
 - 1 - 

A software solution for recording circadian oscillator 
features in time-lapse live cell microscopy 
 

Daniel Sage1*, Michael Unser1, Patrick Salmon2 and Charna Dibner3 

1Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), 

Lausanne, Switzerland 

2Department of Neurobiology, Faculty of Medicine, University of Geneva, Geneva, 

Switzerland 

3Division of Endocrinology, Diabetes and Nutrition, University Hospital of Geneva 

(HUG), Geneva, Switzerland 

 

*Corresponding author 

 

Email addresses: 

DS: daniel.sage@epfl.ch 

MU: michael.unser@epfl.ch  

PS: patrick.salmon@unige.ch 

CD: charna.dibner@hcuge.ch 

 



 - 2 - 

Abstract  
Background 
Fluorescent and bioluminescent time-lapse microscopy approaches have been 
successfully used to investigate molecular mechanisms underlying the mammalian 
circadian oscillator at the single cell level. However, most of the available software 
and common methods based on intensity-threshold segmentation and frame-to-
frame tracking are not applicable in these experiments. This is due to cell movement 
and dramatic changes in the fluorescent/bioluminescent reporter protein during the 
circadian cycle, with the lowest expression level very close to the background 
intensity. At present, the standard approach to analyze data sets obtained from time 
lapse microscopy is either manual tracking or application of generic image-
processing software/ dedicated tracking software. The latter however only applicable 
in cases where the cell does not change its position during the whole experiment, 
and thus are limiting. 
 
Results 
In an attempt to improve existing methodology of time-lapse tracking of a large 
number of moving cells, we have developed a semi-automatic software package. It 
extracts the trajectory of the cells by tracking theirs displacements, makes the 
delineation of cell nucleus or whole cell, and finally yields measurements of various 
features, like reporter protein expression level or cell displacement. As an example, 
we present here single cell circadian pattern and motility analysis of NIH3T3 mouse 
fibroblasts expressing a fluorescent circadian reporter protein. Using Circadian Gene 
Express plugin, we performed fast and nonbiased analysis of large fluorescent time 
lapse microscopy datasets. 

Conclusions 
Our software solution, Circadian Gene Express (CGE), is easy to use and allows 
precise and semi-automatic tracking of moving cells over longer period of time. In 
spite of significant circadian variations in protein expression with extremely low 
expression levels at the valley phase, CGE allows accurate and efficient recording of 
large number of cell parameters, including level of reporter protein expression, 
velocity, direction of movement, and others. CGE proves to be useful for the analysis 
of widefield fluorescent microscopy datasets, as well as for bioluminescence imaging. 
Moreover, it might be easily adaptable for confocal image analysis by manually 
choosing one of the focal planes of each z-stack of the various time points of a time 
series. 
 
  
Availability: CGE is a Java plugin for ImageJ; it is freely available at: 
http://bigwww.epfl.ch/sage/soft/circadian/. 
 

Background  
Circadian oscillators have been described in virtually all organisms from 
cyanobacteria to humans. The mammalian circadian timing system has a hierarchical 
structure in that a master pacemaker residing in the suprachiasmatic nucleus 
synchronizes slave oscillators existing in most body cells (Reppert, 2006). Moreover, 
circadian clocks are ticking in mammalian cultured cell lines, like Rat1 or NIH3T3 
fibroblasts, and these clocks are self-sustained and cell-autonomous (Balsalobre, 
1998; Nagoshi, 2004). A negative transcription/translation feedback loop, comprising 



