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ABSTRACT
We propose a regularization scheme for image reconstruction
that leverages the power of deep learning while hinging on clas-
sic sparsity-promoting models. Many deep-learning-based mod-
els are hard to interpret and cumbersome to analyze theoreti-
cally. In contrast, our scheme is interpretable because it corre-
sponds to the minimization of a series of convex problems. For
each problem in the series, a mask is generated based on the
previous solution to refine the regularization strength spatially.
In this way, the model becomes progressively attentive to the
image structure. For the underlying update operator, we prove
the existence of a fixed point. As a special case, we investigate a
mask generator for which the fixed-point iterations converge to a
critical point of an explicit energy functional. In our experiments,
we match the performance of state-of-the-art learned variational
models for the solution of inverse problems. Additionally, we
offer a promising balance between interpretability, theoretical
guarantees, reliability, and performance.

ARTICLE HISTORY
Received 13 February 2024
Accepted 22 July 2024

KEYWORDS
Convex regularization;
data-driven priors;
fixed-point equations;
inverse problems;
majorization minimization;
solution-driven models

1. Introduction

In biomedical imaging [1], including magnetic resonance imaging (MRI) and
computed tomography, reconstructions are often achieved via the resolution
of an inverse problem. Its task is to recover an unknown signal x ∈ R

N from
noisy measurements y = Hx + n ∈ R

M , where H ∈ R
M,N encodes the data-

acquisition process and the noise n ∈ R
M accounts for imperfections in this

description. From a variational perspective [2], one defines the reconstruction
as the solution to the minimization problem

arg min
x∈RN

(
E(Hx, y) + λR(x)

)
, (1)

which involves a data-fidelity term E: RM × R
M → R≥0 and a regularizer

R : RN → R≥0. In (1), the data fidelity term ensures the consistency of
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the reconstruction with the measurements, while the regularization, whose
strength is controlled by λ ∈ R>0, imposes some regularity constraints (prior
information) on the solution.

For a large variety of data-acquisition and noise models, a well-studied zoo
of data fidelities E can be found in the literature. While an instance-specific
E is natural, it is desirable that the regularizer R is agnostic to H and n and
solely depends on the properties of the underlying images. Hence, a regularizer
that captures these inherent properties would be of great interest. Attempts
can be traced as far back as to the Tikhonov regularization [3], where images
are modeled as smooth signals. Later, this approach was outperformed by
compressed sensing [4]. Such models either assume that the signal is sparse
in some latent space (e.g., wavelet decomposition [5]) or involve a filter-based
regularizer R such as the total variation (TV) [4, 6] and its generalizations [7].
These classic signal-processing approaches achieve a baseline performance with
the advantage that they provide stability and robustness guarantees [8].

With the emergence of deep-learning techniques for the solution of inverse
problems [9], the traditional approaches have been outperformed in many
applications. The end-to-end training achieves state-of-the-art performance in
terms of quantitative metrics such as the peak signal-to-noise ratio (PSNR).
However, such models are often neither interpretable nor trustworthy for sensi-
tive applications such as biomedical imaging [10, 11]. Therefore, a recent line
of research [12–15] is focusing on the use of deep learning for the solution
of inverse problems within the variational framework (1). There, instead of
learning the whole reconstruction pipeline in an end-to-end manner, one only
learns the regularizer R. Up to now, these models have relied mostly on deep
architectures to parameterize R, which makes an interpretation difficult. To
bypass this issue, the authors in [16] have proposed to parameterize the learnable
R as

R : x �→
NC∑
c=1

〈
1N , ψ c(Wcx)

〉
, (2)

with channel-wise data-driven convolutional matrices Wc ∈ R
N,N and ψ c(x) =

(ψc(xk))
N
k=1, where the convex and symmetric profiles ψc are members of

C1,1
≥0(R), the space of nonnegative differentiable functions with Lipschitz-

continuous derivatives. Based on the architecture (2), the authors of [16] obtain
the best performance among known convex regularizers in their experiments.
Moreover, (2) has a clear interpretation as a filter-based regularizer. To further
improve the reconstruction performance, we need to look beyond convexity.
As an extension of the model (2), the authors of [17] have proposed to learn
symmetric potentials ψc ∈ C1,1

≥0(R) with ψ ′′
c ≥ −ρ a.e., namely ρ-weakly convex

ones. This relaxation significantly improves over the convex setting. In particu-
lar, it gets close to the performance of the DRUNet-based model [18], which is
among the best-performing methods with a (loose) energy interpretation.
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1.1. Outline and contribution

First, we introduce the theoretical concepts in Section 2. Then, we establish
in Section 3.1 a link between the use of a ρ-weakly convex ψc within (2)
and spatially-adaptive regularization [19–22]. To this end, we investigate the
regularizer

RMMR : x �→
NC∑
c=1

〈
1N , ψ c

(
Bc |Wcx| )〉, (3)

where the convolutional matrices Wc ∈ R
N,N and Bc ∈ R

N,N
≥0 , and the ψ c(x) =

(ψc(xk))
N
k=1 with concave potentials ψc ∈ C1,1

≥0(R≥0) are data-driven. In (3), | · |
is applied component-wise to the vector Wcx and Bc is constrained to have
normalized rows. As shorthand, we introduce the notations W = (Wc)

NC
c=1,

B = (Bc)
NC
c=1, and ψ = (ψ c)

NC
c=1. For the regularizer (3), we show in Theorem 3

that the variational problem (1) is guaranteed to have at least one minimizer.
To reach the latter, we propose to use the iterative majorization-minimization
regularization (MMR) characterized by

xk+1 ∈ arg min
x∈RN

(
E(Hx, y) + λRMMR,k(x)

)
, (4)

with initialization x1 ∈ R
N and

RMMR,k : x �→
NC∑
c=1

〈
�c(xk), |Wcx|〉, (5)

where � = (�c)
NC
c=1 : RN → (RN≥0)

NC with �c(x) = B�
c ψ ′

c(Bc |Wcx|). If E
is strictly convex and differentiable, then (4), namely the majorized problem at
the k-th step, is strictly convex. Its unique minimum can be computed using
the forward-backward splitting (FBS) algorithm [23]. Hence, we can rewrite (4)
using the associated update operator T�,W,y : RN → R

N as

xk+1 = T�,W,y(xk). (6)

In Theorem 4, we prove that the iterations (6) converge to a critical point of the
underlying problem (1).

In (5), we can interpret �c as a channel-wise spatial adaption of the regu-
larization strength, which is attentive to image structures. This viewpoint of
solution-driven spatial adaptivity [24, 25] serves as a starting point for the
generalization of the MMR model in Section 3.2. More precisely, we propose
to replace � in (5) with a more expressive convolutional neural network �̃. For
this, we relax the constraints on the activation functions and linear operators in
the mask generator � associated with (3), see Figure 1. This leads to the solution-
adaptive fixed-point iterations (SAFI) as reconstruction scheme, which involves
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Figure 1. Mask-generation architecture of the majorization-minimization (top) and the solution-driven (below) setting.
Above each arrow, we denote the signal dimension at the corresponding stage.

the regularizers

RSAFI,k : x �→
NC∑
c=1

〈
�̃c(xk), |Wcx|〉. (7)

In (7), �̃ : R
N → ([0, 1]N)NC is a 3-layer network with �̃c(x) =

φ3,c(B̂cφ2(B̃φ1(W̃x))). Its convolutional operators have dimensions W̃ ∈
R

(NC·N),N , B̃ ∈ R
(NC·N),(NC·N), and B̂c ∈ R

N,(NC·N). The activation functions
φ1(x) = (φ1,�k/N	(xk))

NC·N
k=1 and φ2(x) = (φ2,�k/N	(xk))

NC·N
k=1 share linear splines

φr,c ∈ C(R) on input blocks of size N. The final activation functions are
φ3,c(x) = (φ3,c(xk))

N
k=1, where each φ3,c ∈ C(R) is composed of a linear spline

and a Sigmoid function. The latter enforces that the entries of each �̃c remain
in [0, 1]. For the regularizers (7), the minimization problem (4) is still strictly
convex. Therefore, each update (6) in the pipeline is numerically tractable and
gives rise to an update operator T

�̃,W,y : RN → R
N . In Theorem 5, we prove

that T
�̃,W,y : RN → R

N admits at least one fixed point. In this relaxed setting,
the convergence of the SAFI scheme to a fixed point is encouraged by the use
of regularization techniques during training [26]. The parameterization details
for the architectures (5) and (7) are given in Section 3.3. The learning of the
associated parameters on denoising problems is discussed in Section 4.

