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Abstract

Parametric active contour models are one of the preferred approaches for image segmentation

because of their computational efficiency and simplicity. However, they have a few drawbacks which

limit their performance. In this paper, we identify some of these problems and propose efficient solutions

to get around them.

The widely-used gradient magnitude-based energy is parameter dependent; its use will negatively

affect the parametrization of the curve and consequently its stiffness. Hence, we introduce a new edge-

based energy that is independent of the parameterization. It is also more robust since it takes into

account the gradient direction as well. We express this energy term as a surface integral, thus unifying

it naturally with the region-based schemes. The unified framework enables the user to tune the image

energy to the application at hand.

We show that parametric snakes can guarantee low curvature curves, but only if they are described

in the curvilinear abscissa. Since normal curve evolution do not ensure constant arc-length, we propose

a new internal energy term that will force this configuration.

The curve evolution can sometimes give rise to closed loops in the contour, which will adversely

interfere with the optimization algorithm. We propose a curve evolution scheme that prevents this

condition.

Index Terms

active contour, snake, segmentation, curve, spline

I. I NTRODUCTION

Snakes or active contour models have proven to be very effective tools for image segmentation.

An active contour model is essentially a curve that evolves from an initial position towards the

boundary of an object in such a way as to minimize some energy functional. The popularity

of this semi-automatic approach may be attributed to its ability to aid the segmentation process

with a-priori knowledge and user interaction.

Extensive research in this area have resulted in many snake variants [1], [2]; these are

distinguished mainly by the type of curve representation used and the choice of the image

energy term. The popular curve representation schemes in the snake literature are

• Point-based snakes, where the curve is an ordered collection of discrete points (also termed

as snaxels) [3]–[5].
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• Parametric snakes, where the curve is described continuously in a parametric form using

basis functions such as B-splines [6]–[9], Fourier exponentials [10], [11] etc.

• Geometric snakes, where the planar curve is represented as a level set of an appropriate

2-D surface [12]–[16].

The point-based approach can be viewed as a special case of parametric curve representation

where the basis functions are uniform translates of a B-spline of degree zero1; likewise, paramet-

ric approaches using smooth basis functions will tend to the point-based scheme as the number

of basis functions increases. In general, however, representations using smooth basis functions

require fewer parameters than point-based approaches and thus result in faster optimization

algorithms [6], [10], [17]. Moreover, such curve models have inherent regularity and hence do

not require extra constraints to ensure smoothness [9], [17].

Since both the above mentioned schemes represent the curve explicitly, it is easy to introduce

a priori shape constraints into the snake framework [10], [18]–[20]. It is also straightforward

to accommodate user interaction; this is often done by allowing the user to specify points

through which the curve should go through [3]. However, these models offer less flexibility

in accounting for topological changes during the curve evolution. One will have to perform

some extra bookkeeping to accommodate changes in topology.

Geometric approaches offer great flexibility as far as the curve topology is considered; they

presently constitute a very promising research area [14]–[16]. However, they tend to be com-

putationally more complex since they evolve a surface rather than a curve. Also, since the

curve representation is implicit, it is much more challenging to introduce shape priors into this

framework [21].

In this paper, we focus on general parametric snakes due to its computational advantages and

simplicity. We will start by taking a critical look at them, identifying some of their limitations,

and propose some improvements to make them more attractive.

There are many different image energy terms that are used in practice. Most of the commonly

used approaches fall into two broadly defined categories: (i) edge-based schemes which use

local image information (typically gradient information) [3], [6], [9], [10], [17], [22], and, (ii)

1A B-spline of degree zero is defined asβ0 (x) =

 1 if |x| < 0.5

0 else
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region-based methods which uses global image features (eg. statistical formulation ) [8], [10],

[11], [19], [23]–[27]. Since the best choice of the energy depends on the specific application at

hand, we try to unify these approaches into a single framework; we obtain a general algorithm

which can be tuned easily to the problem.

We propose a new edge energy term which is independent of the parametrization, unlike most

of the commonly-used energies. The use of this energy will preserve the parametrization and

consequently the curve stiffness. This energy is also more robust than the traditional gradient

magnitude-based energy because it accounts for the direction of the gradient as well. We re-

express this energy term as a region integral, thus unifying it with the region-based energies in a

natural way. Thanks to the new approach, the choice of image energy is reduced to appropriately

choosing the preprocessing.

We also clarify some earlier statements about splines by showing that parametric snakes

can implicitly ensure smooth curves, but only if they are described in the curvilinear abscissa.

Since general curve evolution approaches do not guarantee this configuration, we introduce a

new internal energy term which forces the snake to the constant arc-length parametrization.

We also propose efficient computational schemes for evaluating the partial differentials of the

energy terms; thanks to the parametric curve representation in terms of finitely supported scaling

functions, we can compute the differentials exactly and efficiently.

The paper is organized as follows. In the next section, we provide some mathematical pre-

liminaries and formulate the parametric active contour problem. We deal with the image energy,

internal energy and the external constraint energy in Sections 3, 4 and 5 respectively. In Section

6, we derive efficient expressions for the partial derivatives of the energy terms. In Section 7,

we propose a practical solution for the detection and suppression of loops.

II. M ATHEMATICAL PRELIMINARIES

A. Parametric representation of closed curves

A curve in thex — y plane can be described in terms of an arbitrary parametert asr(t) =

(x(t), y(t)). When the curve is closed, the function vectorr(t) is periodic.