 - 3 - 

clock genes repressing their own transcription, was proposed as the universal 
operational principle for generating circadian rhythm. Posttranslational events, like 
protein phosphorylation or acetylation, contribute critically to rhythm generation 
(Asher, 2008; Reinke, 2008). 
Recent advances in time-lapse fluorescent imaging have allowed new insights into 
the mechanisms of circadian rhythms. Luciferase enzymes have been extensively 
used as reporters for numerous purposes in organisms as diverse as cyanobacteria, 
plants, fruit flies, and mice (Welsh, 2005). Bioluminescence and fluorescence time 
lapse microscopy approaches have been successfully used to investigate molecular 
mechanisms of the mammalian circadian oscillator at a single cell level, the cross talk 
between individual cell clocks, and the mechanisms of single cell clock 
synchronization (Liu, 2007; Nagoshi, 2004). Transgenic NIH3T3 cell lines stably 
expressing a short-lived nuclear yellow fluorescent protein (Venus) from circadian 
regulatory elements of the Rev-erb! locus (Rev-VNP), or luciferase protein driven by 
circadian Bmal1 promoter  (Bmal1-luc), have been established and exploited to 
unravel different aspects of mammalian circadian clockwork machinery (Asher, 2008; 
Dibner, 2009; Nagoshi, 2004).  
In spite of remarkable potential of the time lapse microscopy to address various 
questions of circadian biology, there is a very limited number of data analysis 
software available. Commercially available software Metamorph (Universal Imaging 
Corp), Imaris (Bitplan A.G.) and DiaTrack (Semasopht) incorporate modules to track 
objects and to measure intensity in a region of interest. However, the analysis of the 
reporter protein level in the described above time lapse microscopy datasets using 
these software requires a lot of manual interventions. Metamorph interrupts tracking 
in every valley of the circadian cycle; therefore the user has to manually complete the 
trace. This is mainly due to the high variation of intensity in the reporter protein level 
from one frame to another. Approaches based on intensity threshold or on template 
matching are not able to perform a correct tracking. In addition, a manual analysis is 
unreasonably time-consuming and subject to errors in observer judgment. 
In an attempt to go beyond the tracking capability of conventional software, we 
tailored our approach towards tracking over longer periods of time. To achieve this, 
we had to employ advanced image-analysis methods to filter away reliance on a 
strongly changing fluorescent or bioluminescence reporter signal. We developed this 
new user-friendly image-analysis software for accurate tracking of individual cells in a 
living cell population. Tools presented here allow tracking and segmentation of the 
cells under the conditions of cyclic variations of intensities. The standard approach to 
track is to decompose the problem into two steps: 1) the segmentation phase which 
extracts the objects from the background in a frame; 2) the linking phase which tries 
to find the best match between objects from one frame to the next frame. This is the 
“frame-to-frame tracking” paradigm, taken by most commercial software and by the 
majority of the research community (Cheezum, 2001). A nearest-neighbor approach 
fails quickly because the cells have similar appearance in the valley of the circadian 
cycle. This approach can not be applied for the study of circadian oscillator. The 
circadian reporter protein expression level oscillates dramatically over 24 hours, to 
the extent that at the lowest point it comes close to the background level (Fig. 3B), 
making it difficult to distinguish the reporter level from the background. To resolve 
this tracking problem, we propose a solution where there is no explicit detection of 
the object to track. We formalize the tracking as an optimal process solving the 
shortest-path problem with the dynamic programming algorithm (Sage, 2005). 
Therefore, extracting the cell trajectory consists of finding a path in the spatio-
temporal volume 2D+T by optimizing a cost function. Practically, the optimization 
minimizes error based on the intensity and on the displacement. This procedure 
which takes into account the past and the future of the particles is efficient for 
tracking dim particles. The program first tracks the center of gravity of a cell over the 
whole sequence of images. For the images that have a good enough resolution to 
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precisely delineate the contour of the cells, we have incorporated a segmentation tool 
to our software based on the active rays’ methods. The tool allows contouring of the 
convex cell shape based on knowledge of the center of the cell. Finally, the program 
makes measurements of several parameters like size, mean protein expression, 
displacement, etc. In addition, we have developed a granulometry application, which 
allows following of protein sub-nuclear localization during the cell cycle. Similarly to 
endogenous DNA ligase I, RFP-DNA ligase I construct is associated with the site of 
DNA replication (replication foci) during S phase. Thus RFP-DNA ligase I sub-nuclear 
distribution changes from punctuated (during S-phase) to dispersed, which makes it 
possible to easily follow cell cycle progression (Easwaran, 2005). Our granulometry 
application discriminates between condensed and dispersed (homogenous) states of 
the protein, allowing in the case of RFP-DNA ligase I protein to obtain the accurate 
time frame for S-phase, and thus to follow cell cycle progression. 
The tools are written as Java plugin of the popular ImageJ image-processing 
software package (ImageJ: National Institutes of Health, Bethesda, MD, USA). Our 
experimental results show that this semi-automatic analysis method is reliable, 
reproducible and efficient for individual moving cell tracking, fluorescence or 
bioluminescent protein expression level quantification and cell trajectory analysis. 

