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Abstract—In this contribution we study the notion of affine network traffic analysis, terrain modelling, and image pro-
invariance (specifically, invariance to the shifting, scaling, and cessing [1, 6-8]. In the case of the latter, the relevance of
rotation of the coordinate system), as a starting point for the g, processes in modelling images has been claimed on the

development of mathematical tools and approaches useful in the basis of ob fi f le-i . d th saciat
characterization and analysis of multivariate fractional Brownian asis or observalions ol scale-invariance an € aseacia

motion (fBm) fields. In particular, using a rigorous and powerful —POWer-law spectra in natural images [9-11].

distribution theoretic formulation, we extend previous results of A multi-variate fBm field By is a non-stationary Gaussian
Blu and Unser (2006) to the multivariate case, showing that proces$ identified by a single parametér < H < 1—the
polyharmonic splines and fBm processes can be seen as they, o narameter, after Harold Edwin Hurst (1880-1978), for

(deterministic vs stochastic) solutions to an identical fractional hi inal ibuti h dv of h in th
partial differential equation that involves a fractional Lapla- Is seminal contribution to the study of such processesen t

cian operator. We then show that the wavelets derived from context of hydrology [2, 12]—that characterizes its covaca
polyharmonic splines have a behaviour similar to the fractional up to a scalar normalization factor:

Laplacian, which also turns out to be the whitening operator

for fBm fields. This fact allows us to study the probabilistic E{By(x)Bu(x)} « ch\|2H + ||;13/||2H — ||l — ;c’||2H_
properties of the wavelet transform coefficients of fBm-like

processes, leading for instance to ways of estimating the Hurst Estimation of the Hurst parameter is important in practical
exponent of a multi-parameter process from its wavelet transfom applications, and is e.g. used in image processing to tfassi

coefficients. We provide theoretical and experimental verificatio : . -
of these results. different types of texture based on their second ordersstati

To complement the toolbox available for multi-resolution pro- ics [13, 14].
cessing of stochastic fractals, we also introduce an extendedMulti-resolution analysis [15, 16] was identified early am i
family of multi-dimensional multi-resolution spaces for a Ia_lrge its development as a decidedly effective tool for the study
class of (separable and non-separable) lattices of arbitrary ¢ geifgimilarity [17-26]. Its utility in the estimation fo
dimensionality. parameters of self-similar processes (especially in the 1D
'(][‘;r% E{erssi_eﬁﬁéfenitnvs\/rri\ir;ﬁﬁ fre}?z:igt?(?rlma:?)ro:;tri]:lmdi?eortei:%n setting and for estimating the Hurst parameter) is theeefor
tial eé]uations, p%lyharrhonic spligés, operatorpwavelets, multi- well dot_:umented [20, 2.7_29]' The essential observatiohi t
dimensional wavelets, lattices. regard is that the logarithm of the wavelet energy of an fBm
process varies linearly with scale, with a slope that depend
| INTRODUCTION on the Hurst parametdt .
) Intuitively, the above observation appears deceptivatypte.

T HE notion of invariance plays a significant role inafter all, this would seem to be a straightforward consegeen

mathematical modelling. The development of fractalgf the 1/f-like power spectrum of fBm and the logarithmic
for instance, is entirely based on the idea of self-sinyari spectral partitioning afforded by the wavelet transform. A
(i.e., scale-invariance up to a scalar factor) [1, 2]. Thé§-s rigorous derivation of this result is however subtler, ass
similarity can be deterministic—in which case we are led Being non-stationary—does not in fact have a power spectrum
deterministic fractals such as the famous Koch snowflake, igrine classical sense.
the elaborate Mandelbrot set—but it can also be understomqespect of the above, one of our main motivations in wgitin
in a statistical sepse—leading_to stochastip fractal_s, teep his paper has been to propose a rigorous interpretationeof t
examples of which are fractional Brownian motion (fBmypectral characterization of multi-variate isotropic fBimthe
processes [3]. (See also Chaineisal. [4] for a generalization gense of a whitening/innovation model (§8V). This distribu-
based on the notion of scaling.) _ ~ tional formulation, which is deduced from basic invariance
Fractional Brownian motion models generalize '—eVy’Erinciples (81l1), provides a powerful framework for defig
Brownian motion [5] of Gaussian type. These processes haygq analysing fBm and similar processes. Our results here
long been associated with the phenomenon of long-ranggneralize those of Blu and Unser [30] who studied the single
dependence antl/ f*-like power spectra that frequently ap-,5riaple case. Operator models for self-similar fields were

pear in areas as diverse as hydrology, financial mathematiggy studied by Benasst al. [31, 32], who focused on the
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their relation to wavelets. The one-dimensional analydis B. Generalized functions