We can representr(t) efficiently as linear combinations of some basis functions. Here, we
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(b) Parametric representation

Fig. 1. Scaling function representation of a polygon. The dotted lines in (b) indicate the corresponding linear B-spline basis

functions. Note that in this special case the knots are the vertices of the polygon themselves.

focus on bases derived from the integer shifts of a scaling function2; this type of representation

includes most of the popular curve descriptors. Particular examples are band-limited, spline

and polygonal schemes. The band-limited representation uses the sinc scaling function and is

equivalent to the Fourier representation of a closed curve [29]. The scaling function representation

of a curve is given by

r(t) =

 x (t)

y (t)

 =
∞∑

k=−∞

ck ϕ(t− k), (1)

whereck = (cx,k, cy,k) is the coefficient vector; they are often termed as knot points. We illustrate

the parametric description of a polygon in terms of linear B-spline basis functions in Fig. 1.

If the period,M , is an integer, we haveck = ck+M . This reduces the infinite summation to

r (t) =
M−1∑
k=0

ck ϕp(t− k), (2)

whereϕp is theM - periodization ofϕ:

ϕp(t) =
∞∑

k=−∞

ϕ(t− k M). (3)

2Scaling functions are functions that satisfy a two-scale relationϕ
(

x
2

)
=

∑
k a (k) ϕ (x − k) , wherea (k) is the two-scale

mask [28].
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B. Active contour models: formulation

An active contour, as introduced by Kass et. al. [3], is a curve described as an ordered

collection of points which evolves from its initial position to some boundary within the image.

The curve evolution is formulated as an energy minimization; the snake energy is typically a

linear combination of three terms:

1) the image energy, which is responsible for guiding the snake towards the boundary of

interest.

2) the internal energy, which ensures that the segmented region has smooth boundaries.

3) the constraint energy, which provides a means for the user to interact with the snake.

The total energy of the snake is written as

Esnake (Θ) = Eimage (Θ) + Eint (Θ) + Ec (Θ) , (4)

where Θ is the collection of curve coefficientsΘ = (c0, c1, . . . , cM−1). The optimal curve

parameters are obtained as

Θ = arg min
Θ

Esnake (Θ) . (5)

It is obvious that the quality of segmentation is dependent on the choice of the energy terms.

We deal with them in detail in the following sections and they are listed in Table. I for easy

reference. The energy is minimized iteratively by updating the snake coefficients.

III. I MAGE ENERGY

The image energy is the most important of the three energy terms. In this section, we identify

some limitations of the widely-used gradient magnitude energy and propose a new cost function

that overcomes these problems. We also present a unified framework which includes the edge-

based and region-based approaches as particular cases.

A. Edge-based image energy

Traditional snakes rely on edge maps derived from the image to be guided to the actual

contour. The most popular approach is based on the magnitude of the gradient.
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1) Gradient magnitude energy:Many of the parametric snakes described in the literature use

the integral of the square of the gradient magnitude along the curve as the image energy [6],

[9], [10], [17]. Mathematically, we have

Emag = −
∫ M

0

|∇f (t)|2 dt, (6)

where∇f (t) denotes the gradient off at the pointr (t). As pointed out in [22], one disadvantage

of this measure is that it does not use the direction of the gradient. At the boundary, the image

gradient is perpendicular to the contour. This extra information can be incorporated into the

external energy to make it more robust.

A more fundamental problem is the dependence ofEmag on the parametrization; we obtain

a different value ofEmag if the curve is represented in terms of a parametert′ = w (t), where

w is a monotonically increasing one to one warping function. The use of such an energy may

therefore result in the curve re-adjusting its parametrization in trying to minimizeEmag (e.g. with

B-spline curves, the knots will move to regions of the contour where the gradient magnitude is

relatively high). This problem is demonstrated in Fig. 3-b.

2) New gradient-based image energy:The gradient magnitude energy is the integral of a

scalar field derived from the gradient vector field. We propose a new energy that uses the vector

field directly:

Egrad = −
∮
C
k · (∇f (r)× dr) (7)

= −
∮
C
∇f (r) · (dr× k)︸ ︷︷ ︸

||dr|| n̂(r)

, (8)

wherek is the unit vector orthogonal to the image plane. Heren̂ (r) denotes the unit normal

to the curve atr. Note that this approach of accounting for the gradient direction is similar in

philosophy to [22], even though the expression used by these authors is different and parameter

dependent.

This integration process is illustrated in Fig. 2; with our convention, the vectorn̂ (r) is the

inward unit normal to the curve3 meaning that we are integrating the component of the gradient

orthogonal to the curve. Note that (7) is independent of the parametert, and hence does not

3The vectork is chosen depending on the direction in which the curve is described, such thatn̂ (r) = dr×k
||dr|| is the inward

unit normal.
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n

dr

f

C

Fig. 2. Gradient and normal to the curve

depend on the parametrization. The improvement obtained by using the new energy instead of

the parameter dependent magnitude-based energy is shown in Fig. 3-c.

3) General edge-based image energy:We consider a generalized form of (7) by substituting

∇f with other feature-enhancing vector fields. A promising approach is the use of optimal

steerable filters to derive an appropriate edge enhancing vector field [30]. This method uses filters

that are more directional than thex andy components of the conventional gradient operator to

derive a noise-resilient field.

The general form of edge-based image energy can be expressed mathematically as

Eedge = −
∮
C
k · (ef (r)× dr) , (9)

whereef is an appropriate vector field derived fromf . The magnitude ofef (r) gives a measure

of the edge strength atr, while its direction specifies the edge orientation. We now show that

the computation of this edge-based energy is equivalent to evaluating a region integral.

Proposition 1: The general edge-based image energy (9) can also be expressed as

Eedge =

∫
S
∇ · ef (s)︸ ︷︷ ︸

Te(f)

ds, (10)

where∇ · ef denotes the divergence of the vector fieldef .

Proof: Green’s theorem relates the volume integral of the divergence of a3-D vector field

F over a closed volumeV bounded by the surfaceS to its integral overS:∫
V

(∇ · F) dv =

∫
S
F · ds. (11)

The restriction of Green’s theorem to two dimensional space yields∫
S

(
∂Fx

∂x
+

∂Fy

∂y

)
dxdy =

∮
C
(Fydx− Fxdy) . (12)
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(a) Initialization (b) Magnitude-based energy

(c) New edge-based energy

Fig. 3. Segmentation of a mouse organ using edge-based energy (a) The knots (denoted by the white dots) are initialized so

that the curve is approximately in the curvilinear abscissa. (b) Curve evolution based on the gradient magnitude-based energy.