Results  

Algorithm 

1. Tracking of cells with highly variable intensities 
The task of automated tracking of moving objects has been studied extensively in the 
digital image analysis literature. In biology, tracking is of fundamental importance in 
cell motility studies. Different techniques have been proposed in the past for tracking 
cells or particles in the context of biological imaging (Meijering, 2006). However, the 
common tracking paradigm, which consists of pre-processing the image, detecting 
the objects, and linking them from frame to frame, fails in the application to circadian 
expressed proteins. Due to extreme variations in reporter protein expression level 
over 24 hours, there is a high risk of loosing the tracked cell at the lowest phase. At 
this point the grey-level intensity (corresponding to the level of protein expression) 
often approaches the background value.  
For our application, the following observations should be taken into account in the 
design of a specific tracking algorithm:  

(1) The cells are approximately round. 
(2) Each cell leaves a unique trace; in the case of cell division, the requirement is 

to track a single one of the daughter cells. The circadian rhythm study does not 
need to recover cell division lineage. 

(3) The intensity of a cell can approach that of the background for short periods of 
time. 

With these assumptions, we formulated the tracking process as a shortest-path 
problem which admits an optimal solution. This optimal path is a spatio-temporal 
trajectory consisting of a set of ordered time-position {(x1), {(x2),..., (xn)} for t=1 to n, 
where the discrete state xt is a vector of coordinate (x, y) and n is the number of 
frames shown in Fig. 1A. The trajectory is hence extracted from the spatio-temporal 
(2D+T) volume V. A solution to the optimal path problem in this context (discrete 
ordered state space) is afforded by the dynamic programming (DP) algorithm which 
is an optimization procedure searching for the optimum of a cost function. DP was 
already used for the purpose of tracking fluorescent particles in noisy images (Sage, 
2005). DP was used to track the gravity centers of individual cells. The original image 
f(x) was first preprocessed using a Laplacian of Gaussian filter given !f(x). This filter 
has the desirable properties of suppressing background noise and enhancing 
Gaussian-shaped objects. 
Due to the combinatorial explosion in the number of possible trajectories, the DP 
algorithm can quickly become extremely expensive in terms of computational cost. 
To overcome this problem we impose several severe constraints in forming the 
search graph: 
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(1) Images are down sized so that single cells are reduced to particles of a few 
pixels. Size reduction provides a significant gain in terms of computational cost 
but, obviously, one loses in spatial precision. However, at this stage, a rough 
estimate of cell positions is sufficient. 

(2) Choice of start and an end point. DP is performed between user-specified start 
and end positions P1 (x1) and Pn (xn). The user can interactively choose the cell 
to track and provide the necessary positions. 

(3) Introduction of a confinement area. It is assumed that the cell cannot exit the 
area between P1 and PN with a margin. 

(4) Maximum displacement constraint. It is additionally assumed that the cell 
displacement between consequent frames cannot exceed a certain step size !. 