Wyss [33] is also _reIevant. . A regular functionu of a variablex € R¢ is characterized
The said formulation also links the study of fBm Process§s, the value it assigns to its argumemt (i.e. u(x) for

to spline theory via providing a convenient and unifying: Rd) |n contrast, ajeneralized functionr distribution f is
interpretation of fBm processes and polyharmonic splires gyecified in terms of inner-produdtsf, «) with test functions
stoc.hastllc VS dgtermlnlspc solutions 'to 'Fhe same (fraefio u belonging to some inner-product space Intuitively, these
partial d|fferent|a|_equat|on [34]. Th|s, in the light of gh inner-products can be interpreted as linear observations o
fundamental relation between splines and wavelets (8\heasurements of. The advantage is that in this framework
allows us to derive interesting and general results COMM e can conceive of entities that need no longer be defined
the wavelet analysis of fractional Brownian motion (§8V). W%oint—wise. The space of all generalized functions defingd b

forinstance show the quasi-whitening effect of a polyhario ejr (hounded) inner-products with elementskois identified
wavelet transform on fBm processes. with X’. the continuous dual of.

To complement the mathematical toolset for the analysis g en an operatorA with adjoint A*, both defined on our

multi-variate fBm, we have included a comprehensive ac'cougbace of test functions, we may extend the domair db

of a general construction scheme for multi-dimensionay ol corresponding space of generalized functidd§ (ising
harmonic spline multi-resolution spaces, proving all etgé i following defining identity:

properties for forming a multi-resolution analysis. Thenge

ality of our construction (which extends the works of Rabut (Af,u) % (f, A*u).

and Bacchelliet al. [35, 36] and Van De Villeet al. [37])

makes it suitable for multi-resolution approximation inyanThus, e.g., for the shift operator we shall have
number of dimensions and on virtually all sampling lattices def

of interest that display some form of isotropy. f(=h),u()) = (f(-),u(- + h)), for all u € K.

The organization of the remainder of the paper, in brief, he Fourier transform defines a one-to-one mapping between

as follows. In 8l we review some mathematical prellmm‘-,j1 suitably chosen spad@ of test functions and the spa&eof

aries. We formalize the idea of isotropic affine invariancg,«ir Eourier transforms. With Parseval's identity in miride

in_ 8l apd use it to identify a family of fractional_partial Fourier transform of a generalized functigifz) € K’ can be
differential operators that appear in the characterinati® defined as the generalized functigflﬁw) c K’ that satisfies
both polyharmonic splines and fBm processes. The theo[% identity

of multi-dimensional polyharmonic spline multi-resoturti is
developed in §IV. Next, in §V we provide a characterization  (f(w), ii(w)) = (27)(f(x), u(x)), for all u € K.
of fBm based on an innovation model. We then exploit the
link between splines and fBm processes in §VI, to deriyéwe choosek to be the Schwartz space dfvariate rapidly
some characteristic results concerning polyharmonic leavedecaying smooth functions (denoted hereSiR?) or simply
analysis of fBm. Based on these resullts, estimation of thstHubY S), K andK (and thereforel” andK’) coincide. A familiar
parameter is also discussed and a few experimental resaltsexample of a generalized function defined oifs Dirac’s
provided in §VI-B. Some final remarks conclude the paper.delta:

(5, u) < u(0).

[Il. MATHEMATICAL PRELIMINARIES AND NOTATION The Fourier transform of (x) is the constant, since(1, @) =

- — d — d
The theory of generalized random processes utilized in thg w Li(w) = (2m)%u(0) = (2m)°(4, ).

paper is exposited in the works of Gel'faatal. [38, 39]. For
reference, some of the main definitions are summarizedsn ti. Generalized random processes and random fields
section. This section shall also serve to fix our basic rmtati
and to recall some facts and definitions from the theory
lattices.

E,FP generalize the notion of a random process a similar ap-
proach may be used, where one replaces point values by inner
products. Accordingly, in the stochastic analysis of Gelt

and Vilenkin [39], a generalized random procésss defined

A. Some notational conventions as a random generalized function, which is to say that it

, corresponds to a family of random variables
We use theVATLAB notation for row and column vectors and

also follow the multi-index convention, according to which X, def (%,u), uek,
given a vectorr = [z1;...;24) € R? and a multi-indexk =
[k1;.. . kq) € Z‘io (d always denotes the dimensionality oftharacterized by the consistent specification of a joinbabe
the domain), ility measure for all finite sets of test functioms This should
be compared with the definition of classical random procgsse
ke H xf fe1 f H k;!, and |k:\d§f Z k;. where point-wise random variablégx) replace theX,’s.
1<i<d 1<i<d 1<i<d
2 What we shall here refer to as an inner-product is in more ate(bat
Other notation is defined where first used. perhaps less familiar) terms a duality pairing.