Our numerical evaluation for both denoising and MRI reconstruction in
Section 5 indicates that the learning of the parameters W, B, and ψ in (3)
leads to a reconstruction performance similar to that of the weakly convex
model from [17] with ρ = 1. By setting Bc = Id in (5), we obtain a weakly
convex regularizer without a bound on ρ as special case. Hence, our theoretical
analysis, corroborated by the numerical results, leads to yet another reasonable
explanation for the performance gain of the weakly convex model [17] over
the convex one [16]. With the more general regularizer (7) associated to SAFI,
the performance gets similar to that of [27], despite the much simpler mask
generator �̃. As in previous works, we observe that the learned regularizers
generalize well to the previously unseen inverse problems. Finally, conclusions
are drawn in Section 6.



NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 5

1.2. Relation to previous work

Our regularizer RMMR relies on the architecture (2) from [17], where we add
the inner activation | · | and the nonnegative convolutional matrices Bc. The
decomposition ψc = μψc,cvx +ψc,ccv is proposed in [17] with a convex ψc,cvx ∈
C1,1

≥0(R), a concave ψc,ccv ∈ C1,1
≥0(R) with (−ρ) ≤ ψ ′′

c,ccv ≤ 0 a.e., and μ ∈ R≥0.
The convex part ψc,cvx of the learned ψc is necessary to maintain differentiability
at 0. Since our ψc only takes positive inputs, we do not have this issue and can
drop the term ψc,cvx. Further, we relax ρ from 1 to ∞ to fully explore the role
of concavity. Given that the experimental results are similar, we do not expect
that the inclusion of a convex part ψc,cvx in (3) leads to a significant gain in
performance.

For the regularizer RSAFI,k, we use the absolute value | · | instead of non-
convex potentials, as proposed in [27, 28]. Hence, the subproblem (4) for each
SAFI update is convex and the deployed optimization algorithm converges to a
minimizer. This is stronger than the mere convergence to stationary points of
[27]. Since we learn W, our RSAFI,k generalizes the data-adaptive total-variation
model in [20]. Moreover, in contrast to these approaches, we iteratively refine
the mask in RSAFI,k based on xk+1 = T

�̃,W,y(xk). This leads to implicit depth,
which is a possible explanation for why complex generators �̃ are not required
in our framework.

The majorization-minimization (MM) perspective also shows up in [21],
which deploys MM iterations to minimize a spatially adaptive model that
is similar to [27, 28]. To ensure closed-form solutions for the minimization
problems (4), the authors deploy | · |2 as potentials instead of | · | in (7). In
contrast to the SAFI approach, their masks �̃(xk) for the MM iterations are
induced completely by the underlying regularizer.

2. Preliminaries

Throughout this work, X ⊆ R
N denotes a closed convex set.

2.1. Concave functions

A function f : X → R is said to be concave if it satisfies

f
(
αx1 + (1 − α)x2

) ≥ αf (x1) + (1 − α)f (x2), ∀x1, x2 ∈ X , ∀α ∈ [0, 1].
(8)

If X is open and f ∈ C1(X ), then f is concave if and only if its gradient ∇f
satisfies 〈∇f (x1) − ∇f (x2), x1 − x2

〉 ≤ 0, ∀x1, x2 ∈ X . (9)

In the special case N = 1, condition (9) simply states that the derivative f ′ is
non-increasing on X . Another useful property is that any differentiable concave
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function f is upper-bounded by its first-order Taylor expansion
f (x1) ≤ f (x2) + 〈∇f (x2), x1 − x2〉, ∀x1, x2 ∈ X . (10)

A function f : X → R is convex if and only if (−f ) is concave.

2.2. Majorization-minimization algorithm

For a deeper exposition to MM algorithms, we refer to [29–31]. Here, we only
collect some basic definitions and the core results. For a continuous f : X → R,
we investigate the problem

arg min
x∈X

f (x). (11)

The idea behind MM algorithms is to replace f by a sequence of (approximating)
majorizations g(·, xk), xk ∈ X for which the computation of a (global) mini-
mizer is tractable. A function g : X × X → R is said to be a majorization of
f : X → R if it satisfies

i) the upper-bound f (x) ≤ g(x, xk), ∀x, xk ∈ X ;
ii) and the local tight bound g(xk, xk) = f (xk), ∀xk ∈ X .

Next, we introduce the formal MM algorithm together with a convergence result
[31, 32].

Theorem 1. For a continuous f : X → R with majorization g : X × X → R

and a starting point x1 ∈ X , the MM sequence is given by
xk+1 ∈ arg min

x∈X
g(x, xk), (12)

and the function values f (xk) are non-increasing. If g is continuous, f and every
g(·, xk) is continuously differentiable, and the sub-level set {x ∈ X : f (x) ≤
f (x1)} is compact, then all accumulation points of {xk}k∈N are critical points of
f . Moreover, if the set X ∗ = {x : 〈∇f (x), z − x〉 ≥ 0, ∀z ∈ X } is a singleton or if
X ∗ is discrete and limk→∞ ‖xk+1 − xk‖2 → 0, then the MM iterations {xk}k∈N
converge to a critical point of f .

Remark 1. The condition that X ∗ is a singleton is met if f is strongly convex,
namely if (f − σ

2 ‖ · ‖2
2) is convex for some σ ∈ R+. Hence, we get in this setting

global convergence guarantees that are similar to those of convex-minimization
algorithms.

2.3. �-Convergence

Here, we recall the basic concepts of �-convergence within our Euclidean
framework and refer to [33] for a more detailed exposition. A family of functions
{Jk}k∈N with Jk : X → [0, ∞] is said to �-converge to J : X → [0, ∞] if the
following two conditions are fulfilled for every x ∈ X :
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i) for all xk → x, it holds that J(x) ≤ lim infk→∞ Jk(xk);
ii) for every x ∈ X , there is a sequence {xk}k∈N with xk → x and

lim supk→∞ Jk(xk) ≤ J(x).

The importance of �-convergence is captured by Theorem 2. Recall that a family
of functions Jk : X → R is equi-coercive if it is bounded from below by a
coercive function.

Theorem 2 (Theorem of �-convergence [33]). Let {Jk}k∈N be an equi-coercive
family of functions Jk : X → R. If Jk �-converges to J, then it holds that
i) the optimal function values converge limk→∞ infx∈X Jk(x) = infx∈X J(x);
ii) all accumulation points of the minimizers of Jk are minimizers of J.

In particular, if all the Jk and J have unique minimizers, then Theorem 2
directly implies convergence of the minimizers of the Jk to the one of J.

3. New perspectives on ridge-based regularization

First, we provide a novel perspective on weakly convex ridge regularizers [17]
through the MMR model. Based on this perspective, we then derive our more
general SAFI reconstruction scheme.