Note that the knots accumulate at some points along the curve in the final curve, thus restricting the flexibility of the curve.

(c) Curve evolution based on our new edge-based energy; by better preserving the parametrization, it often result in a better

segmentation.

The integral on the left is computed over the areaS bounded by the curveC while the one on

Submitted toIEEE Trans. Image Processing, January 7, 2004. DRAFT
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the right is overC. Using the vector notation, we rewrite (12) as∫
S

(∇ · F) ds = −
∮
C
k · (F× dr) , (13)

wherek is the unit normal to the two dimensional space. Using this identity, we simplify (9) to

the form (10).

Note that in the special case whenef = ∇f , we getTe (f) = ∇2f . This means that our new

gradient-based energy (7) is equivalent to integrating the Laplacian of the image in the region

bounded by the curve.

(a) initialization (b) edge only(α = 1)

(c) region only(α = 0) (d) unified (α = 0.5)

Fig. 4. Illustration of the use of the unified image energy in the segmentation of a corpus-callossum image (b) The use of

the gradient based energy fails to converge in regions where the gradient information is absent (c) The region-based energy is

misled by the lack of image contrast (d) The unified energy leads to a good segmentation.

B. Region-based image energy

Recent research in active contours is increasingly focusing on the use of statistical region-

based image energy [11], [19], [24], [25]. This type of energy can provide the snake with vital

boundary information, especially while it is far away from the real contour, thus resulting in a

larger basin of attraction.
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The use of this energy assumes two main regions in image4, with different probability distri-

butions. A simple example is the case where we have to segment a white object from a dark

background; the regions will have different means and possibly different variances. We use the

statistical formulation of Staib et. al. [10] to specify the region likelihood function:

Eregion = −
∫
S

log (P (f (s) |s ∈ R)) ds

−
∫
S′

log (P (f (s) |s ∈ R′)) ds, (14)

whereR andR′ denote the different image regions. We denote the regions in the curve and

outside byS andS ′ respectively. It is easy to see that (14) attains a maximum whenR = S

andR′ = S ′. We rewrite the above integral as

Eregion = −
∫
S

log (P (f (s) |s ∈ R)) ds

−C +

∫
S

log (P (f (s) |s ∈ R′)) ds, (15)

where C =
∫
S′

⋃
S log (P (f (s) |s ∈ R′)) ds. SinceC does not depend on the position of the

curve and hence we remove it from the cost function. Thus, the region-based cost function is

simplified to

Eregion =

∫
S
− log

(
P (f (s) |s ∈ R)

P (f (s) |s ∈ R′)

)
︸ ︷︷ ︸

Tr(f)

ds. (16)

We now give a few examples to illustrate (16).

1) The regionsR andR′ have Gaussian distributions with the same variance. In this case,

we obtain

Tr (f) = −2 (µR − µR′)

σ2

f − µR + µR′

2︸ ︷︷ ︸
µR,R′

 , (17)

whereµR > µR′ are the means of the regionsR andR′ and andσ the standard deviation.

The regions off with values aboveµR,R′ are mapped to negative values while the ones

below are assigned positive values. Hence, evolving the contour using (16) will result in

the curve adjusting itself to have regions off aboveµR,R′ inside while excluding the ones

4This can be generalized ton > 2 regions.
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belowµR,R′. The assumption of the variances of the regions being the same is appropriate

if we have piecewise constant images corrupted by additive Gaussian noise.

2) The regions inside and outside the contour have Gaussian distributions with different

variances. In this case, we obtain

Tr (f) = a f2 + b f + c, (18)

wherea =
(

1
σ2
R′
− 1

σ2
R

)
, b = −2

(
µR′
σ2
R′
− µR

σ2
R

)
andc =

(
µ2
R′

σ2
R′
− µ2

R
σ2
R

)
+ log

(
σR′
σR

)
. Here,σR

and σR′ are the standard deviations of the regions inside and outside the curve respec-

tively. Since the snake uses the information from the variances as well, it can resolve the

boundaries even when both regions have identical means but different variances [8].

In the absence of prior knowledge of the probability distributionsP (f (s) |s ∈ R) and

P (f (s) |s ∈ R′), the statistical parameters are estimated from the imagef themselves as the

snake evolves; we assume the current position of the contour to define the regions (i.e.S = R

andS ′ = R′) and estimate the parameters as discussed in Section VI-C.

The extension of this method for the segmentation of multi-component images (e.g color

images) is straightforward. For an-D vector imagef : R2 → Rn, we have

Eregion =

∫
S
− log

(
P (f (s) |s ∈ R)

P (f (s) |s ∈ R′)

)
︸ ︷︷ ︸

Tr(f)

ds. (19)

Note that the region information from the vector data is efficiently concatenated into the scalar

imageTr (f). This framework is used for the segmentation of textures in [31]. They obtain an

appropriate vector image from the gray level image using a Gabor filterbank.