These constraints define the admissible range A as a subset of the original volume V 
as shown in Fig. 1B. The DP algorithm first evaluates the cost (score) of all possible 
trajectories by an exhaustive search initiated from a given starting point within the 
admissible range. The optimal solution is then determined by means of a 
backtracking procedure. In our implementation, we defined the following cost function 
between two positions u(xu, yu) and v(xv, yv): 
 

 

This cost function (which is to be minimized) includes two standard terms known as 
external and internal energies in snake terminology. The external energy term 
depends on the data and favors small variations of intensities, while the internal 
energy is a spatial regularization term that penalizes large variations of 
displacements. We additionally included a third term favoring intensities close to the 
intensity of the starting or end points. The three coefficients "ext,  "int,  and  "fix are 
weighting parameters that also serve as normalization factors. They can be tuned by 
the user to match the requirements of specific problems. The internal energy term is 
particularly important in the tracking of particles with low observability; it allows the 
algorithm to pursue the tracking according to a smooth-trajectory assumption, even 
when the cells in question have weak protein expressions.  
DP is a highly efficient and robust algorithm for extracting spatio-temporal trajectories 
of particles (Fig. 1C), even in difficult cases where the particles have low intensities. 
The method is, however, adequate only for tracking individual particles, and does not 
straightforwardly extend to the joint tracking of several particles (Fig. 3B). For 
multiple-trajectory analysis, the user has to choose the cell to track, run the tracking 
process, and repeat the same operations for other cells. 

2. Cell shape delineation 
Once the approximate center of the cells has been found in every frame of the image 
sequence, their exact shapes can be identified using the computationally-efficient 
algorithm proposed below. The assumption underlying the method is that the shape 
is convex, which is the case for the studied cells in our applications. We defined the 
contour of a cell by n nodes specified by their polar coordinates (!, ") given along 
rays Rk originating at the known center c (xc, yc) as shown in Fig. 2A. This unique 
ordered parameterization makes it possible to formulate contour detection as a 
shortest-path problem, which, in turn, allows us to once again use dynamic 
programming (DP) to find this optimal path (Chen, 2001). This method - known by the 
name “active rays”- was first introduced by Denzler (Denzler, 1999). The active rays 
method yields an optimization within a very limited discrete space, as both ! and " 
are sampled. The search space is defined by the center c, a minimum radius !min, a 
maximum radius !max, and the type of parameterization. The active rays’ method 
offers two main advantages: the radial parameterization prevents intersections in the 
contour; and, the change of degrees of freedom per contour node to one parameter 
(!) reduces the computation cost substantially. However, one drawback of the 
method is its more limited accuracy compared to active contours as a result of 
discretization. The discretized radial parameterization does not permit the algorithm 
to follow fine circumvolutions of the contour and to extract concave contours. For the 
purpose of applying the active rays’ method we formulated the following potential 
function: 
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where #f(x) is the gradient of an image f(x). This potential function depends on the 
position of the center c of the cell. We show in Fig. 2B that, as long as c remains 
inside the cell, the potential function suitably identifies the cell contour. The cost 
function to minimize consists of two terms:  

 
The external term attracts the curve towards the contour via the potential function, 
while the internal energy term favors smooth curves. The final curve is then 
represented by a cubic spline that interpolates the nodes Nk. In the implementation, 
images are preprocessed in order to reduce noise; Gaussian smoothing and a non-
linear diffusion filter are applied to each frame in the sequence (Fig. 2B). 

3. Cell Feature Measurement 
Quantities such as the level of gene expression as well as certain dynamic variables 
(velocity, direction of movement, and variations in the direction) are among 
interesting features that can be computed from the information provided by the 
tracking module, for both bioluminescent and fluorescent images. Other features, 
such as the size of the cells and mean levels and standard deviations of gene 
expression, are calculated by also taking into account the shape information obtained 
using the shape delineation module. Sudden changes in the cell size (from large to 
small) can be used to detect cell divisions.  
For a typical sequence of 200 frames, the software is able to track one cell in less 
than 200 ms, and to extract the shape in less than 2 s (Apple MacPro DualCore 2.66 
MHz). The user has to enter few (around 5) positions by clicking on the cells to track. 
All the measurements are reported in a spreadsheet format and in graphical form. 