3.1. Majorization-minimization regularization

For the MMR model, we specify R in the generic problem (1) as (3) and choose
E as the squared norm. Moreover, we allow for linear constraints by minimizing
over a closed convex polytope X ⊂ R

N . This leads to the problem

arg min
x∈X

f (x) :=
(1

2
∥∥Hx − y

∥∥2
2 + λ

NC∑
c=1

〈
1N , ψ c

(
Bc|Wcx|)〉). (13)

First, we establish the existence of minimizers for (13).

Theorem 3. Let ψc : R → R≥0, c = 1, . . . , NC, be continuous and piecewise-
polynomial functions with finitely many pieces, and letX ⊂ R

N be a closed convex
polytope. Then, problem (13) admits a minimizer.

Proof Each ψc partitions R into finitely many closed1 intervals (Im
c )

Lc
m=1 on

which it is a polynomial. Hence, if we denote the n-th row of Bc by Bc,n, each
ψ c(Bc,n|Wc ·|) partitionsX into Lc closed unions of polytopes 	m

c,n = {x ∈ R
N :

Bc,n|Wcx| ∈ Im
c }. Based on these, we can further partition X into finitely many

closed polytopes, each of which is contained in one of the ∩NC ,N
c,n=1	

mc,n
c,n , where

mc,n ∈ {1, . . . , Lc}, and on which all the Bc,n|Wc · | are linear. The infimum in
(13) is the infimum of f on (at least) one of these polytopes, say P.

1Such a partition with closed interval exists because ψc is continuous.
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Now, we pick a minimizing sequence (xk)k∈N ⊂ P. Due to the coercivity of ‖·
‖2

2, we get that the sequence (Hxk)k∈N remains bounded. By construction, there
exist diagonal matrices Dc ∈ R

N,N such that Bc,n|Wcx| = Bc,nDcWcx for every
n = 1, . . . , N and x ∈ P. Let M be the matrix which is the vertical concatenation
of H and all the Bc,nDcWc with c and n such that (Bc,nDcWcxk)k∈N remains
bounded. Since the sequence (Mxk)k∈N is bounded, we can extract a convergent
subsequence with limit u ∈ ran(M). The associated set

Q = {x ∈ R
N : Mx = u} = {M†u} + ker(M) (14)

is a closed polytope. It holds that

dist(xk, Q) = dist
(
M†Mxk + Pker(M)(xk), Q

)
≤ dist(M†Mxk, M†u) → 0 (15)

as k → +∞ and, thus, that dist(P, Q) = 0. The distance of P and Q is 0 if and
only if P ∩ Q �= ∅ [34, Theorem 1]. For the Bc,nDcWc that were not added to M,
it holds that Bc,n|Wcxk| → ∞. Hence, the interval Imc,n

c has to be unbounded.
Since ψc is a nonnegative polynomial on it, ψ c(Bc,n|Wc · |) has to be constant2

on P and ψ c(Bc,n|Wcxk|) = ψ c(Bc,n|Wcx|) for every x ∈ P ∩ Q. Hence, any
x ∈ P ∩ Q is a minimizer for (13).

Remark 2. A crucial ingredient for our proof is the architecture (3) with | · | as
the inner nonlinearity. In general, it is much harder to guarantee the existence
of minimizers for piecewise-polynomial functions [35].

The f in (13) is not necessarily convex. Hence, one should not attempt to solve
(13) using conventional convex-optimization algorithms. Instead, one can use
the majorization-minimization (MM) algorithm defined in (12) to search for
stationary points. When f is convex, this algorithm converges to a minimizer.
To apply the MM algorithm, we first show that the concavity of the ψc ∈ C1,1

≥0(R)

implies the concavity of gc(x) = 〈1N , ψ c(Bcx)〉. Based on this property, we then
construct a majorization of RMMR.

Lemma 1. If ψc ∈ C1,1
≥0(R), c = 1, . . . , NC, then gc is differentiable with

∇gc(x) = B�
c ψ ′

c(Bx). Moreover, if ψc is also concave, then gc is concave as well.

Proof We have that gc(x) = h(ψ c(Bcx)) with h(x) = 〈1N , x〉. Hence, the
Jacobian Jg is given through the chain rule as

Jgc(x) = Jh◦ψc◦Bc(x) = Jh(ψ c(Bx))Jψc(Bx)B = 1�
N diag(ψ ′

c(Bcx))Bc

= ψ ′
c(Bcx)�Bc, (16)

2A non-constant polynomial cannot have a finite limit at ±∞.
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where diag : RN → R
N,N returns a diagonal matrix whose diagonal elements

are the input vector. As ∇g(x) = Jg(x)�, the first claim readily follows. Further,
it holds for x1, x2 ∈ R

N that〈∇gc(x1) − ∇gc(x2), x1 − x2
〉 = 〈

B�
c ψ ′

c(Bcx1) − B�
c ψ ′

c(Bcx2), x1 − x2
〉

=〈
B�

c (ψ ′
c(Bcx1) − ψ ′

c(Bcx2)), x1 − x2
〉 = 〈

ψ ′
c(Bcx1) − ψ ′

c(Bcx2), Bc(x1 − x2)
〉

=〈ψ ′
c(Bcx1) − ψ ′

c(Bcx2), Bcx1 − Bcx2〉 ≤ 0, (17)

where the inequality stems from the concavity of ψc. By (9), the gc are concave
and the proof is complete.

Now, we majorize gc using its first-order Taylor expansion, see (10), and get
that〈

1N , ψ c(Bcx)
〉 ≤ 〈

1N , ψ c(Bcxk)
〉 + 〈

B�
c ψ ′

c(Bxk), x − xk
〉
, ∀xk ∈ R

N . (18)

With the change of variables x �→ |Wcx| and by summing over all c, we then get
for any xk ∈ R

N that

RMMR(x) =
NC∑
c=1

〈
1N , ψ c(Bc|Wcx|)〉 ≤

NC∑
c=1

〈
1N , ψ c(Bc|Wcxk|)

〉

+
NC∑
c=1

〈
�c(xk), |Wcx| − |Wcxk|

〉
, (19)

where �c(x) = B�
c ψ ′

c(Bc|Wcx|). Regarding the notation from Section 2, we
choose

g(x, xk) =1
2

∥∥Hx − y
∥∥2

2 + λ

NC∑
c=1

〈
1N , ψ c(Bc|Wcxk|)

〉

+ λ

NC∑
c=1

〈
�c(xk), |Wcx| − |Wcxk|

〉
. (20)

It is easy to verify that the chosen g(x, xk) is a valid majorization of f in (13).
Therefore, to compute a stationary point of f based on (12), we have to compute
the estimates

xk+1 ∈ arg min
x∈X

(1
2

∥∥Hx − y
∥∥2

2 + λ

NC∑
c=1

〈
�c(xk), |Wcx|〉). (21)

As ψ ′
c ≥ 0, these majorizations of the original problem can be interpreted

as spatially reweighted 
1-analysis regularization, where the strength of the
convex summands ‖Wcxk‖1 is reweighted by �c(xk). Accordingly, we rewrite
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the convex problem of (21) in a more compact form as

xk+1 ∈ arg min
x∈X

(1
2

∥∥Hx − y
∥∥2

2 + λ ‖Lkx‖1

)
with

Lk = [
diag(�c(xk))Wc

]NC
c=1. (22)

In Algorithm 1, we provide an iterative procedure based on FBS [23, 36] to
compute (22). To this end, we choose 1

2
∥∥H · −y

∥∥2
2 as the differentiable part

of the objective and λ ‖Lk·‖1 for the non-differentiable one. The most time-
consuming part in Algorithm 1 for generic L is the evaluation of the proximal
operator proxαλ‖L·‖1

defined as

proxαλ‖L·‖1
(z) = arg min

w∈X

(1
2

‖w − z‖2
2 + αλ ‖Lw‖1

)
. (23)

For computational purposes, it is better to consider the dual problem of (23),
which we derive as in [37].