C. Unified image energy

Both of the above mentioned energies (edge-based and region-based) have their own advan-

tages and disadvantages. The edge-based energy can give a good localization of the contour

near the boundaries. Unfortunately, it has a small basin of attraction, thus requiring a good

initialization or a balloon force [32]. On the other hand, the region-based energy have a large

basin of attraction and can converge even if explicit edges are not present [25]. However, it does

not give as good a localization as the edge-based energy at the image boundaries. Motivated

by the complementary features of these schemes and the similarity of the expressions (10) and
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(16), we propose a unified form of image energy. We choose a convex combination of the two

energies to obtain an extended class, which inherits the advantages of both. The new image

energy is given by

Eimage =

∫
S

Tu (f)︸ ︷︷ ︸
fu

(s) ds, (20)

wherefu = Tu (f) = αTe (f) + (1− α) Tr (f). This unification is similar is philosophy to the

approaches in [11], [15]. However, our scheme is more natural and yields a simpler expression

since it combines the two energies into a single region integral. The simplicity of the expression

will lead to computational advantages as will be discussed later on. Note thatfu and hence

Eimage is a function of the parameterα. This enables us to tune the image energy to the problem

at hand. For example, in the case of Fig. 7, the ultrasound images are very noisy and hence

the gradient information is unreliable. In this case, we setα = 0 to use only the region-based

energy. In the case of less noisy MR images, the best results are obtained whenα = 0.5 (see

Fig. 4)

IV. I NTERNAL ENERGY

The internal energy is responsible for ensuring the smoothness of the contour. Kass proposed

an internal energy which is the linear combination of the length of the contour and the integral

of the square of the curvature along the contour. This smoothness term is the most widely used

one in applications [1], [3], [5]. Its direct extension to parametric curves gives

Eint = λ1

∫ M

0

(
x′ (t)2 + y′ (t)2) 1

2 dt︸ ︷︷ ︸
Length

+

λ2

∫ M

0

x′′ (t) y′ (t)− y′′ (t) x′ (t)(
x′ (t)2 + y′ (t)2) 3

2

2

︸ ︷︷ ︸
|κ(r)|2

dt,

(21)

where κ (r) is the curvature of the curve at the pointr (t). The first integral in (21) can be

computed, while the second one is more complicated. We show in the Appendix-A that the
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second term reduces to∫ M

0

|κ (r)|2 dt =
1

c2

∫ M

0

(
|x′′ (t)|2 + |y′′ (t)|2

)
︸ ︷︷ ︸

|r′′(t)|2

dt. (22)

provided that

|x′ (t)|2 + |y′ (t)|2 = c; ∀t. (23)

that is, when the curve is parametrized by its curvilinear abscissa. Here

c =
1

M2


∫ M

0

(
x′ (t)2 + y′ (t)2) 1

2 dt︸ ︷︷ ︸
Length


2

. (24)

It is justified to use
∮
C |r

′′|2 as the curvature term in point-based snakes since the snake points

(snaxels) are almost equally spaced. For parametric snakes described in the curvilinear abscissa,

the curvature term is inversely proportional to the fourth power of the distance between the knots

along the curve (c.f. (22) and (23)). We will have a smooth curve if its knots are well separated.

Most parametric schemes rely on the smoothness of the representation, thus eliminating the

need for an explicit internal energy term [6], [9]–[11], [17]. However, these approaches can only

ensure a low value of
∮
C |r

′′|2; they can guarantee low curvature curves only when (23) hold.

For example, a spline curve may be rough even with a small value of
∮
C |r

′′|2 if some of the

spline knots accumulate at one section of the curve. Similar problems exist with Fourier and

other parametric representations. To counter this problem, we propose to add a new term to the

criterion that will force the snake to satisfy (23).

A. Curvilinear reparametrization energy

Our new energy term that penalizes the curve for not being in the curvilinear abscissa is given

by

Ecurv =

∫ M

0

∣∣∣|r′ (t)|2 − c
∣∣∣2 dt, (25)

where c is given by (24). Evolving the curve with such a term will cause the curve knots to

move tangential to the curve, thus bringing it to the curvilinear abscissa. An example of the type

of improvement that can be obtained in this way is shown in Fig. 5.
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Precioso et. al [33] proposed to reparametrize the curve to the constant arc-length representa-

tion after each step of the optimization algorithm to avoid the curves from looping. This scheme

would yield the same results as our approach, but is computationally much more expensive.

B. Choice of the scaling basis function

As mentioned before, the parametric representations can guarantee a small value of
∮
C |r

′′|2.

Using the well-known variational properties of splines [34], we can show that the minimization of∮
C |r

′′|2 subject to interpolation constraints yields a cubic spline curve with knots at the integers.

Thus, the cubic B-spline model appears to be the most natural choice for representing parametric

curves; it will yield a minimum curvature curve provided the parametrization is the curvilinear

abscissa (i.e. the knots are uniformly spaced on the curve). The use of spline curves also brings

in additional gains due to the existence of efficient algorithms [35], the local control of the

contour due to the finite support of the B-spline basis function and their good approximation

properties [36].

Due to these nice properties, we choose cubic spline curves in our implementation. However,

the theory we present in this paper is general enough to accommodate for any other representation

in terms of scaling function or wavelets.

C. New internal energy term

In practice, the curve will almost be parametrized in the curvilinear abscissa after a few

iterations with the internal energy term asEcurv. With this assumption, if we choosec = γ Length2

M2

in (25) instead of (24), we get

Ecurv (γ) = Ecurv +
(1− γ)2 Length2

M2
. (26)

This equation implies that we can also account for theLength term in (21) by choosingγ < 1.

We choose to perform this approximation since the partial derivatives of theLength term cannot

be computed exactly.We thus simplify the internal energy to

Eint = Ecurv (γ) . (27)

In practice, we found it better not to minimize the length of the curve under normal circumstances;

in other words, we usually setγ = 1. However, when the curve is detected to be looping, we

decrease the length of the curve by choosingγ = 0. We discuss this issue in Section VII-B.
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V. EXTERNAL CONSTRAINT ENERGY.

As mentioned before, external constraint energy provides a means for the user to interact

with the snake; he can guide the snake to the boundary when image information is too weak or

ambiguous.

We introduce a point constraint mode, where the user has the option to specify a few points

that should lie on the contour to be detected. We constrain the snake by adding an energy term

which is the distance between these points and the corresponding closest points on the curve.