Testing: Comparison of cell oscillation pattern analysis by CGE to the existing 
method 
Time lapse microscopy analysis of circadian Rev-VNP fluorescence in the nuclei of 
individual NIH3T3 fibroblasts (Supp. Movie 1) using CGE is presented in Fig. 3. 
Following semi-automatic nucleus tracking (red line in the left panels in Fig. 3A), a 
number of output parameters could be obtained. Namely, circadian Rev-VNP 
intensity profiles (Fig. 3A, blue line in the graph; 3B middle and right panels), nucleus 
size (Fig. 3A, red line in the graph), nucleus displacement (the absolute distance and 
the variation of direction measured by trajectory angle change), and the cell division 
time (Fig. 3A) are outlined for the nuclei examples presented here. Of note, due to 
the preprocessing of the images by CGE, also the nucleus profile with relatively low 
circadian amplitude (the lowest panel in Fig. 3B) could be easily analyzed for 
circadian amplitude, phase, and period length. As a proof of principle, we compared  
the oscillation profiles of individual NIH3T3 Rev-VNP cells obtained by CGE, to those 
calculated using the MetaMorph software, as described in Nagoshi et al., 2004 
(Nagoshi, 2004). Briefly, in the previous study the centers of the fluorescent regions 
(i.e., centers of the nuclei) were followed manually throughout the time lapse series, 
and the fluorescence intensities of thus defined individual nuclei were calculated. The 
region of interest (ROI) was defined to cover all the fluorescence in the same cell 
from the first to the last frames, and the fluorescence intensity in the given ROI was 
measured. The same experimental design and conditions of image acquisition were 
used in both cases. As shown in Fig. 4A and 4B, individual cell oscillation profiles, 
circadian phase and period length distribution are in a good agreement with data 
published by Nagoshi (Fig. 1D, 1E in Nagoshi, 2004), and with our own calculations 
made by the method developed and used by Nagoshi and coworkers (not shown). 
The difference in the average period length obtained by us using CGE (25.14±1.56 
hours) and obtained by Nagoshi et al. using MetaMorph manual analysis (28.2±2.9 
hours) is most probably attributed to the difference in serum (FCS) content in the 
medium (10% in our case vs 0.5% in Nagoshi et al.). In addition, our analysis of 
NIH3T3 cells transiently expressing luciferase driven from Reverb! circadian 
promoter at the population level revealed very similar circadian period and phase 
characteristics (Fig. 4C). Furthermore, the average circadian period length revealed 
by our analysis of 50 individual NIH3T3 Rev-VNP fibroblast profiles by CGE was very 
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close to the period calculated for confluent NIH3T3 Reverb!-luciferase fibroblasts at 
the population level (25.45±1.82 hours; compare Figure 4A to 4C). Thus, CGE 
allowed us to perform analysis of cell circadian protein expression level, oscillation 
phase and period length, and the results obtained are in good agreement with those 
calculated by different methods. In contrast to existing methods, CGE permitted 
semi-automatic analysis of large datasets in reasonable time with high accuracy. 