Proposition 1. Let ProjX : RN → R
N denote the orthogonal projection onto X .

If û solves the problem

arg min
u∈RNC ·N

(1
2
‖L�u − z‖2

2 − 1
2
∥∥ProjX {L�u − z} − (L�u − z)

∥∥2
2

)
subject to

∥∥û
∥∥∞ ≤ αλ, (24)

then ProjX {z − L�û} equals (23).

Proof By duality, we have that

αλ ‖Lw‖1 = max
u

{
u�(Lw) : ‖u‖∞ ≤ αλ

}
. (25)

Plugging this into (23) leads to

min
w∈X max

u

(1
2

‖w‖2
2 + 1

2
‖z‖2

2 + w�(L�u − z)
)

subject to ‖u‖∞ ≤ αλ

= min
w∈X max

u

(1
2

∥∥∥w − (z − L�u)

∥∥∥2

2
− 1

2

∥∥∥z − L�u
∥∥∥2

2
+ 1

2
‖z‖2

2

)
subject to

‖u‖∞ ≤ αλ. (26)

Now, we can swap the min and max because the objective is convex in w and
concave in u [38, Cor. 37.3.2]. Then, we directly get that w = ProjX {z−L�u} is
optimal for the inner minimization. By removing the constant term 1

2 ‖z‖2
2 and

a change of sign, we obtain (24).

To solve (24), we apply once again FBS with the objective as the differentiable
part and the constraints for the non-differentiable one, see Algorithm 2. Note
that the subtrahend in (24) is the concatenation of a Moreau envelope with
the affine map u �→ (L�u − z). Hence, its gradient reads (L(L�u − z) −
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LProjX {L�u − z}), and the overall gradient of the objective in (24) with respect
to u is

L(z − L�u) − L
(
(z − L�u) − ProjX {z − L�u}) = LProjX {z − L�u}. (27)

Our last ingredient is the saturating function clip[κ1,κ2] : RN → R
N , which is

defined component-wise as

[clip[κ1,κ2](a)]k = clip[κ1,κ2](ak) =

⎧⎪⎨
⎪⎩

κ1, ak < κ1

ak, κ1 ≤ ak ≤ κ2

κ2, ak > κ2.
(28)

Our proposed MMR scheme is summarized in Algorithm 3. It deploys the
FBS (Algorithm 1) to solve the majorization-minimization problems (22). If
H = Id, Algorithm 1 can be terminated after one step. The involved oper-
ator Proxαλ‖Lk·‖1 is computed using again the FBS (Algorithm 2). For both
algorithms, our choice of {tk}k∈N ensures the convergence of the iterates [36].
Under the assumption of infinite precision in the sub-routines, Algorithm 3
finds indeed a critical point of f .

Theorem 4. Assume that the estimates (22) are obtained exactly within Algo-
rithm 3. Then, {f (xk)}k∈N is non-increasing. If H is invertible, then f is coercive
and all accumulation points of {xk}k∈N are in the set of critical points

X ∗ =
{

x1 ∈ X : 〈H�(Hx1 − y), x2 − x1〉

+λ

NC∑
c=1

〈
�c(x1), |Wcx2| − |Wcx1|

〉 ≥ 0, ∀x2 ∈ X
}

. (29)

Algorithm 1 FBS for solving (22)
1: Input: filter matrix L, previous minimizer x1, current iteration kout
2: Parameters: maximal iteration number KFBS, dynamic tolerance εFBS =

fε,FBS(kout) > 0
3: Initialize: t1 = 1, α = 1/‖H‖2

2, x̃1 = x1
4: for k = 1 to KFBS do
5: xk+1 = Proxαλ‖L·‖1(x̃k − αH�(Hx̃k − y), kout, k)
6: tk+1 = (k + 5)/3
7: x̃k+1 = xk+1 + tk−1

tk+1
(xk+1 − xk);

8: if
∥∥xk+1 − xk

∥∥
2 < εFBS ‖xk‖2 then

9: break
10: end if
11: end for
12: return xk+1
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Algorithm 2 Computation of proxγ ‖L·‖1 based on the dual (24) using FBS
1: Input: vector z ∈ R

N , current iteration kout, current iteration kFBS
2: Parameters: maximal iteration number Kprox, dynamic tolerance εprox =

fε,prox(kout, kFBS) > 0
3: Initialize: u1 = Lz, v1 = Lz, x1 = ProjX {z − L�u1}, t1 = 1, α = 1/‖L‖2

2
4: for k = 1 to Kprox do
5: uk+1 = clip[−γ ,γ ](vk − αLProjX {L�vk − z})
6: tk+1 = (k + 5)/3
7: vk+1 = uk+1 + tk−1

tk+1
(uk+1 − uk)

8: xk+1 = ProjX {z − L�uk+1}
9: if

∥∥xk+1 − xk
∥∥

2 < εprox ‖xk‖2 then
10: break
11: end if
12: end for
13: return xk+1

Algorithm 3 MMR scheme for (13)
1: Parameters: maximal iteration number Kout, tolerance εout > 0
2: Initialize: x1 = 0, L1 = [Wc]NC

c=1
3: for k = 1 to Kout do
4: xk+1 = FBS(Lk, xk, k)
5: Compute Lk+1 = [diag(�c(xk+1))Wc]NC

c=1
6: if

∥∥xk+1 − xk
∥∥

2 < εout ‖xk‖2 then
7: break
8: end if
9: end for

10: return xk+1

Moreover, if X ∗ is a singleton or if X ∗ is discrete and limk→∞ ‖xk+1 −xk‖2 → 0,
then the MM iterates {xk}k∈N converge to a critical point of f .

Proof First, we introduce the auxiliary variable z ∈ R
NC·N
≥0 with grouped

components zc = |Wcx| ∈ R
N in (13) and investigate the equivalent

problem

arg min
x∈X

min
z∈RNC ·N

≥0

f̃ (x, z) := 1
2

∥∥Hx − y
∥∥2

2 + λ

NC∑
c=1

〈
1N , ψ c

(
Bczc

)〉
subject to

zc = |Wcx|. (30)
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Then, the majorizations will take the form

g̃
(
(x, z), (xk, zk)

) =1
2

∥∥Hx − y
∥∥2

2 + λ

NC∑
c=1

〈
1N , ψ c(Bczk,c)

〉

+ λ

NC∑
c=1

〈
B�

c ψ ′
c(Bczk,c), z − zk,c

〉
, (31)

and their minimization subject to zc = |Wcx| leads indeed to (4). Observe that
g̃ are continuous. Further, both f̃ and the g̃(·, (xk, zk)) are differentiable. Hence,
we can apply Theorem 1 and the claim follows.

3.2. Solution-adaptive fixed-point iterations

For the MMR model with (4), the mask generator � : RN → (RN≥0)
NC allows

for a successive spatial adaption of the regularization strength. So far, the
architecture of each �c : RN → R

N≥0 is motivated by the MMR perspective. One
might wonder if a more generic �̃ : RN → ([0, 1]N)NC leads to improvements.
This leads to the SAFI scheme based on (7). As the masks generated by �̃c are
nonnegative, the resulting SAFI updates

xk+1 ∈ arg min
x∈X

J(x, xk) := 1
2

∥∥Hx − y
∥∥2

2 + λ

NC∑
c=1

〈
�̃c(xk), |Wcx|〉 (32)

are minimizers of convex problems. Moreover, if H is invertible, then (32) is a
singleton. Hence, this case gives rise to an update operator T�,W,y : X → X .
For the MMR framework in Section 3.1 with �c(x) = B�

c ψ ′
c(Bc |Wcx|), we are

guaranteed that the fixed-point iterates
xk+1 = T�,W,y(xk) (33)

are convergent. Moreover, the resulting fixed point is a critical point of
problem (13).