The characteristic functional:A (real-valued) generalized 1 in the absolute. It is used to define a subsampling relation
random proces& can also be described by its characteristifor lattices:
functional

Z(0) B} £n41=QDQ £, E Do, @

_ _ From there,

(whereE denotes the expectation functional). The character- £, = QD"Z? = D" £,
istic functional is continuous and positive-definite, as@dual " ¢
to 1 for u = 0. It provides a complete description of theSimilar to the partitioning of the integers moduto we find

random proces. This is due to the fact that a two-scale relationship for the decompositionf into |D|
cosets, which are translated versions of the lower reswiuti
lattice £,,11:
Zx Z Wi UE e
1<k<N
Lo=| | £2r1+QD"G | U £ ©)

is a continuous and positive-definite function of’s and
hence, by Bochner's theorem, corresponds to the Fourier
transform of a probability measure—specifically, the joirftlere the multi-integer vectorg,—taken to be of minimum
probability measure of,,,,..., X, [39, ch. Ill, §2.6]. length and dubbegbrincipal coset representativesare spe-
(In comparison, in the classical theor{eiX««sX(@:)} cified uniquely modulcDZ¢.

provides the Fourier transform of the joint probability rese  FoOr a given lattice hierarchyt,, n € Z, the dual (or
of X(x1),...,X(xy). Informally, this would correspond to reciproca) lattice hierarchy£*  is defined by the relation
choosing) ", ., - y wkd(- — i) as the ‘test’ function.)

The correlation form: The correlation form{(u,v)x of the

1<i<|D|

p'qeZ, forallge £,,pec£*,,.

(real) random proces¥ is defined as It follows that this hierarchy can be constructed using the
. . def H
def matrix pair of Q=T = (QT)~! andDT. Accordingly, we also
((u, vhe = B{Zu X0} defineD; ' Q- TD'Q".

The following relationship exists between the generalizéye define _thelattice convolution operatoror lattice filter
correlation form (u,v)x and the (generalized) correlationcorresponding to a sequencgk], k € Z¢, as the operator
function cx (x, ') of a generalized random process:

xle.@)ofag P Voif() = Y vlklf(-— Qk).

(u,v)x = /dwdw’ cx(z, ' )u(z)v(z). 1) kezs
Its Fourier expression is
In addition, for a Gaussian random process, the charatiteris - ikTQTw
, , . Vo(w) = Y vlkle™ :
functional and the correlation form are related by the equat :
kezd
—Luuu . .
Zx(u)=e 3wz, Conversely, those and only those operators with Fourier ex-
This shows that, as expected, a Gaussian process is ftﬂg}?ss? T.S thatTchan berm.t en in the a.bove form refE re;mat
characterized by its correlation form. convolutions. TNEsE FoUrier expressions arein etiec
are 2w £ §-periodic (i.e.2wp-periodic for anyp € £{).
We also have a lattice version of the Poisson formula:
D. Lattices
(2m)?

A lattice £, in R? is the set of all integer linear combinations . Z 0(x—Qk) p = —~ Z §(w—2rQ k). (4)
of d linearly independent vectokg,, . . ., q4; that is, kezd Ql kczd

£y = Qz4, Remark 1:The families of multi-scale lattices that we shall
. _ consider in this work are restricted in two ways:
with Q = [q1, ..., g4 [40, 41]. In general, there exist severa| xt_y First, for our multi-resolution construction we are
generator matricesQ that lead to the same lattice. Yet, interested inself-similar multi-scale latticesThis
they all have the same absolute determin@it (known as means that the lattice coarsening matBx—and,
the samph_ng densily For simplicity, we shall assume the consequently, its dud):—should correspond to sim-
normalization|Q| = 1. ilarity transforms.
A multi-dimensional lattice may be partitioned into soledl | Ar_o Secondly, we require the existence ofdax N
cosetsthat are translates of one another. This is a general- . .\ def
ization of the concept of dividing the set of integeétsinto integer matrixY = [y, .., yn] (N > d), such that
the lattice vectorQy;,...,Qyny generatefy, and

even and odd numbers, or, more gener.ally, "?“’“’3“""""9”‘:6 constitute a tight frame fdR?. The latter is equivalent
classes moduld:. In the case of lattices IR, such a -
to requiring that

partitioning is achieved by means of smbsampling matrix
D, which plays the role of the integérin the 1D caseD is QYYTQT = Z Quiy; Q" = 12 (5)
an integew x d matrix with all eigenvalues strictly greater than 1<i<N



for some scalap. We furthermore assuméQy; } where S, : f(z) — f(a~'z), a > 0, represents

to be simple, i.e. not to contain any pair of linearly the scaling operator and(a) is a strictly positive
dependent vectors. continuous function.
We note that forany |attice, there exist |nf|n|te|y many INV-2. Rotation-invariance: The Opel’ators are in addition
subsampling schemes that satisfy the first requirement. In invariant under rotations of the coordinate system and
addition, the second requirement is satisfied by virtually a therefore lead to isotropic models. In other words, the
lattices that are typically used in multi-dimensional riult operators commute with rotations about the origin:
resolution signal processing (such as the Cartesian, guxgc UoRg =RgoU.

