0 3π
2σ2

π
2σ2 0

0 0 π
2σ2

3π
2σ2 0

0 0 0 0 π
2σ2


(54)

s =

∫
R2

f0 (x, y)g (x, y) dxdy (55)

=
[
−σ

√
π sin

(
φ
2

)
0 sin (φ) − sin (φ) 0

]T
. (56)

Substituting the above in (52), we obtain the SNR-optimized3rd order template as

h (x) = −
√

2

2 + π + 2 cos φ

(
gx +

σ cos φ
2√

π
(gxx − gyy)

)
(57)

It is interesting to note that the optimal corner detector is Canny’s edge detector whenφ = π.

Some examples of detectors for different values ofφ are shown in Fig.8.

B. Implementation

We have a templatehθ,φ which is now parametrized by two variables:θ—the orientation—and

φ—the wedge angle. Hence the detection procedure involves a two variable optimization. For

our experiments, we resort to a slightly suboptimal solution whereθ is estimated from theφ = π
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Fig. 9. (a)S2/Noise vs wedge angle; (b) measure ofy
σ

(ratio of the bias and the standard deviation of the Gaussian window)

solution and the optimalφ is estimated by sampling. This approach is justifiable as the optimal

angle does not change much with respect toφ.

C. Results

We now study the theoretical performance improvement of the wedge detector over Canny’s

edge detection scheme. We consider the responses of Canny’s edge detector and the optimal

wedge detector (designed for a specificφ) to the wedge. In Fig. 9 we show the variation of the

SNR with respect to the wedge angle. Note that for Canny’s edge detector, the SNR falls off

much more rapidly as compared to the wedge detector. The SNR of the wedge detector has a

flat zone aroundφ = π for roughly a span of 140 degrees.

To analyze the bias in the position, we consider the responser (x, y) of the wedgef0 (x, y)

(shown in Fig.7) to a templateh (x, y). The position of the maximum will be displaced from

the origin, along they axis. A first order approximation of the displacement can be obtained by

using the Taylor series expansion of the responser (x, y) = f0 (x, y) ∗ h (x, y) along they axis.

r(0, y) = r(0, 0) + ry (0, 0) y +
ryy (0, 0)

2
y2 +O (y)3 (58)

We look for the pointy such thatry (0, y) = 0. From the above expression, we obtain the

first order expression ofy as ry (x0, y0) /ryy (x0, y0). Substitutingr = f ∗ h and by using the

commutativity of convolution and differentiation, we get

y = − f ∗ hy |0,0

f ∗ hyy |0,0
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The plot of the bias (y ) for different wedge angles is shown in Fig. 9-b. It is seen that, for

Canny’s edge detector, the wedge is displaced from the actual location much more than for the

wedge detector tuned to the corresponding angle.

In short, the wedge detector performs better than the edge detector for non-ideal step edges

(wedges) for a range of angles; this range can be increased by considering higher order detectors.

To demonstrate the practical utility of the algorithm, we consider the synthetic pattern shown

in Fig. 10-a and the real image shown in Fig. 10-c. We estimate the optimal parameters (θ and

φ) and the response. We perform non-maximum suppression of the response and keep only the

values above a certain threshold. The estimated value ofφ where the response is greater than the

threshold are shown in Fig. 10-b and Fig. 10-d. Note that the detector can distinguish between

convex and concave wedges based on the difference in the estimated angles. The estimated

position of the wedge is also a reasonable fit to their true positions. Since Canny’s detector is

also in the family of wedge detectors, this scheme works well for straight edges as well.

VI. CONCLUSIONS

We have proposed a general approach to derive optimal 2-D operators for the detection of

image features. We chose the optimal template from a family of steerable functions using an

analytical optimization scheme based on a slight modification of Canny’s criterion. In contrast

to classical approaches, where the optimization is performed in 1-D, we specified the filter

directly in 2-D. We derived optimal operators for a variety of image features and demonstrated

their utility in various applications. We also introduced the notion of shape-adaptable feature

detection and used it for the detection of image corners.

We now discuss a few issues that were not dealt with in this paper and are still open for

further investigation.

1) Class of steerable functions: Although we have concentrated on the space of Gaussian

derivatives as the steerable family, the design methodology is applicable to other classes

as well. Interesting variations may be obtained by changing the window function or using

by other known families of steerable functions [7], [22].

2) Discretization: We have derived the optimal operators in continuous space, neglecting

discretization issues. It could be interesting to address the discretization effects as in [23]

to be closer to practical situations.
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(a) Noisy Image (b) Angle output of Wedge detec-

tor

(c) House image (d) Angle output of Wedge detec-

tor

Fig. 10. Detected wedge angle. Here red stands forφ = 3π
2

, yellow for φ = π and cyan forφ = π
2

. Here the corners are the

points which are either in red or in cyan. Note that at the straight edges, the optimal wedge angle isπ; the optimal detector is

equivalent to the Canny’s edge detector. In this experiment, we have chosenσ = 3.