The constraint energy is given by

Ec =
Nc−1∑
i=0

min
t∈[0,M ]

|r (t)− rc,i|2 , (28)

whererc,i; i = 0..Nc − 1 are the constraints. This approach can be thought of as introducing

virtual springs that pulls the curve towards the desired points: One end of the spring is fixed to

the constraint point while the other end slides on the curve.

VI. EVALUATION OF THE PARTIAL DERIVATIVES

In this section, we express the partial derivatives of the component energies of the snake. These

are used by the optimization algorithm to converge to the minimum of the energy function.

The theory mentioned so far is valid for general scaling function representations ranging

from band-limited curves (Fourier series representation) to polygons. In order to derive efficient

numerical schemes, we now make the additional assumption that the basis function is finitely

supported in the interval[0, N ]. Note that this class is still very rich as it includes most of the

known scaling function families. The interesting cases for our purpose are the cubic B-spline

function, which is finitely supported in the interval[0, 4], and the linear B-spline function with

the support[0, 2].

1) Partial derivatives of the magnitude-based image energy:Following the work of Flickner

et. al. [17], we locally optimize the snake during the initialization process (when the user is in

the process of entering the initial curve), thus providing the user with a visual feedback. For this

optimization we use the simple gradient magnitude-based energy mainly because it is applicable

even when the curve is not yet closed and also because it is simple and computationally efficient.

However, we only perform few iterations with this energy as it tends to bring the curve knots

closer as mentioned before (c.f. Fig. 3).
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(a) Initialization (b) No curvilinear energy (c) With curvilinear energy

Fig. 5. Without the curvilinear energy, the parametric representation cannot guarantee low curvature curves. Note that for the

same initialization, the curve with the curvilinear reparametrization energy leads to smoother curves. Without the energy, the

curve knots accumulate at some regions of the curve, thus leading to sharp edges; low energy curves are ensured only if the arc

length is constant on the curve.

We consider the integral in (6) and differentiate it with respect to the coefficients using the

chain rule (using (1)):  ∂Emag/∂cx,k

∂Emag/∂cy,k

 =

∫ M

0

∇g (t) ϕp (t− k) dt (29)

whereg = |∇f |2. We approximate the inner-product as a discrete sum: ∂Emag/∂cx,k

∂Emag/∂cy,k

 ≈ 1

R

NR∑
i=0

∇g

(
[k R + i]MR

R

)
ϕ

(
i

R

)
, (30)

whereR is the sampling rate and[k]M stands fork modM . In the above expression, we used the

finite support of the scaling function to limit the range of the summation. Also note that we have

transferred the periodicity from the kernel to∇g; this means that the summation is evaluated

assuming periodic boundary conditions on∇g. Thus, if∇g andϕ
(

i
R
− k
)

are precomputed, the

evaluation of the partial derivatives just involves a weighted sum. The computational complexity

is therefore proportional toRMN .

2) Partial derivatives of the unified image energy:For closed curves, we preferentially use

the unified energy to optimize the curve. In line with the work of [10], [11], [37], we now use

Green’s theorem (12) to convert region integrals (over the region bounded by a closed curve) to

integrals over the curve; our main motivation is computational efficiency. (20) can be efficiently
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computed as the curve integral∫
S

fu (x, y) dxdy =

∮
C
f y

u (x, y) dx (31)

= −
∮
C
fx

u (x, y) dy, (32)

where

f y
u (x, y) =

∫ y

−∞
fu (x, τ) dτ (33)

fx
u (x, y) =

∫ x

−∞
fu (τ, y) dτ. (34)

Applying the chain rule of differentiation on (32), we obtain∂Eimage/∂cx,k as

∂

∂cx,k

(Eimage) =
∂

∂x
(Eimage) ·

∂

∂cx,k

(x (t))

= −
∫ M

0

∂fx
u

∂x︸︷︷︸
fu

ϕp (t− k)
M∑
l=0

cy,l ϕp
′ (t− l)︸ ︷︷ ︸

y′(t)

= −
M∑
l=0

cy,l

∫ M

0

fu (t) ϕp (t− k) ϕp
′ (t− l) dt

= −
∞∑

l=−∞

cp
y,l

∫ ∞

−∞
fu (t) ϕ (t− k) ϕ′ (t− l) dt︸ ︷︷ ︸

Qfu (k,l)

. (35)

In the last step we expandedϕp (t− k) using (3) and made a change of variable, thus extending

the integral from−∞ to∞. We also transferred the periodicity ofQfu to the coefficient sequence.

SinceQfu (k, l) is a finite sequence, the evaluation of (35) amounts to an appropriate finite sum.

In a similar manner, using (31) we obtain

∂Eimage

∂cy,k

=
∞∑

l=−∞

cp
x,l

∫ ∞

−∞
fu (t) ϕ (t− k) ϕ′ (t− l) dt︸ ︷︷ ︸

Qfu (k,l)

.

The main steps in the computation of the partial derivatives are:

1) The evaluation of the sequenceQfu (k, l) ; |k − l| < N . (With a change of variables we

obtain Qfu (k, l) =
∫∞
−∞ fu (t + k) ϕ (t) ϕ′ (t + k − l) dt. Sinceϕ (t) is finitely supported

in the interval[0, N ], Qfu (k, l) is zero if |k − l| ≥ N ). Approximating the integral as a
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discrete sum, we obtain

Qfu (k, l) =
1

R

NR∑
i=0

fu

(
[kR + i]M

R

)
ϕ

(
i

R

)
ϕ′
(

i

R
+ k − l

)
︸ ︷︷ ︸

bk−l(i)

. (36)

Provided we precompute5 the sequencebm (i) ; m = {−N + 1 . . . N − 1}, the computation

of Qfu (k, l) ; 0 < k, l < M involves an weighted sum of lengthNs.