Implementation  

1. Measurement of cell motility, nucleus size and cell division timing 
In addition to cell circadian oscillation profile, we assessed other output parameters 
of CGE which are useful for numerous purposes in cell biology, such as cell nucleus 
size, cell motility and cell division time. Natural variations in cell size are remarkable 
between wild type individual NIH3T3 fibroblasts. These variations seem to be even 
more pronounced in NIH3T3 cells transduced with Large T Antigen of SV40 virus 
(LTAgSV40; Supp. Movie 2). We used CGE to analyze oscillation pattern in 
correlation with these cell nucleus size. As depicted in Figure 4D, single cell analysis 
of NIH3T3 Rev-VNP LTAgSV40 fibroblasts indicated that similarly to parental cell 
line, these cells exhibit strong circadian oscillation pattern. About 15% of transformed 
cells had unusually large nucleus size (nucleus square ~1500 pixels2; example cell 1 
(1973 pixels2; see Supp. Movie 2). Interestingly, increase in the nucleus and cell size 
correlated in our example experiment with longer oscillation period length: 
25.5h±0.8h in cells with nucleus size smaller then 600 pixels2 (395±90 pixels2, n = 9), 
in comparison to 27.5h±1.3h in cells with nucleus larger then 1500 pixels2. Circadian 
phase might also be delayed in larger cells (see cell 1 profile at the small graph in 
Figure 4D). Thus LTAgSV40 over expression did not change cell oscillation pattern in 
most of the cells, however it might affect circadian period length and circadian phase 
in the cells harboring larger size. Larger datasets have to be analyzed to confirm a 
possible correlation between cell size and cell circadian pattern.  
Cell motility was evaluated using two parameters: the distance and the movement 
angle change (direction evaluation) between each two subsequent time points. Using 
a small subset of cells (n=20), we measured cell circadian phase, cell motility and 
cell division time (as demonstrated in an example cell in Fig. 4E). In a good 
agreement with previous publications (Walmod, 2004), cell motility was increased 
after the cell division. No significant correlation was found between cell circadian 
phase and cell motility.  
Thus, in addition to cell circadian oscillation profile, our software gives accurate CGE 
evaluation of cell nucleus size, cell motility (distance and angle) and cell division 
time. It allows semi-automatic tracking and reliable analysis of various parameters 
during long term experiments implying large data sets of the cells exhibiting highly 
varying fluorescent protein levels and changing significantly their position during the 
experiment. 

2. Single cell oscillation profile analysis using bioluminescence time lapse 
microscopy large data sets 
Fluorescent time lapse studies expose cells to strong light excitation, and therefore 
may be prone to toxic effects when using shorter wavelengths over longer periods of 
time. In our hands treatment of mouse fibroblasts with different drugs in combination 
with cell excitation every 30 minutes biased the experimental analysis due to cell 
poor condition, and to significant cell death. Recently developed bioluminescent 
microscopy, absolutely non-toxic for the cells (Liu, 2007), might represent an ultimate 
solution for the toxicity problem in long term experiments. In order to analyze the 
datasets obtained from bioluminescent time lapse microscopy, we have successfully 
applied CGE method to large datasets obtained by bioluminescence time lapse 
microscopy. Using this approach and CGE for image analysis, we have recently 
unraveled intriguing questions of transcription and temperature compensation of 
mammalian circadian oscillator (Dibner, 2009). Time lapse microscopy of NIH3T3 
Bmal1-luc fibroblasts was performed in this study, and at least 130 cells were tracked 
with subsequent analysis of their oscillation profiles. Thus in addition to fluorescent 
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time lapse microscopy analysis, CGE could be used to analyze data sets obtained by 
bioluminescent time lapse microscopy.  

3. Cell cycle analysis 
An extra feature we have developed for CGE, granulometry, allows the accurate 
follow up of protein sub-nuclear localization, specifically the discrimination between 
condensed and diffused protein expression pattern. In order to evaluate S phase time 
frame, which corresponds to condensed expression phase of RFP-DNA Ligase I 
construct (Easwaran, 2005), time lapse microscopy of NIH3T3 cells transiently 
expressing RFP-DNA Ligase I was performed as described in Supplementary 
Methods. In examples presented at Supp. Movie 3 and Figure 4E experiment, the 
cell number 1 enters S phase 15 hours after the start of recording, staying in S-phase 
about 6 hours, and proceeding to G2 phase 21 hours after the beginning recording. 
Cell 2 stays in S-phase between 16 and 22 hours, cell 3 – between 22 and 28 hours. 
In the future, we are planning to use this experimental system and CGE granulometry 
analysis to follow the cell cycle and circadian clock in the same cell. 