and hexagonal lattices IR?; and the Cartesian, FCC, and BCC

lattices inRR3). For instance, for the Cartesian and quincunkh€ following is a known result in the context of rotiifon-

lattices inR? (both with Q = [1,0;0, 1]), the matrices and scale-invariant quadratic functionals (in this c@s¢) =
Lo Lo 1 [U/(13) [42-44].
Y = [ } and Y = { - } Theorem 1:The (per assumption continuous) Fourier expres-

01 0111 sion of a real operatoU fulfilling requirements INV-1

provide two examples of such systems. A similar system fgnd INV=2 has the following form for some > 0.

. . . V3 . ~
the hexagonal lattice (Wit o [1,0.5; 0, %5°]) uses the matrix U(w) = ¢f|w|?. ©6)
v/ — [1 0 1] _ The normalized version of such an operator (with= 1),
0 1-1 which we denote byA”, can be considered the-th real
(fractional) iterate of the Laplacian (albeit discardindpator
I1l. OPERATORS AND INVARIANCES of (—1)"). The following are easy to check:

The fundamental observation that underlies this work i$ tha A° = identity; ATAY = AV, )

we can characterize specific classes of splines and stazhast

processes as solutions to a fractional partial differeetima- The fractional Laplacian has a non-trivial null-space aas,
tion of the form a result, infinitely many inverses differing in terms froneth

null-space.
U{solution} = driving term, Remark 2:The null-space includes, for instance, certain func-

whereU is a fractional partial differential operator with certaint lons with (generalized) Fourier transforms concentratietie

properties, and thdriving termis either a sum of Dirac deltasg”rilgol(lfénaég v;i ttOe)ﬁ ilsn;efir?irtg ss:;ho??jr;?irvﬂltizveed Sézgl;”er
(in the deterministic formulation, leading G-splines) or a y

. . ) . : .[45, ch. Il, 84.5, p. 119, Theorem], the corresponding masibe
white Gaussian noise process (in the stochastic formulati . . .
) . of the null-space are all of polynomial functions up to a aiert
leading to random processashitenedby U).

) ) : . o . _degree. This, however, is not a complete characterizafitimeo
In this section we shall use invariance principles to define a

particular family of such fractional partial differentiaperat- null-space in general,

ors that produce polyharmonic splines (81V) as deterrri'cnistB
. - . - S . Inverse operators

solutions and also characterize isotropic multi-dimenaio . . .

fractional Brownian motion (8V) in the stochastic setting. L00king back at (7), one may be tempted to define the inverse

The link between the deterministic and stochastic fornomat Of A7 as the operatoA™ with the Fourier expression

is later explored in 8VI, where we investigate the propertié lw| =27

polyharmonic wavelet analysis of fractional Brownian roati . ] ) .
It is immediately noticed, however, that this Fourier forash

o ) a non-summable singularity at the origin fdy > d; therefore
A. Scale- and rotation-invariant operators in general the integral
The invariances we shall consider are those under the ggalin o )
shifts, and rotations of the coordinate system [1], with the =~ A" f(z) = (27T)7d/ dw & “[lw|~* f(w)  (8)
first leading to self-similar fractal structures, and thgeliatwo ) R ) .
relieving us from the—uncomfortable and often arbitrary—0€€ds to be properly interpreted, i.e. regularizeince reg-
choice of an origin and a set of preferred directions. ularization can b_e don_e in more than one WAY,"Y in fact
Specifically, we shall study a family of convolution operato 'ePresents a family of inverses rather than a single one.
with continuous Fourier expressions, which, in addition tBifferent regularizations essentially correspond to edéht

shift-invariance (intrinsic to convolution), have the lésling (boundary or other) linear constraints on the solution of a
invariance properties. fractional differential equation of the form

INV-1. Scale-invariance:The operators of interest commute AVp(x) = f(x).
with scaling operators (up to a constant that may var. Reqularization h gt | ¢ assiamngl
H H H i ) egu arization’ here stands for a general way OI assigr@ingaiue to
ConthOUSIy with Scale) in order to allow multi-scale an integral with a singular kernel, in a manner that would besistent

constructions. In mathematical notation, we want with what one would expect when evaluating the integral faneoth

function that vanishes in a neighbourhood of the singylaf@nd for
UoS, =a(a) S, 0T, which the integral can be evaluated).