2) The evaluation of the partial derivatives, which are obtained as ∂Eimage/∂cx,k

∂Eimage/∂cy,k

 =
M−1∑
l=0

 −cp
y,l

cp
x,l

Qfu (k, l) . (37)

Here, the computational complexity is of the order ofR M2N2. Note that there is a factor of

2 advantage in implementing the partial derivatives ofEgrad as in (37) rather than its direct

evaluation from (7). The performance improvement in the implementation of the unified energy

is even better as compared to the one in [11], where the energy is the sum of two integrals.

A. Partial derivatives of the internal energy

Differentiating the expression ofEint = Ecurv and simplifying further, we obtain the partial

derivatives as a simple multidimensional filtering of the scaling function coefficients. We show

in the appendix that the partial derivatives of the the termEint can be computed as

∂

∂cx,k

(Eint) =
∑

|l|,|m|,|n|<N

cp
x,k−l cp

x,k−m cp
x,k−n h1 (l,m, n) +

∑
|l|,|m|,|n|<N

cp
x,k−l cp

y,k−m cp
y,k−n h1 (l,m, n)−

4c
∑
|l|<N

cp
x,k−l h2 (l) (38)

∂

∂cy,k

(Eint) =
∑

|l|,|m|,|n|<N

cp
y,k−l cp

y,k−m cp
y,k−n h1 (l,m, n) +

∑
|l|,|m|,|n|<N

cp
y,k−l cp

x,k−m cp
x,k−n h1 (l,m, n)−

4c
∑
|l|<N

cp
y,k−l h2 (l) ,

5The samples ofϕ can be computed by solving for its values at the integers as shown in [28] and using the two-scale relation

to refine it .
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where

h1 (l,m, n) =

∫ ∞

−∞
ϕ′ (t) ϕ′ (t + l) ϕ′ (t + m) ϕ′ (t + n) dt (39)

h2 (l) =

∫ ∞

−∞
ϕ′ (t) ϕ′ (t + l) dt. (40)

Note that the multidimensional filtering is performed assuming periodic boundary conditions. The

computational complexity is small, since the sum depends only on the coefficient sequence whose

number is typically much lesser than the number of curve samples. The computational complexity

in evaluating the above sum isN3M . The filter coefficients (39) and (40) are precomputed as

shown in Appendix-C.

B. Partial derivatives of the constraint energy

Computing the partial derivatives of (28), in all its generality, would give a very complicated

expression. To make the problem more tractable and to reduce its computational complexity, we

make the assumption that the optimal parametersti; i = 0 . . . Nc − 1 are known. In this case,

(28) gets simplified to

Ec =
Nc−1∑
i=0

|r (ti)− rc,i|2 (41)

and its partial derivatives are given by: ∂Ec/∂cx,k

∂Ec/∂cy,k

 =
Nc−1∑
i=0

 xc,i

yc,i

−
 x (ti)

y (ti)

ϕ (ti − k) . (42)

Using the finite support of the scaling functions, we limit the sum to the relevant indices (we need

to evaluate it only for{i| 0 < (ti − k) < Nc}). In practice, we resort to a two-step optimization

where the snake is first evolved using the above formulas for the derivatives with the current set

of ti’s. The optimal parametersti are then re-estimated within the loop as:

ti = arg min
t∈[0,M ]

|r (t)− rc,i| ; i = 0 . . . Nc − 1 (43)

C. Estimation of the probability distribution functions

The evaluation of (14) requires the specification of the probability distribution functions

P (f (s) |s ∈ R) and P (f (s) |s ∈ R). If we do not have any a priori knowledge of these

distributions, these are estimated iteratively from the image data itself assumingR = S and
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R′ = S ′. Note that these assumptions are valid if the snake is close to the real boundary. We use

densities such as the Gaussian distribution which are represented by a few parameters (mean and

variance). The estimation of these parameters require integrating the image and its square in the

region bounded byS. We compute the integrals efficiently using (31) with the corresponding

integrated functions (similar to (33)) precomputed.

The estimation of the distributions are followed by a non-linear transformation which maps

f into fu. Since this transformation is time consuming, the estimation of the distributions and

the updating offu is only performed periodically, typically once every 10 iterations.

D. Computation of the length and area

The computation of the internal energy requires the estimation of the current length of the

curve. We compute the length as a discrete approximation of the integral
∫M

0

(
x′ (t)2 + y′ (t)2) 1

2 dt

as

Length =
1

R

MR−1∑
i=0

√
x′
(

i

R

)2

+ y′
(

i

R

)2

. (44)

The area of the curve is obtained by Green’s theorem as
∮
C ydx, which when expanded gives

Area =
M−1∑
k=0

N−1∑
l=−N+1

cy,k cp
x,l q (k − l) , (45)

where q (m) =
∫∞
−∞ ϕ (t) ϕ′ (t−m) dt is obtained as in [38]. Note that the area obtained by

the above expression is signed; its sign is utilized to determine the direction (clockwise or

anti-clockwise) of the curve.

VII. E VOLVING THE CURVE

A. Optimization Algorithm

As mentioned before, the active contour algorithm extracts the final contour by finding the

minimum of the energy function. Having obtained the partial derivatives, we can use an efficient

optimization algorithm to evolve the contour. Here, we implemented the conjugate gradient

and steepest descend algorithms. The conjugate gradient algorithm resulted in slightly faster

convergence, but was less flexible for loop recovery and knot addition/deletion discussed later.

Hence in our final implementation we reverted to the simpler steepest descend algorithm, which

was found to be entirely satisfactory for our purpose.
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C
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Fig. 6. Computation of the elemental angle

B. Loop detection and recovery

The optimization process can sometimes lead to looping curves. The probability of loops is

greatly reduced by the introduction of the curvilinear reparameterization energy; without this

term, the knots tend to bunch together, eventually resulting in loops (c.f. Fig. 5).