Discussion and Conclusions  
In conclusion, the CGE package allows one to study accurately and efficiently the 
different features and changes of cells with significantly varying locations and protein 
expression levels imaged over a period of several days. Our newly developed 
software proves to be more reliable, reproducible and efficient for individual cell 
circadian pattern quantification, in comparison to results obtained by different 
methods (MetaMorph). It is suitable for analysis of oscillation pattern from large data 
sets obtained by both fluorescence and bioluminescence time lapse microscopy. 
Experimental results herein and from our previous publications suggest that CGE 
allows accurate evaluation of fluorescent or bioluminescent reporter protein level and 
easy correlation between cell oscillation pattern and cell size, cell motility pattern and 
cell division timing. The granulometry feature provides accurate evaluation of protein 
sub-nuclear distribution, useful for cell cycle progression analysis, and allowing easy 
correlation between cell clock and cell cycle by the same experimental approach. 
More generally, our method offers a wide range of possibilities for cell tracking, cell 
size and cell motility analyses, for acquiring the protein distribution pattern and 
evaluation of cell cycle progression, making it useful in various aspects of cell biology 
research. 

Methods 
Cell lines and constructs 
NIH3T3 cell line stably expressing short-lived nuclear fluorescent protein Venus-NLS-
Pest1 driven from circadian Reverb! regulatory sequences (NIH3T3 RevVNP) was 
established as described in Nagoshi et al. (Nagoshi, 2004). To obtain LargeT Antigen 
SV40 (LTAg SV40) expressing cells, NIH3T3 Rev-VNP fibroblasts were transduced 
with LTAgSV40 expressing lentiviral particles as described by P. Salmon and 
colleagues (Salmon, 2000; Salmon, 2007) with subsequent clonal line selection. 
Parental and transformed NIH3T3 cells were maintained in DMEM supplemented 
with 10% FCS.  
 
Fluorescence Time lapse Microscopy  
For time lapse microscopy experiments, cells were plated in 35-mm glass bottom 
dishes (WillCo-dish, type 3522, WillCo Wells B.V.) and grown to confluence. After 
stimulating the cells with 100 nM dexamethasone for 30 minutes, the medium was 
replaced by 2 ml phenol red-free DMEM supplemented with 10% FCS. The cultures 
were placed in a 37°C chamber equilibrated with humidified air containing 5% CO2 
throughout the microscopy. Time lapse microscopy was performed with a Leica 
AF6000LX microscope using a 20X objective. For the cell cycle follow up 
experiments, NIH3T3 cells were plated in 35-mm Falcon plastic dishes, transiently 
transfected with RFP-DNAI ligase (Easwaran, 2005), and microscopy was started 24 
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hours after transfection using 40X objective. Time lapse images were captured with 
either a Roper Coolsnap HQ or a Cascade B CCD camera using a YFP filter set 
(Supp. Movie 1, 2) or RFP filter set (Supp. Movie 3).  
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Figures 
Figure 1 - Tracking cell using DP 
A. 5 frames extracted from an image sequence showing the results of the 
preprocessing step (Laplacian of Gaussian filter) and the reduced version of the 
images. Cells appear as particles consisting of a few pixels. The red line represents 
an example of a trajectory. 
B. Schematic representation of the admissible range for the dynamic programming 
(DP) algorithm. An example of a possible trajectory inside the admissible range is 
shown in blue. In this simplified diagram only one of the spatial dimensions (X) is 
shown; in the real implementation there exist two spatial dimensions X and Y, which 
define the admissible range as a volume. The slope of the dotted boundaries of the 
admissible range corresponds to the maximum velocity of the particles computed 
from the maximum displacement value !.  
C. Example of a cell trajectory overlaid over the first frame of the sequence. The 
trajectory is staircase due to reduction of image. 
 