If one is only interested in obtaining convergence of the iterates (33), this
choice is overly constraining. For example, convergence can be guaranteed
whenever T�,W,y is nonexpansive. Any fixed point x∗ of (33) is a critical
point of (32) with xk = x∗, and we cannot improve x∗ by updating the �̃c
anymore. In contrast to [27], the spatial adaptivity of the SAFI is driven by
every estimate (32), and not only by an initial reconstruction based on the
data y. For the special case of total-variation regularization, this was therefore
coined as solution-driven adaptivity instead of data-driven adaptivity [24, 25].
In general, the updates (33) are unrelated to the critical points of the non-convex
minimization problem

arg min
x∈X

(1
2

∥∥Hx − y
∥∥2

2 + λ

NC∑
c=1

〈
�̃c(x), |Wcx|〉), (34)

where one also minimizes over the input of �̃c.
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Following the discussed ideas, we proceed as outlined in Figure 1
and Section 1, and replace �c(x) by the richer architecture �̃c(x) =
φ3,c(B̂cφ2(B̃φ1(W̃x))). As observed in [27], one expects that �̃c dampens the
response of the Wc to structure and leaves it unchanged for noise or artifacts.
Under some conditions, we can show that T

�̃,W,y admits indeed at least one fixed
point. Hence, the definition of reconstructions as fixed points of the operator
T

�̃,W,y makes sense.

Theorem 5. Let H be invertible and let σmin denote its smallest singular value.
Then, T

�̃,W,y : X → X mapsX into a ball centered at 0 with radius 2
∥∥y

∥∥
2 /σmin.

Further, T
�̃,W,y admits a fixed point.

Proof First, we investigate the range of T
�̃,W,y. By definition of T

�̃,W,y, it holds
for any x ∈ X that

1
2
∥∥HT

�̃,W,y(x) − y
∥∥2

2 ≤ J(T
�̃,W,y(x), x) ≤ J(0, x) = 1

2
∥∥y

∥∥2
2 . (35)

From this, we conclude that
∥∥T

�̃,W,y(x)
∥∥

2 ≤ 1
σmin

∥∥HT
�̃,W,y(x)

∥∥
2 ≤ 2

∥∥y
∥∥

2
σmin

. (36)

For the second part, we want to apply Brouwer’s fixed-point theorem. To this
end, we additionally need to prove that T

�̃,W,y is continuous. Due to Theorem 2,
it suffices to check equi-coercivity and the conditions for �-convergence of the
family J(·, x) parameterized by x ∈ X . First, note that it holds for any z ∈ X
that

σ 2
min
4

‖z‖2
2 ≤ 1

4
‖Hz‖2

2 ≤ 1
2
‖Hz − y‖2

2 + ‖y‖2
2 ≤ J(z, x) + ‖y‖2

2, (37)

which implies equi-coercivity. Now, let xk → x∗ and zk → z∗. By the triangle
inequality, we get that

|J(z∗, x∗) − J(zk, xk)| ≤ |J(z∗, x∗) − J(z∗, xk)| + |J(z∗, xk) − J(zk, xk)|. (38)

To obtain the lim inf inequality, it suffices to prove that the first two terms
converge to 0 as k → ∞. For the first one, we have that

|J(z∗, x∗) − J(z∗, xk)| ≤ λ

NC∑
c=1

〈|�̃c(x∗) − �̃c(xk)|, |Wcz∗|〉 → 0 (39)

because �c is continuous. For the second one, we have that

|J(z∗, xk) − J(zk, xk)| ≤ 1
2

∣∣∣‖Hz∗ − y‖2
2 − ‖Hzk − y‖2

2

∣∣∣
+ λ

NC∑
c=1

〈|�̃c(xk)|,
∣∣|Wcz∗| − |Wczk|

∣∣〉
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≤ 1
2

∣∣∣‖Hz∗ − y‖2
2 − ‖Hzk − y‖2

2

∣∣∣
+ λ

NC∑
c=1

〈
1N , |Wcz∗ − Wczk|

〉
. (40)

Again, we conclude that this quantity converges to zero. Hence, we have estab-
lished the lim inf inequality. For the lim sup inequality, we use the constant
recovery sequence xk = x∗, for which the claim follows as in (40). In summary,
this implies that T

�̃,W,y is continuous and that a fixed point exists.

Remark 3. Based on a quasi-variational inequality perspective, the authors of
[25] prove the uniqueness of fixed points for certain problems of the form (33).
Unfortunately, their assumptions are hard to verify in practice for �̃c. Hence, we
do not pursue this direction further and only provide a proof of existence.

For finding a fixed point of the SAFI operator T
�̃,W,y, we propose to use the

fixed-point iterations (33) detailed in Algorithm 4. Unfortunately, a proof of
convergence for these iterations is highly nontrivial. In practice, we encourage
this property by using a random number of iterations for the training of the
model, as detailed in Section 4. Imposing Lipschitz constraints on the masks
could potentially be helpful for proving the convergence of the fixed-point
iterations. Note that, for our simple generator �̃, we can efficiently enforce
such constraints, as detailed in [39]. For Theorems 4 and 5, we require the
invertibility of the forward operator H to define a single-valued update operator
T

�̃,W,y. For its set-valued generalization, which naturally arises if we drop the
invertibility assumption, a stability analysis of the defining problem (32) was
recently established in [28]. Note that in the single-valued case, such results
are often key to establish the existence of fixed points. Independent of any
theoretical considerations, we observed a converging behavior of both MMR

Algorithm 4 SAFI scheme for (33)
1: Parameters: maximal iteration number Kout, tolerance εout > 0
2: Initialize: x1 = 0, L1 = [Wc]NC

c=1
3: for k = 1 to Kout do
4: xk+1 = FBS(Lk, xk, k)
5: Compute Lk+1 = [diag(�̃c(xk+1))Wc]NC

c=1
6: if

∥∥xk+1 − xk
∥∥

2 < εout ‖xk‖2 then
7: break
8: end if
9: end for

10: return xk+1
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and SAFI for the compressed-sensing MRI experiment in Section 5, where H is
not invertible.

3.3. Parameterization of the learnable parameters

We now provide details of the parameterization for our two solution-adaptive
regularizers. The regularization strength λ in (13) and (32) is learnable for
the corresponding reconstruction models. For the MMR model (13) from
Section 3.1, the remaining parameters are the linear operators {W, B} and
the concave potentials in � . For the SAFI problem (32) from Section 3.2, the
remaining parameters are the linear operators {W̃, B̃, B̂} and the activation
functions {φ1, φ2, φ3}. Taking a closer look at Algorithms 1–3, we observe
that we actually only need access to � ′ and not to � itself. Hence, we directly
parameterize the derivatives � ′ instead.

3.3.1. Parameterization of linear operators
All linear operators are constructed with the Conv2d module from PyTorch.
Here, we only detail the construction for the output dimension NC. More
specifically, we decompose each operator into S stacked Conv2dmodules; each
with NC output channels, a kernel size (ks × ks), and a group size G. This was
observed to be more effective than the direct use of a single Conv2d module
with a larger kernel size [16, 17]. Here, the group size G controls the potential
transfer of information across the different channels. In particular, if G = 1,
then each kernel of the kth layer, k ∈ 2, . . . , S, is convolved with all the ones of
the (k − 1)th layer. If G = NC, then each kernel is only convolved with the one
of its channel.