These constraints may be satisfied by adding an approprigt@mally, in this framework, given a shift invariant openat

term from the null-space oA” to a particular solution. U, we define dattice U-splineas a functions(x) for which
One of the possible inverse operators is t&# inverse (in- B ’
troduced by Blu and Unser in the single-variable setting;[30 Us(z) = Z clk]o(z — Qk), (11)

denotedA~7 here), which is obtained by removing a sufficient kezs

number of lower order terms from the Taylor series expansiwith ¢ € /., (Z?) and where the pointQk belong to a lattice.

of f(w) at the origin: One may try to solve the equation
. U =(x), 12
Aﬂf(m)déf (271_)—d o(x) () (12)
R F(k) () " for o(x) (Green's function), e.g. by finding an inverse operator.
></ dw e*'w flw) - ZWS[Q’Y—%Jf ( )F_ 9) s(x) can then be expressed in terms gifc) and its lattice
Rd [|ewl]2 shifts, plus a term from the null-space ©f that is,
It can be checked that s(x) = Z clklo(x — Qk) + so(x),
A\ — kezd
A"TAYF =
f f with Usg = 0.
for any f € S, hence the namkeft inverse. In practice, it is often of interest to limit oneself to s@m

The adjoint of A= over S is the operatorA— defined by  s(z) € Lo(R?), in which case we consider a modified version
of the above problem, where we introducelacalization

A—’Yf(m)déf (2m) "¢ operator (filter) V4 and study the equation
Y S oy gy Ug(x) = Vod(x) = D vlklo(z —Qk)  (13)
X Rddw HwHQ’Y f(w) (10) keczd

in place of (12). B-splines, which form spatially localized
, bases for square-integrable spline spaces, are in fadtswu
ATATf=f to such equations [34, 37].
In the remainder of this section, we first introduce such
localized (B-spline) bases for spaces of square-integrabl
polyharmonicsplines, for which the operatdr is a fractional

It satisfies

for all f € S and is called theight inverse. We can extend
A~7 to a subset of5’ by duality:

<A*7f u) d§f<f Aﬂw Laplacian, andV, is its discretization over any one of the
’ ' ’ lattices introduced in Remark 1. Next, in §IV-C, we show
wherever the r.h.s. is meaningful for alle S. how these B-splines can act as scaling functions for a multi-

While the above definitions may look arbitrary at first glancéesolution analysis (Theorem 2). We follow this by the inves
they have intuitive interpretations. For example, supppsiigation of one of the main properties of wavelets deriveanfro
f(x) to be a well-behaved test function whose moments vaniifese B-splines, namely that polyharmonic wavelet kernels
up to degree|2y — gJ, (9) simply corresponds to a shift-behave like low-frequency approximations of the fractlona
invariant inverse (all the terms in the sum will be zero ihaplacian (Theorem 3).

this case), while (10) defines an inverse with all derivative

up to order|2y — gJ forced to be zero at the origin. ThisB. Polyharmonic B-Splines

latter property is significant in the characterization affional  |f \ye take the operatob of the previous subsection to be the
Brownian motion as there, by definition, the process shoulghctional LaplaciamA, solutions to (11) (which in this case
equal zero atr = 0. is a polyharmonic equation) are dubbgalyharmonic splines.

It also bears mentioning that, unlike the fractional La@lac As noted in §l1I-B, when the functiorf (w) has sufficiently
these inverse operators are in genewat shift-invariant when many zeros at the origin, the fractional Laplacian can be
applied to members of. (They are, however, scale- andnyerted via (8) without difficulty. Indeed, one of the ways

rotation-invariant in the previously defined sense.) to deal with singular integrals is to multiply the integoati
kernel by a function that vanishes at the singularity.
IV. POLYHARMONIC SPLINES AND WAVELETS It is therefore reasonable in our problem to first choose

an appropriate localization filteW, whose Fourier symbol
VQ(w) approximates that oAA” at its zero at the origin, thus
By differentiating a polynomial spline a sufficient numbecancelling the singularity oA~ and permitting us to solve
of times, we procure a sum of Dirac deltas located at tlke spline equation

knots. This observation underlies a conceptual framework i

which splines are defined as functions tr?at are mapped to A7¢x (@) = Vod(x) (14)
a sum of Dirac deltas by some suitably chosen opertitor in the Fourier domain, for the B-spling,, (x). Different
This approach leads to interesting generalizations: ong mzhoices of such an operatdv, lead to different famil-
for example use fractional derivatives to obtain splines dds of polyharmonic B-splines (quasi-isotropic, orthoaion
fractional order [34, 46]. etc) [37].