Despite the use of the new internal energy, looping may still arise occasionally6 when the

image energy forces some knots to move faster than the others. This compromises our approach

since we use Green’s theorem which assumes simply connected regions. In the case of polygonal

representation (linear spline curve), Chesnaud et. al. proposed to perform crossing tests to detect

the presence of loops [24]. Unfortunately, this method is time consuming and not directly

applicable to general scaling function curves. Hence, we devised a fast method for loop detection.

We compute the total tangential angle7:

θtotal =

∫ M

0

dθ (t) dt, (46)

where

dθ (t) =
x′ (t) y′′ (t)− y′ (t) x′′ (t)

x′ (t)2 + y′ (t)2 . (47)

We show in the Appendix-D that the value of the integral (46) is2 (n−m) π, wherem andn

are the number of loops in the clockwise and anti-clockwise direction respectively. Hence, for

a simply connected curve, we expect±2π (depending on the direction in which the curve is

described). We approximate (46) by a discrete sum over the parametert.

Note that our criterion can give a value2π even if the curve is looping (whenn + 1 = m),

which implies that it is not completely foolproof. In principle, it is possible to detect these cases

6In our experiments, looping arise in about 10% of the cases.

7For a plane curve, the tangential angleθ is defined bydθ = κ |dr| [39].
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by splitting the integral (46) over a series of smaller intervals and checking if there is a loop in

each of the subintervals. However, such cases are unlikely to occur in practice and it was not

necessary to implement such a finer level of detection.

Once we detect a loop, we evolve the curve with only theEint term withγ = 0, thus decreasing

its length. In practice, the curvature of the curve at the loops are high. Since minimizing the

length corresponds to evolving the curve at every point depending on its curvature [14], the

loops tend to disappear very rapidly. This scheme may result in regions of the contour with high

curvature getting smoothed out during the loop-elimination process. However, in most cases the

image energy guides the contour back to the edges once the loops are eliminated.

(a) Initialization (b) without knot insertion

(c) with knot insertion

Fig. 7. Segmentation of the inner wall of the heart of a dog from its ultrasound image. Only the region-based energy is used

in this case (α = 0). Note that knot (knots are denoted by black dots) insertion and loopcheck is indispensable in this case.

Time taken for (c): 3.2s on a 667MHz Macintosh G4.
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C. Shrinking/growing snakes

If the snake is initialized away from the actual boundary, it has to shrink/grow to reach the

boundary. This changes the average spacing of the knots, which in turn controls the average

curvature of the curve (cf. (22)).

We monitor the length of the curve as it evolves in order to eventually add/delete knots as

required. If the average length per knot is greater than the desired value (set by the user), a knot

is added to the curve. The distances between the knots are evaluated and a knot is added at the

longest interval. Similarly, a knot is deleted if the length per knot is less than the user set value.

In this case, the knot whose sum of the distances to its neighbors is the shortest is deleted. The

addition/deletion of knots temporarily destroys the uniform spacing of knots. But, thanks to the

reparametrization energy term, it returns to the curvilinear abscissa in a few iterations (without

the reparametrization energy, knot insertion is a tricky issue as close knots may eventually lead

to looping curves). The performance improvement in adopting this strategy is illustrated in Fig.

7.

VIII. D ISCUSSION ANDCONCLUSION

We have successfully applied the snake algorithm to a variety of cases including the seg-

mentation of corpus-callossum from MR images and segmentation of the inner heart wall from

ultrasound data. Some examples of the segmented corpus-callossum images are shown in Fig.

8. Thanks to the unified image energy, the snake gives a good segmentation even if it is not

initialized very close to the actual boundary. This approach also makes the algorithm less sensitive

to the initial shape of the snake.

The curvilinear reparametrization energy ensures that the curves are smooth. Without this

term, the segmentation of the heart data (see from Fig 7) is impossible; the curves often resulted

in loops. The knot insertion/deletion procedure ensures that the evolving curve has the same

stiffness as the initialization.

To conclude, we have presented several enhancements over classical parametric snakes. We

have identified some limitations of the conventional gradient magnitude image energy and

proposed a new energy that eliminates these problems. We have shown that a general form

of this energy can be expressed as a region integral, thus unifying it naturally with the region-

based approaches. The unification yields a powerful class of image energies that combines the
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(a) (b)

(c) (d)

Fig. 8. Segmentation of corpus-callossum of 4 different subjects from their MR images. The initialization was a small curve

at the center similar to Fig. 4. We gave equal weight to the region and gradient terms (α = 0.5). Average time taken: 1.9 s on

a 667MHz Macintosh G4.

advantages of edge and region-based approaches. We have shown that the spline representation

can guarantee smooth curves if these are described in the curvilinear abscissa. Since the curve

evolution process can negatively affect the reparametrisation of the curve, we proposed a new

internal energy which forces the knot points to remain equally spaced. The various energy terms

that we have proposed are summarized in Table I.

The evolution of the curve may lead to looping curves that violate our assumption of the region

to be simply connected. Hence, we introduced a simple loop detection test. We also proposed an

efficient curve evolution-based algorithm for recovery from the loops. We introduced efficient

computational schemes for the evaluation of the partial differentials used in the optimization;

we converted all the quantities as curve integrals and simplified the expressions making use of

the properties of scaling function curve representation.