3.3.2. Constrained linear operators
We impose constraints on some convolution kernels. All the kernels of W and
W̃ should have zero mean. To ensure this, let w ∈ R

k2
s contain the vector-

ized elements of the respective kernel. Then, we can use the parameterization
w �→ (w − (1�w)/k2

s ), and optimize over unconstrained variables. For B, we
impose that the kernel elements are positive and sum to one. Let b ∈ R

k2
s

be the vectorized kernel elements. Here, the implementation of the constraint
is nonnegative with the parameterization b �→ (|b| (1� |b|)). Note that |·| is
applied element-wise to b.

3.3.3. Learnable activation functions
For the {φ1, φ2, φ3} in �̃, we rely on the learnable linear-spline framework
introduced in [40]. More precisely, we use a uniform grid centered at 0 with
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stepsize � and 2M + 1 points, M ∈ N, and the B-spline of degree one defined
as

β1(x) =
{

1 − |x|, x ∈ [−1, 1]
0, otherwise.

(41)

Then, we parameterize each φp,c based on the vector dp,c ∈ R
2M+1 of function

values at the grid points as

φp,c(x) =

⎧⎪⎨
⎪⎩

dp,c,1 + dp,c,2−dp,c,1
�

(x + M�) , x ∈ (−∞, −M�)∑M
k=−M dp,c,k+M+1β

1(x/� − k), x ∈ [−M�, M�]
dp,c,2M+1 + dp,c,2M+1−dp,c,2M

�
(x − M�) , x ∈ (M�, ∞) .

(42)

In particular, φp,c is nonlinear on [−M�, M�] and extrapolated linearly outside
of this interval.

3.3.4. Concave potentials
For the MMR model, we parameterize the ψ ′

c, c = 1, . . . , NC, as

ψ ′
c(x) = clip[0,1]

(
σc(rcx)

)
, (43)

where σc : R≥0 → R are learnable linear splines and rc ∈ R>0 are learnable
scaling constants that adapt the range. To parameterize {rc}NC

c=1, we use the
nn.Parameter module of PyTorch. To ensure their positivity, we use
|rc| instead of rc in the implementation. As σc is only defined on R≥0, we
parameterize it with its M + 1 values on the nonnegative part of the grid
from (42) denoted by dc ∈ R

M+1. As ψc must be concave, its derivative ψ ′
c

is constrained to be non-increasing on R. This can be achieved by using a non-
increasing σc with σc(0) = 1. To enforce the condition σc(0) = 1, it suffices
to fix dc,0 = 1. Let D ∈ R

M,M+1 be defined via (Ddc)m−1 = (dc,m − dc,m−1),
m = 2, . . . , M + 1. If all elements of Ddc are non-positive, then σc is non-
increasing. To directly embed this constraint into the parameterization, we
define

P↓(dc) = Sclip[−∞,0](Ddc) + 1M+1, (44)

where S ∈ R
M+1,M with (Sdc)m = ∑m−1

k=1 dc,k, m = 1, . . . , M +1. By projecting
the unconstrained coefficients dc ∈ R

M+1 to P↓(dc), we ensure that the
corresponding σc is non-increasing. With the proposed parameterization, the
associated concave profiles ψc : R≥0 → R≥0 satisfy the following properties.
i) They are piecewise-quadratic, nonnegative, and increasing.
ii) We have that 0 ≤ ψ ′

c(x) ≤ 1 for all x ∈ R≥0 and ψ ′
c(0) = 1.

4. Architecture and training

For our regularizers (5) and (7), we now describe the learning of the param-
eters detailed in Section 3.3. For both architectures and their respective



18 M. POURYA ET AL.

reconstruction routines Algorithm 3 and 4, we learn them by solving a denois-
ing problem with additive white Gaussian noise of standard deviation σ ∈
{5/255, 15/255, 25/255}. Since the training procedure is exactly the same for
both architectures, we restrict our discussion to (5).

Let {xm}M
m=1 with xm ∈ R

40×40 be a set of clean patches from the grayscale
BSD500 dataset [41], and let {ym}M

m=1 = {xm +nm
σ }M

m=1 be some noisy versions,
where nm

σ is a realization of the noise. For all experiments, we train with M =
238400 patches. In the following, we collect all the learnable parameters of
(5) in the variable θ . Given a noisy patch ym, we obtain its denoised version
Dn1,n2,n3

θ ,σ (ym) by applying Algorithm 3 with Kout = n1 steps. As discussed
in Section 3.1, fixing KFBS = n2 = 1 for Algorithm 1 suffices to guarantee
convergence in the denoising case. For calculating the involved proxγ ‖L·‖1 based
on Algorithm 2, we use KFBS = n3 steps. During the training phase, all the
tolerances are set to (−1) to ensure that the maximum number of steps is used.
Now, we propose to learn the optimal parameters θ̂ in Dn1,1,n3

θ ,σ based on the
empirical risk

θ̂ ∈ arg min
θ

6∑
n1=4

12∑
n3=10

M∑
m=1

∥∥Dn1,1,n3
θ ,σ (xm + nm

σ ) − xm∥∥2
2. (45)

To solve (45), we use the ADAM optimizer [42] with a learning rate of 10−3

and a batch size of 128 patches that are reconstructed for a single pair (n1, n3).
This pair is uniformly drawn at random from one of the possible values for
each batch. As documented in [26], using a random numbers of iterations has
a regularizing effect when unrolling fixed-point iterations. In particular, this
prevents the models from getting overfitted to a specific number of iterations.
We perform 40 training epochs and reduce the learning rate by a factor of 0.1
at the 5th and 10th epoch. After each epoch, we evaluate the performance of
the model on the Set12 validation data, and choose the output model as the one
with the best performance. As a result, we obtain the regularization strength in
(13) as well as the linear layers and the potentials that appear in (5).

Remark 4. Instead of pursuing an unrolling approach for training, one can also
aim to minimize (45) for n1 = n3 = ∞ with implicit-differentiation techniques
[43, 44]. However, as already observed in [16], it is usually unnecessary to fully
compute the involved fixed points in Dn1,1,n3

θ ,σ (ym) to learn good parameters θ for
the regularizer. Moreover, as we have two nested fixed-point problems, namely
the problems (22) and (23), this easily gets prohibitively expensive.

4.1. Architecture and initialization

We use the default nn.Conv2D initialization for every linear layer, and
initialize λ as 10−4. Below, we discuss the remaining hyperparameters and
initializations.
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MMR model: For the operators {Wc}NC
c=1, we proceed as described in Section 3.3

with NC = 64, S = 2, ks = 7, and G = 1. Further, we force the kernels to be
zero-mean. For the modeling of {Bc}NC

c=1, we use a linear layer with NC = 64,
S = 2, ks = 7, and G = 64. Here, we enforce that the kernels are positive
and normalized. For each concave potential ψc, we use 21 gridpoints, which
corresponds to M = 20 and � = 0.05. We initialize the expansion coefficients
of the splines with zero, except dc,0 = 1. Every rc is initially set to one.

SAFI scheme: To model the linear layers {Wc}NC
c=1, we choose NC = 64, S =

2, ks = 7, and G = 1. We enforce that the kernels are zero-mean. To model
{Wc,1}NC

c=1 , {Wc,2}NC
c=1, and {Wc,3}NC

c=1, we use linear layers with NC = 64, S =
1, ks = 7 and G = 1. Further, we use linear splines with no constraints to
parameterize {φ1,c}NC

c=1, {φ2,c}NC
c=1, and {φ3,c}NC

c=1, as described in Section 3.3. For
this, we use 21 knots, which correspond to M = 10 and � = 0.1. We initialize
all expansion coefficients of the splines with zero.