A. Splines and operators



In the simplest case, the elementary localization filtgy Proof: Using the Taylor expansion oig(w), we can imme-
corresponds (up to a factor ¢f1)7) to the ~-th fractional diately see that;, ¢i(w) tends tol as |jw| — 0:
iteration of an elementary discretization of the Laplacian

Specifically, fory = 1 we define the elementary localization . i jz sin (y 1Qlw = !
operator,A,, in the spatial domain as follows. o H ¢2v el(w) = H}}HTEO ™Ik
def 1 yTQT ¥
Af e =5 3" 2f() = F(-— Qui) — F(- +Quy) et (D e w
1§i<N = lim T
llwll—0 w'w
(see LAT-2 for the definition ofy;'s). Note also its Fourier 1
symbol,
. 4 0, QTw (cf. Egn (5)). In addition, bothA(w) and T2(w) are by
Bolw) = u <Z sin’( 2 ) (15) definition continuous and bounded. What all this means is that
SN ¢2-(w) is continuous and bounded everywhere and decays
For other values of, > 0 we simply define like ||w]|?” (cf. (16)). It then follows from the Fourier-domain
definition of the Sobolev spacg® that ¢,, € H* for all
A def [ & v _d
Ayw) X [Aw)] - s<2y—73. I

As was already mentioned, the trivial choice Bf(w) =

This choice of the localization operator leads to a fragion! N (16) leads to elementary fractional polyharmonic B-

generalization of Rabut's elementaryharmonic B-splines, splines. Among other possibilities, one can e.g. opt for the
here denoteds., ¢ [35, 37]. orthogonal polyharmonic B—splinéjv(w). In effect, starting
v ’ from any localization operatoV, and its corresponding B-

spline ¢»-(x), one can define the orthogonal localization
operatorVy as

Vo(w) = A (w) TY(w); )

\A/J_(w) — VQ(w) ,
where T7(w) & [To(w)]” is the continuous Fourier expres- AQ(w)‘
sion of some lattice operator (filter), and is bounded from
above and below with a strictly positive lower bound. We Ehalhere we have introduced the autocorrelation filter
assumel,(w) to be normalized withl'y(0) = 1.
Remark 3: The choice ofiJ (w), apart from these constraints, Aq(w ) A {do Hw Z ’QSQV w+2mQ” Tk)’ (18)
is essentially arbitrary in so far as it corresponds to ardisc kezd
(lattice) filter, as all such choices lead to the same multi- def
resolution subspaces. However, as will be seen shortly, diefined as the lattice Fourier transform @] = (¢2, (- —
ferent choices off’, do lead to different B-spline functions Qk), ¢2,(-)). Division by the square root of\q{¢z, }(w)
spanning the same spaces, dhdmay be specifically selectedguarantees thatéy. (- — Qk), ¢5.,(+)) = 6. (The above
so as to give these functions a desired correlation streictur orthogonalization depends on the positivity and boundssine
The solution to (14) can now be written explicitly in theof A,. The demonstration of these properties is included in

More generally, the localization operat®, used in (14) can
be any one with a Fourier symbol factorizable as

Fourier domain: the prOOf Of Theorem 2. )
. Volw) - Al
Py (w) = 5(23 =Tq(w) ”:,|(|27) (16) C. Polyharmonic multi-resolution analysis
= T (w) oy ei(w). The following theorem allows us to form a multi-resolution
¢ ’ analysis based on polyharmonic B-splines (in their différe
- def AJ(w) - . flavours).
Where gz ei(w) = ol 1S _the Fourier transform c_)f the Theorem 2:The polyharmonic B-splines defined in (16) have
elementaryvy-harmonic B-spline¢,, ¢ that was mentioned . .
’ the following properties.
before. - _
In order for thepolyharmonic B-splindunction ¢ (z) thus MRA=L. They form a partition of unity. _
defined to be Square_integrab|e we need to have MRA-2. They fulfil a two-scale relation of the fOIIOWIr'lg
form:
d 17 1
Ly (A7) 62,(D3'@) = > hlklga,(x — Qk),  (19)

kezd
The following proposition summarizes the smoothness and

integrability properties ofpy (). with i € £1(Z%).
Proposition 1: ¢, with ~ > d/4 belongs to the Sobolev MRA=3. They generate a Riesz basis for theirspan.
spaceH?® for any s < 2y — £ Proofs are given in Appendix I.



Properties MRA-1-3 are those necessary to form a Mall&enassi and Istas [32]. Gaussian self-similar processes we
type multi-resolution analysis [15, 16, 47]. The basic rspli also studied by Dobrushin in his 1979 paper [48].
approximation subspace is defined as Fractional Brownian motions form a subset of (continuous)
ot self-similar fields distinguished by their Gaussian stis
Va0 = { Z clk]p2 (- — Qk) | c € Kz(Zd)}. and stationary increments [3]. Stochastic self-simijagnd
kezd stationary increments in particular force the fields to hawe
More generally, thex-th level multi-resolution spline space ismegeneous (self-similar) variance functions. Given tBan's
are Gaussian and hence are fully defined by their second-orde
vzmndéf{f([)g".) ‘ f()e sz,o}- statistics, one traditional way of characterizing them ys b
specifying their variogram, which, for a normalized fBm of