The implementation of this algorithm is available as a java plugin for ImageJ [40] at http://bigwww.epfl.ch/jacob/software/SplineSnake.
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Energy Type General Expression Special Cases

Gradient-based energy: Eq. (7)

General edge-based energy: Eq. (9)

(α = 1)

Image Energy
∫
S Tu (f) ds Region-based energy: Eq. (16)

(α = 0)

Unified energy: Eq. (20)

(0 ≤ α ≤ 1)

Curvilinear reparametrizaton energy: Eq. (25)

Internal Energy
∫M

0

∣∣|r′ (t)|2 − γ Length
M

∣∣2 (γ = 1)

Length energy: Eq. (26)

(γ = 0)

Constraint Energy
∑Nc−1

i=0 mint∈[0,M ] |r (t)− rc,i| Point constraint: Eq. (28)

TABLE I

DIFFERENT ENERGY TERMS USED IN THE SNAKE OPTIMIZATION

APPENDIX - A: SIMPLIFICATION OF THE CURVATURE TERM IN THE INTERNAL ENERGY

The square of the curvature of the curve at a pointr (t) can be expressed in the vector form

as

|κ (r) |2 =
(r′ × r′′) · (r′ × r′′)

|r′|6
(48)

Assuming the parametert to be in the curvilinear abscissa, we have|r′ (t)| = c, ∀t. Making use

of the vector identitya.(b× c) = c.(a× b), the numerator of (48) can be rewritten as

(r′ × r′′) · (r′ × r′′) = r′′ · (r′ × r′′ × r′)

= r′′ · (r′′(r′ · r′)− r′(r′ · r′′))

= |r′′|2|r′|2 − | r′′ · r′︸ ︷︷ ︸
d(r′2)=0

|2.
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In the second step, we make use of the identitya×b×c = (a ·c)b− (b ·c)a. So the expression

for the curvature can be written as

|κ(r)|2 =
|r′′|2

|r′|4
=
|r′′|2

c2
. (49)

APPENDIX - B: PARTIAL DERIVATIVES OF THE CURVILINEAR REPARAMETRIZATION TERM

Expanding (25) we obtain

Ecurv =

∫ M

0

(
x′ (t)4 + y′ (t)4 + 2x′ (t)2 y′ (t)2) dt +

c2 M − 2c

∫ M

0

(
x′ (t)2 + y′ (t)2) dt. (50)

DifferentiatingEcurv with respect tocx,k, we get

∂Ecurv

∂cx,k

=

∫ M

0

(
4x′ (t)3 + 4x′ (t) y′ (t)2) ∂

∂cx,k

(x′ (t)) dt

− 4c

∫ M

0

x′ (t)
∂

∂cx,k

(x′ (t)) dt. (51)

Now substituting forx (t) andy (t) from (1), yields

∂Ecurv

∂cx,k

=
∑

l,m,n∈Z

cp
x,l cp

x,m cp
x,n h1 (k − l, k −m, k − n) +

∑
l,m,n∈Z

cp
x,l cp

y,m cp
y,n h1 (k − l, k −m, k − n)−

4c
∑

l,m,n∈Z

cp
x,l h2 (k − l) . (52)

The filtersh1 andh2 are given by

h1 (l,m, n) =

∫ ∞

−∞
ϕ′ (t) ϕ′ (t + l) ϕ′ (t + m) ϕ′ (t + n) dt

(53)

h2 (l) =

∫ ∞

−∞
ϕ′ (t) ϕ′ (t + l) dt. (54)

With a change of variables and using the finite support ofh1 and h2, we can simplify (52) to

(38).
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APPENDIX - C: PRECOMPUTATION OF THE KERNEL

We use the property that the derivative of a scaling functionϕ can be written asϕ′ (t) =

ϕ{1} (t)−ϕ{1} (t− 1), whereϕ{1} is the scaling function whose mask (scaling filter) isA{1} (z) =(
2

1+z−1

)
A (z); A (z) ↔ ak is the mask ofϕ. Using this relation, we rewrite the filter coefficients

(39) and (40) as

h1 (l,m, n) = −4f 4b
1 4b

2 4b
3 g1 (l,m, n) (55)

h2 (l) = −4f 4b
1 g2 (l) , (56)

where

4b
i g (l1, .., li, .., ln) = g (l1, .., li, .., ln)− g (l1, .., li − 1, .., ln)

4f g (l1, l2.., ln) = g (l1 + 1, l2 + 1, .., ln + 1)− g (l1, l2, .., ln)

and

g1 (l,m, n) =

∫ ∞

−∞
ϕ{1} (t) ϕ{1} (t + l) ϕ{1} (t + m) ϕ{1} (t + n) dt (57)

g2 (l) =

∫ ∞

−∞
ϕ{1} (t) ϕ{1} (t + l) dt. (58)

The scaling functionϕ{1} satisfies the twoscale relation

ϕ{1} (t) =
N∑

k=0

a
{1}
k ϕ{1} (2t− k) . (59)

Consequently, the kernelsg1 andg2 satisfy the two-scale relations

g1 (k) =
∑

l

h1 (l) g1 (2k− l) (60)

g2 (k) =
∑

l

h2 (l) g2 (2k − l) , (61)

where the two-scale masksH1 andH2 are given by

h1 (l,m, n) =
1

2

(∑
k

a{1} (k) a{1} (k − l) a{1} (k −m) a{1} (k − n)

)
(62)

h2 (l) =
1

2

(∑
k

a{1} (k) a{1} (k − l)

)
. (63)

Using the two-scale relation, the sequencesg1 andg2 are exactly computed as in [38].
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APPENDIX - D: INTEGRAL OF THE TANGENTIAL ANGLE.

We start by observing that the integral (46) can be expressed as

θtotal = Im

(∫ M

0

d (x′ (t) + j y′ (t))

x′ (t) + jy′ (t)
dt

)
, (64)

where Im (z) gives the imaginary part ofz and j =
√
−1. This can be rewritten as the curve

integral

θtotal = Im

(∮
C′

dz

z

)
, (65)

whereC ′ is the curve described(x′ (t) , y′ (t)) andz = x′+ iy′. Using Cauchy’s integral formula,

we obtain the value of this integral as2π times the winding number8 of the contourC ′ about

the origin. Since each loop inC corresponds to one inC ′ in the same direction, but around the

origin, the winding number ofC ′ is (m− n), wherem andn are the number of timesC loops

in the anticlockwise and clockwise direction respectively.
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