4.2. Fine tuning

The interpretability of the learned denoiser Dn1,1,n3
θ ,σ with the small n1 and n2

from the training stage is, however, limited. In particular, we only perform
a partial minimization (unrolling) of (13). To remain within our theoretical
setup, we need to iterate Algorithms 1–3 until convergence during the evaluation
phase. Doing so without modifying the regularization strength λ in (13) has led
to over-smoothing in our experiments. Moreover, the training of the model is
for denoising only and not necessarily adapted to other inverse problems with
H �= Id. To deal with these issues, we propose to deploy (5) with the previously
learned parameters for (13) and solely fine-tune λ on a small set of task-specific
validation data with a coarse-to-fine grid search, as described in [16]. Hence,
we get two different denoisers for our numerical evaluation: first, the unrolled
version Dn1,1,n3

θ ,σ , which is exactly what we have trained for, but which is not
necessarily a fixed point of (33); second, the exact fixed point D∞,1,∞

θ ,σ with an
adapted λ, which uses more iterations and for which our theoretical analysis
holds. For the inverse problems, we use the parameters of the denoising models
that are trained with σ = 15/255. Here, we only have the fixed-point-based
reconstruction operator as we do not train for the task.

4.3. Algorithm hyperparameters for evaluation

We aim to iterate Algorithms 1–3 until convergence, namely, up to machine
precision. Still, we enforce an upper bound on the number of iterations for all
algorithms. This ensures that we always remain within a reasonable computa-
tional budget. Independent of H, we set Kprox = 500 and Kout = 10. For the
denoising case with H = Id, we know that KFBS = 1 suffices for convergence.
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There, we use the iteration-dependent tolerance

fε,prox(kout, kFBS) =
{

10−3(0.01)
kout

5 , kout ≤ 5
10−5, kout > 5.

(46)

For H �= Id, we set KFBS = 1000 and use the iteration-dependent tolerances

fε,FBS(kout) =
{

10−3(0.01)
kout

5 , kout ≤ 5
10−5, kout > 5,

and

fε,prox(kout, kFBS) =
{

3εFBS(
1
9)

kFBS
50 , kFBS ≤ 50

εFBS
3 , kFBS > 50.

(47)

To summarize, for efficiency, the inner subproblems are solved with lower
precision early on, while the precision for the later stages is higher to ensure
convergence. This is a common technique to accelerate majorization minimiza-
tion models [31] and the FBS algorithm [45, 46].

5. Numerical results

First, we present denoising results as this is our training problem. Then, we
deploy the regularizers (5) and (7), which we learned for denoising, to a MRI
problem without additional training. For this, we need to adapt the λ in (13) and
(32) on some (small) validation set. With this task shift, we want to underline
the universality of our approach. The code for our experiments is available on
GitHub3. In this section, the images of each row in a figure are plotted with the
same grayscale.

5.1. Denoising

Before investigating the qualitative behavior of the proposed regularizers (5) and
(7), we first compare their quantitative performance with competing learned
regularization methods. The achieved PSNR values on the BSD68 test set are
given in Table 1. There, we compare our approach with BM3D, which is a popu-
lar baseline [47]. We also compare with the WCRR model of [17] and its spatially
adaptive extension SARR [27], which both motivated our approach. Finally, we
include Prox-DRUNet [18] as a regularizer with a deeper parameterization and
some (loose) theoretical guarantees. For the SAFI, we report results for both the
training (SAFI5) and the evaluation configuration (SAFI) with the λ adaption.
The performance difference between them is negligible. Hence, from now on,
we solely use the evaluation configuration. Additionally, we provide a visual
denoising comparison for the castle image in Figure 2. Here, we observe that our
SAFI scheme recovers the tip of the spire, which is in general hard to achieve for

3https://github.com/mehrsapo/MMR_SAFI

https://github.com/mehrsapo/MMR_SAFI
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Table 1. Denoising performance (in terms of PSNR) on the BSD68 test set.

Method BM3D [47] WCRR [17] MMR SARR [27] SAFI SAFI5 Prox-DRUNet [18]

σ = 5/255 37.54 37.65 37.67 37.84 37.90 37.91 37.97
σ = 15/255 31.13 31.20 31.05 31.55 31.56 31.60 31.70
σ = 25/255 28.61 28.68 28.62 29.07 29.05 29.10 29.18

The average standard deviation of the PSNR for each image (based on 5 reconstructions) is similar for all settings and is
roughly 0.02.

Figure 2. Denoising of the castle image corrupted by additive white Gaussian noise with σ = 25/255.

Figure 3. Solution path of the MMR method for denoising with σ = 25/255. Each image (k, ek , PSNRk ) represents xk+1

at the kth step of Algorithm 3, with relative error ek =
∥∥xk+1−xk

∥∥
2‖xk‖2

.

σ = 25/255. The spatial adaptivity helps to preserve sharp edges in the image.
Still, all but the Prox-DRUNet method tend to slightly smooth the image.

Regarding the qualitative behavior, we provide a solution path for MMR and
SAFI in Figures 3 and 4, respectively. Somewhat surprisingly, the algorithm
outputs a blurred reconstruction after the first step, in which all the noise is
removed at the onset. This initial reconstruction is then progressively sharpened
throughout the remaining iterations. This behavior is particularly striking as
SAFI still recovers the tip of the spire, see Figure 2, which only reemerges in
the later iterations. This is only possible since we update the mask iteratively
based on the previous reconstruction, which is not the case for the one step
method SARR. As guaranteed by Theorem 4, the residuals along the path for
MMR in Figure 3 become small. The same is the case for SAFI where the iterates
seem to converge to a fixed point, which necessarily exists due to Theorem 5. We
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Figure 4. Solution path of the SAFI scheme for denoising with σ = 25/255. Each image (k, ek , PSNRk ) represents xk+1

at the kth step of Algorithm 4, with relative error ek =
∥∥xk+1−xk

∥∥
2‖xk‖2

.

Figure 5. Masks and responses for the learned regularization architectures (5) and (7). Black corresponds to lower values
and white to higher ones. Note that {Wc}NC

c=1 is learned within the MMR and SAFI frameworks for the first and last three
figures (from the left), respectively.

observe the same converging behavior for all images in the BSD68 test set. Also,
the visual behavior along the path is very similar in terms of an initial strong
smoothing followed by a later recovery of sharp features.

Now, we provide some intuition for the superiority of our approach over
its nonadaptive counterpart. If ‖W·‖1 is a well-performing regularizer, the
Wc should not respond to the distinctive properties of an image. To investi-
gate this for both MMR and SAFI, we display the response of the respective∑NC

c=1 |Wc·| to the noisy image y in Figure 5. For both cases, the structure of
the image is also triggered in addition to the noise. This leaves some room
for improvements of the reconstruction results. In particular, we can dampen
this undesirable response using the masks. Then, the effect of image structure
on the regularization cost becomes less pronounced. In Figure 6, we see how
the masks become progressively more attentive to the image structure. Overall,
the richer parameterization of the mask generator �̃ for SAFI captures the
image structure better. In particular, the masks for SAFI can still impose a high
penalization in the vicinity of edges, whereas this is impossible for the masks
from MMR. Overall, this results in a regularizer for which the image structures
are less penalized. To conclude, the SAFI scheme leads to a better reconstruction
performance than MMR model.
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Figure 6. Evaluation of the masks for MMR (top) and SAFI (bottom). Both models become successively attentive to
image structure. Still, the extracted structure in the MMR masks is far less pronounced.