(Note that becaus&](w) is bounded away from zero, theHurst exponenti, has the following form [49, ch. 18]:
definition of the above spaces is independent of its pasgticul E{|B(z) — Byu(z)?} = 2|z — ' ||*F.

choice.) As a consequence of Theorem 2, these spaces are )
nested, H is called the Hurst parameter of the fB#i; (). By is

additionally postulated to have zero mean and to be zero at
{0} C - CVay1 CVay0 CVay o1 C oo C Ly, x = 0 almost surely. One remarks that the derived variance
function is indeed homogeneous:

and the closure of their union is,.
The next result concerns the fractional derivatives anebjiratls E{|By(x)]*} = 2|=|*".
of polyharmonic splines, which are polyharmonic splines in

their own right, but of a different order. (See Appendix | f0|$ome of the (_)ther _definitions of me_ fields are in terms of
the proof.) integrals of white noise [50] and by their spectral harmahie

Proposition 2 representation [31, 51]. (The latter formulation is clgsel

. . . . elated to what we present in the sequel. See Remark 4.)
1. The~,-th fractional Laplacian of a polyharmonic spline of,” ™. T .
. . . An important approach to characterization often used in the
order2y belonging toVs, o, with v > o, is a lower order

o analysis and synthesis astationaryrandom processes relies
spline inVy(y—+4).0- . Lo : . )
Y0)s . . on the notion ofwhitening In this formulation, an operator is
2. If Ams(x) is a polyharmonic spline of ord&ry, thens(x) : . : Lo
is a polyharmonic spline of ordery + 2 sought after whictwhitensthe process in question, i.e., maps
. . o it to white noise. Next, a suitable inverse operator needseto
Polyharmonic wavelets: Polyharmonic wavelets can

) ; ; IOeidentified, which can then be applied to white noise in order
defined as basis functions that span the orthogonal COf-recreate instances of the desired random process. While

plements in the series of nested approximation spaces. Eflqard in the study of stationary processes, this schame c

a given multi-resolution hierarchy there will in general bgg extended to certain non-stationary cases, and in particu
o : .

D] — 1 distinct mother-wavelets,, 1 < i < |D|. (We shall 4, e definition of fBm, by adopting a distribution theocet

subsequently drop the indexas all arguments apply equallytomajism. This will be demonstrated in this section.

to all Wavglets.) ) . i In effect, in the sequel we will show that fractional

The semi-orthogonality condition imposed on the wavelgl,|acians introduced previously whiten multi-variatents

spaces forces the wavelets to have a behaviour similar to fig4s of correspondingH-exponent (as also discussed by
operatorA” at low frequencies. This quality is encapsulated . ,<siet al. [31]); that is

in the next theorem (a proof is given in Appendix ). oo
Theorem 3:A semi-orthogonal polyharmonic wavelet of order AZTIBy = ey,

27y can be written as where 27 is normalized white Gaussian noise ang is a

Vo (z) = AVn(x), constant. We also show that an fBm field may be obtained by

) ) ) _applying theright inverse(cf. §l11-B) to white Gaussian noise,
wheren(x) (the smoothing kernglis a polyharmonic spline hich is to say that

of order 4y that belongs to the Sobolev spag¢€ for any Cw
o<ty 4 B cuh-t-tam
A special case of the general multi-resolution constructiq, 4qgition to being conceptually interesting, the abovareh

studied in this section can be found in a previous paper [3Zlerization of multi-variate fractional Brownian motiteads
where an explicit construction scheme for the two-dimemsio ;4 5 natural generalization of the definition to values Ff

quincunx lattice (requiring the design of only one mothey isige the(0, 1) range.

wavelet) was provided. Furthermore, fractal properties of the process find theiress
pondent in the operator: the scale-invariance propertysag

V. CHARACTERIZATION OF FRACTIONAL BROWNIAN on the operator induces the statistical self-similarity tioé
RANDOM FIELDS process, while rotation-invariance entails its statitisotropy.

A random field is said to beelf-similarwhen applying a sim- These results all follow from a multi-variate generalinatiof
ilarity transform to its domain does not change its stodbasfTheorem 1 of Blu and Unser [30], which provides a spectral
behaviour (apart from a possible renormalization factégr.  characterization of fBm through its characteristic fuoodl

a review of self-similar random fractals we refer the reader (cf. §lI-C).