Even though further research is required to address these issues, the results presented here are

promising enough to justify the use of the proposed detectors in a variety of practical applications.

The methodology is also general enough to allow for the design of application-specific templates.

The implementation of the algorithm is available as a Java plugin for ImageJ [24] at

http://bigwww.epfl.ch/demo/steerable/.
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APPENDIX - A

Proof: Using the linearity of the Fourier transform and the property that differentiation

corresponds to a multiplication withjω in the Fourier domain, it is easy to derive the transfer

function of the filterh:

ĥ (ωx, ωy) =
M∑

k=1

k∑
i=0

αk,i (jωx)
k−i (jωy)

i ĝ (ωx, ωy) , (59)

where j =
√
−1. Since the rotation of a filter in space corresponds to a rotation of its Fourier

transform, we get

= (h (Rθ x)) =
M∑

k=1

k∑
i=0

αk,i (jωx cos (θ) + jωy sin (θ))k−i (−jωx sin (θ) + jωy cos (θ))i ĝ (ωx, ωy)

=
M∑

k=1

k∑
i=0

αk,i

k−i∑
l=0

i∑
m=0

(
k − i

l

)(
i

m

)
(−1)m cos (θ)i+(l−m)

sin (θ)(k−l)−(i−m) (jωx)
l+m (jωy)

k−(l+m) ĝ (ωx, ωy)

(60)

Note that the window function is left unchanged because we are assuming that it is isotropic.

Now multiplying both sides bŷf and computing the inverse Fourier transform, we get

f (x) ∗ h (Rθx) =
M∑

k=1

k∑
i=0

αk,i

k−i∑
l=0

i∑
m=0

(
k − i

l

)(
i

m

)
(−1)m cos (θ)i+(l−m)

sin (θ)(k−i)−(l−m) fk,k−(l+m) (x) ,

(61)

where

fk,i (x) = f (x) ∗
(

∂k−i

∂xk−i

∂i

∂yi
g (x)

)
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Note that the component indices off are dependent only onk and l + m. We collect the terms

with the same values ofk − (l + m) and we defineS (k, i, j) as

S (k, i, j) = {l,m | 0 < l < k − i; 0 < m < i; k − (l + m) = j} (62)

Using this definition, we rewrite the right hand side of (61) as

M∑
k=1

k∑
i=0

αk,i

 k∑
j=0

∑
l,m∈S(k,i,j)

(
k − i

l

)(
i

m

)
(−1)m cos (θ)i+(l−m) sin (θ)(k−i)−(l−m) fk,j (x)


M∑

k=1

k∑
j=0

fk,j (x)

 k∑
i=0

αk,i

∑
l,m∈S(k,i,j)

(
k − i

l

)(
i

m

)
(−1)m cos (θ)i+(l−m) sin (θ)(k−i)−(l−m)


︸ ︷︷ ︸

bk,j(θ)

APPENDIX - B

In this section, we briefly outline the steps involved in the3rd order edge detection algorithm.

We denote the 1-D Gaussian of a specified variance, its first, second and third derivatives sampled

on a certain grid byg, g′, g′′ andg′′′ respectively.

Algorithm

f10= filterSeparable(image, g′, g) ;

f11 = filterSeparable(image, g, g′) ;

f30 = filterSeparable(image, g′′′, g) ;

f31 = filterSeparable(image, g′′, g′) ;

f32 = filterSeparable(image, g′, g′′) ;

f33 = filterSeparable(image, g, g′′′) ;

for i=0 to Nrows-1 do

for j=0 to Ncols-1 do

q1 = α3,0 f3,0 (i, j) + α3,2 f3,2 (i, j) + α1,0 f1,0(i, j);

q2 = (3α3,0 − 2α3,2) f3,1 (i, j) + α3,2 f3,3 (i, j) + α1,0 f1,1 (i, j);

q3 = (3α3,0 − 2α3,2) f3,2 (i, j) + α3,2 f3,0 (i, j) + α1,0 f1,0 (i, j);

q4 = α3,2 f3,1 (i, j) + α3,0 f3,3 (i, j) + α1,0 f1,1 (i, j);

solset = solveCubic (q2, 2q3 − 3q1, 3q4 − 2q2, −q3);
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thetaset = {atan(solset),atan(solset)+ π };

[optmag(i, j), optangle(i, j)] = giveMaximumRoot(thetaset , q1, q2, q3, q4);

end for

end for

The routinegiveMaximumRoot substitutes theθ values into (38); it returns the maximum

value and the corresponding angle.
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