5.2. Magnetic resonance imaging

Now, we deploy the proposed regularizers (5) and (7) to solve MRI-
reconstruction problems. We use the single- and 15-coil MRI setups detailed
in [16]. For each setup, the ground-truth images consist of proton-density-
weighted knee images from the fastMRI dataset [11], both with fat suppression
(PDFS) and without fat suppression (PD). In total, this leads to four evaluation
tasks. For each task, we use a validation set of ten images to fine-tune the
regularization strength λ in (13) and (32), respectively. We then report the test
performance of the calibrated models on the remaining fifty test images. To
generate the ground-truth image, we use the fully sampled k-space measure-
ments. For the single-coil setup, we generate the measurements through a direct
masking of the Fourier measures. In the 15-coil setup, we subsample the Fourier
transforms of the ground-truth images multiplied by the respective sensitivity
maps. For this, we use the BART [48] implementation of the ESPIRiT algorithm
[49]. The subsampling rate of each setup is determined by the acceleration factor
Macc with the number of columns kept in the k-space being proportional to
1/Macc. Our single-coil setup is 4-fold (Macc = 4) and our multi-coil setup is
8-fold (Macc = 8). The measurements are then corrupted with additive white
Gaussian noise of standard deviation σ = 2 · 10−3. In Table 2, we provide both
the PSNR and structural-similarity index measure (SSIM) values on centered
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Table 2. PSNR (first columns) and SSIM (second columns) values for the MRI experiment.

4-fold single coil 8-fold multi-coil

PD PDFS PD PDFS PD PDFS PD PDFS

Zero-fill (H�y) 27.40 29.68 0.729 0.745 23.80 27.19 0.648 0.681
TV [23] 32.44 32.67 0.833 0.781 32.77 33.38 0.850 0.824
CRR [16] 33.99 33.75 0.880 0.831 34.29 34.50 0.881 0.852
WCRR [17] 35.78 34.63 0.899 0.838 35.57 35.16 0.894 0.856
SARR [27] 36.25 34.77 0.904 0.839 35.98 35.26 0.901 0.858
Prox-DRUNet [18] 36.20 35.05 0.901 0.847 35.78 35.12 0.894 0.857
MMR 35.63 34.49 0.896 0.833 35.33 34.97 0.891 0.849
SAFI 36.43 34.92 0.908 0.844 36.06 35.36 0.901 0.860

(320 × 320) patches. Here, we compare against the popular TV regularization,
the CRR as a state-of-the-art convex regularizer, its weakly convex extension
WCRR, and the Prox-DRUNet as a popular PnP approach. Note that all of these
methods are universal in the sense that they can be deployed without additional
training. The full implementation details for the CRR and WCRR can be found
in the respective papers. For Prox-DRUNet, we deploy the DRS-PnP algorithm
proposed in [18], which was previously adapted to our experimental setups
in [27].

As we observe in Table 2, the MMR model achieves a performance close
to that of the weakly convex model introduced in [17]. This underlines again
the strong relationship between the two regularization architectures and the
associated models. The proposed SAFI regularizer achieves the best perfor-
mance in three out of the four tasks and is second-best in the other one.
Overall, these results indicate that our regularizers (5) and (7) generalize well
to inverse problems with the model parameters that were obtained by training
on a denoising task. If enough data and compute resources are available, task-
specific fine-tuning (second training stage) of the model parameters using
the actual data or the forward operator H can help to further increase the
performance.

In Figure 7, we provide multi-coil MRI reconstructions for a PD-type
image. There, we observe that MMR results in a reconstruction that is sharper
than the one with CRR, while the SAFI scheme yields even better results.
Most importantly, these improvements do not come at the price of artifacts
in the reconstruction. In terms of quantitative metrics, the Prox-DRUNet
solution is comparable to SAFI. However, as we observe in the insets, this
solution represents poorly the original texture of the images. In particular,
it allows for sharp transitions but smooths out the textured parts of the
image in this example. In Figure 8, we investigate the single-coil setup for
a PDFS image. This is the only case where the Prox-DRUNet is best on
average. Although the Prox-DRUNet solution achieves higher PSNR than the
SAFI solution, it is hard to observe pronounced visual differences between
them.
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Figure 7. Reconstructions for multi-coil MRI (PD). The reported metric is (PSNR, SSIM). The second row contains the
zoomed-in insets. The last row shows the squared value of the residuals, which are cutoff at 0.003.

Figure 8. Reconstructions for single-coil MRI (PDFS). The reported metric is (PSNR, SSIM). The second row contains the
zoomed-in insets. The last row shows the squared value of the residuals, which are cutoff at 0.003.

5.3. Algorithmic aspects for MMR and SAFI

5.3.1. Initialization
In principle, the proposed MMR and SAFI reconstructions depend on the
initialization of the schemes. The initializations are required to compute the
first masks � and �̃ for MMR and SAFI, respectively. In Algorithms 3 and 4,
we initialize with the solution of the nonadaptive convex problems (21) and
(32) with �c = 1N and �̃c = 1N , respectively. These plain experiments
are denoted by CVX. To evaluate the sensitivity to this choice, we compare
it against two alternatives. First, we perturb the proposed initialization by
additive white Gaussian noise with σ = 15/255. These noisy experiments are
denoted by Perturbed CVX. As an even stronger deviation, we use a random
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Table 3. Robustness study: PSNR value after each MMR/SAFI update for the multi-coil MRI (PD) reconstruction experi-
ment in Figure 7 depending on the initialization.

Update 0 1 2 3 4 5 6 Final

MMR, CVX 34.24 35.93 36.30 36.38 36.41 36.43 36.43 36.44
MMR, Perturbed CVX 24.16 35.10 36.17 36.35 36.41 36.42 36.43 36.43
MMR, Random 0 34.17 36.08 36.33 36.40 36.42 36.43 36.43

SAFI, CVX 33.70 35.55 35.84 35.91 35.94 35.95 35.96 35.97
SAFI, Perturbed CVX 24.10 35.09 35.76 35.90 35.94 35.95 35.96 35.97
SAFI, Random 0 21.66 34.70 35.59 35.82 35.89 35.93 35.96

initialization, where each entry is drawn from the standard normal distribution.
These challenging experiments are denoted by Random. The PSNR values of
the respective reconstructions for the MRI experiment from Figure 8 are given
in Table 3. Most importantly, we observe that all variants eventually lead to
the same PSNR. This indicates that the fixed point does not depend on the
initialization. Unsurprisingly, the convergence to this fixed point occurs faster
with a better initialization. We also observe the same behavior for other images.
Finally, as indicated in Algorithms 1 and 2, the involved convex subproblems
are always initialized with the minimizer of the previous one to accelerate the
convergence.

5.3.2. Computational complexity
For the discussed MRI setups, the iterative SAFI approach is on average five
times slower than the Prox-DRUNet approach, which does not incorporate
any refinement steps. Reconstruction methods with a similar regularization
architecture that do not incorporate a mask refinement (such as WCRR) can be
even 50 times faster than SAFI. Memory-wise, SAFI has almost 10 times fewer
parameters than ProxDRUNet and about 100 times more than WCRR. Since
our approach brings valuable insights regarding weakly convex and spatially
adaptive regularization, future work should focus on the improvement of the
computational effectiveness of the approach. Since the subproblems (21) and
(32) are convex, we can choose from a rich pool of methods for this goal.
Moreover, we can draw from the literature on accelerating MM iterations
[30, 31].

6. Conclusion

We have proposed to use an iterative majorization-minimization regulariza-
tion (MMR) along with solution-adaptive-fixed-point iterations (SAFI) as new
families of data-driven regularizers. They give rise to a sequence of convex
reconstruction problems. Numerically, the minimizers associated with this
sequence converged to a fixed point in all of our experiments. Overall, this
leads to a robust, universal, and interpretable regularization method for inverse
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problems. A benefit of our simple mask generator for SAFI is that it is well-
suited to the enforcement of Lipschitz constraints, which are in turn important
to obtain stability estimates. Such constraints might be the key to the proof of
the convergence of the fixed point iterations. Finally, it could also be interesting
to explore other architectural constraints for generating the masks to obtain
theoretical guarantees.
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