Figure 2 - Segmentation of cell 
A. Parametrization of the active rays. Illustration of a contour curve overlaid on a real 
cell image. In this example, the curve is constructed using 12 nodes that are 
interpolated linearly. The two concentric circles mark the limits of the search space 
for $. The center c is given by the tracking procedure. 
B. Illustrations of the consecutive steps for computing the potential function under 
three different experimental conditions. The original image f(x) is first preprocessed 
and rescaled fpreproc(x); next, a gradient is computed in the X and Y directions, in 
order finally to compute the potential function %c(x). 
C. Stability of the potential function %c(x) with respect to variations in the position of 
the center c(xc, yc). In this illustration, the center was artificially shifted in the vertical 
direction and the potential function was recomputed. The shifted center is 
represented by a white cross. Shifts of -18, -12, -6, 0, 6, 12, and 18 pixels were 
considered. For translations of -18 and 18 pixels, the shifted center is placed outside 
the cell and the potential function does not express a clear black contour; on the 
contrary, for shift inferior to 12 pixels the potential function provides a clearly defined 
contour.  
 
Figure 3 - Quantification of Rev-VNP circadian expression, cell displacement 
and nucleus size in NIH3T3 fibroblasts using CGE    
NIH3T3 Rev-VNP cells were synchronized using dexamethasone, and time-lapse 
microscopy of VNP fluorescence in the nuclei of individual cells was performed. 
Images were taken every 30 min for three consecutive days. The movies were 
created from the time-lapse series using Leica AS MDW software and analyzed 
using CGE ImageJ plug-in.  
A. Left panels: an individual nucleus tracked during 33 hours. Graph on the right: 
blue curve corresponds to Rev-VNP fluorescence level per nucleus; red curve 
reflects nucleus size over the time.  
B. Time lapse microscopy of Rev-VNP fluorescence in three individual nuclei over 72 
hours. For each nucleus, the fluorescence intensity over the nucleus, nucleus size, 
nucleus displacement and variation of direction, were quantified and plotted against 
time. Time of cell division is marked when applicable (see A.). 
 
Figure 4 - Circadian fluorescence pattern and cell motility quantification in 
NIH3T3 Rev-VNP cells by CGE  
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Time lapse microscopy movies with NIH3T3 Rev-VNP cells were performed and 
analyzed using CGE ImageJ plugin.  
A. Circadian fluorescence profiles of 50 individual cell nuclei. Period length was 
calculated as time span between two fluorescence peaks of individual cells after the 
dexamethasone shock: mean = 25.14 h, SD = 1.56 h, n=50.  
B. Period length distribution. Normal distribution was observed, similar to Nagoshi et 
al., 2004.  
C. Circadian expression of Reverba-luciferase in NIH3T3 fibroblasts measured in the 
Actimetrics lumicycler. Period length from 3 experimental repeats was 25.45 h±1.82 
h.  
D. Correlation of cell size and cell circadian phase/period length in NIH3T3 Rev-VNP 
fibroblasts transduced with LTAg SV40 (see Supplementary Methods for details).  
E. Correlation of cell motility, cell division and cell circadian phase. 
F. Cell cycle analysis in NIH3T3 cells transiently expressing RFP-DNAI ligase. 

Additional files 
 
Supplementary Movie 1. Time lapse microscopy of Reverb!-Venus-NLS-PEST1 
(Rev-VNP) protein circadian expression in NIH3T3 cells. 
 
Supplementary Movie 2. Time lapse microscopy of Rev-VNP protein circadian 
expression in NIH3T3 cells transduced with LTAg SV40. The overlaid drawings 
(outline + trace) are displayed over frame-to-frame rescaled images. 
 
Supplementary Movie 3. Time lapse microscopy of RFP-DNAI ligase transient 
expression in NIH3T3 cells. The overlaid drawings (outline + trace) are 
displayed over frame-to-frame rescaled images. 
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