Theorem 4:Let 0 < H < 1. An fBm field with Hurst VI. POLYHARMONIC WAVELET ANALYSIS OF
parameterdd and variogran®|z — x'||** has the following MULTI -VARIATE FBM

characteristic functional: o . ) . .
) Considering the inherent link between polyharmonic sgline

€ w(w) — a(0)|? ) ; ;
Zos, (u) = exp | ——LL . / |i(w) 2HJ(rd)| . (20) and fBm'’s that has been emphasaed throughout th|§ article, _
2(27) [Jwll should not come as a surprise that a wavelet analysis of-multi
variate fBm would have interesting properties. We study esom
) orrva are L (H + ) of these in the first part of this section. Next, we complement
e = —2MFdpd/2__— 27 (21) i vati i
H I'(—H) and verify our derivations through some experimental tssul

Proof: A complete proof can be found in Appendix II.
The main step of the demonstration consists in showi
that (20) defines a Gaussian process whose correlatioridanct
e, (, ') is that of an isotropic fractional Brownian motionProposition 3: The polyharmonic spline wavelet transform of

where

"W The probability distribution of wavelet coefficients

with Hurst parametef{, that is, the function order 2y > 27y, with v % H 4 4 maps the non-stationary
cmy (@, 2) = ||z + ||| — ||z — 2|22 g ProcessBy into a series of stationary (discrete) Gaussian
" ' processes.
We recall the characteristic functional of the unit randoeidfi Proof: We can rely on Theorem 3 and the innovation model
20 (a.k.a. white Gaussian noise): to see that, e.g., the wavelet coefficients at lexel= 0
1 are stationary Gaussian processes obtained by filteringewhi
Zgy(u) = exp (—2 /d:c |u(:1;)|2> noise:
—exp (520" [aw i)l wolk] = (Bir, U (- — Q)
2 = (A"By, AV« — Qk))
From comparing this with (20) and by applying a duality = (e 20, AT 0n(- — Qk)).
argument we can deduce that
Zos, (u) = me(eHAﬂou) —7 () (Note that even though the polyharmonic spli\é—on(. —
H - - eg A—70920

Qk) is not a Schwartz test function, its inner-product with
with 7o = £ + %. This means that the random field obtainethe white noise process is nonetheless well-defined as it is
by applying the right inverse\ = to the unit (generalized) continuous and belongs f@* for somes > 0; cf. Theorem 3.)
random field2J is a multi-variate fBm with Hurst parameterThe demonstration for an arbitrary levelis similar, except
H: that a scale-dependent normalization factor also appeals.

By = ey A 7590, (22) What this property means is that thg[k|'s correspond to the
Equation (22) is an alternative characterization of fiaci latiice samples of atationary process with power spectrum

27270 |5 2 i i _ 7 i
Brownian motion, and can be used to extend the definitigi |l H: |f77( )||| (WhiCh 'S W(?llIthflnle(tj_ in thel. seps;la
to non-integerd > 1. The covariance function of these>cel € 7t Torall s <4y 5)- This relation is essentially
ale-invariant up to a proportlonallty factor.

extensions can be obtained with the aid of Lemma 1 3f . _ .
Appendix II. Proposition 4: The variance of the polyharmonic wavelet

It also follows that fractional Brownian motion ighitenedby coefficient§ depends exponentially on the Hurst exponesit an
the fractional Laplacian operator, the scalen:

AP+, — e, E{wl[k]} = D]~ T E{wi[k]}.

a fact that leads to the innovation model depicted in Fig. 1
Remark 4:For 0 < H < 1, a related characterization
of real fractional Brownian fields is by theimarmonizable )
representation as the stochastic integral

Proof: This property can be shown using the correlation form
% ,. One has (cf. Eqn (28)):

E{w[k]} = (|D|” 2 ¢, (D3 "z — Qk),

j " w n
-1 ) —-n
[ W), DI #4,(D;"@ — Qk))s,
we el & s ()
where W is a (Hermitian symmetric) complex random meas- N (2m)? / @ Q- TD—"TQTw|2H+d
ure corresponding to the Fourier transform of real-valuadev . 2 . \l@ (w)[?
Gaussian noise. (See Samorodnitsky and Taqqu [51] for an in- = |D|F(2H+d) Hd / 272H+d
depth discussion of the single-parameter case.) The artegr o (2) el
(2
j is comparable to the spectral representation of the = D7D (4 (), Y2y () )5
nght inverse in (10), which reduces to the said integrand fo = D] E{wi[k]}. 1

0 < H < 1. (The treatment of Benasst al. [31] is also of
direct pertinency, and includes similar extensions.) More generally, we have the following result.



N

e A4 a TS G
white noise fBm white noise

fractional integration fractional Laplacian
(whitening)

Fig. 1. Innovation model for multi-variate fractional Browani motion.

Proposition 5: The covariance of intra-scale wavelet coeffiAn improved estimate may be obtained using a maximum-

cients is given by the relation likelihood (ML) formulation. This is essentially a multi-
R dimensional adaptation of the ML-estimator of Wornell [27,
E{wy [k]w, [k} _ €k /dw |2y (w)|? 29]# The estimate is defined as the minimizer of a negative
DA+ 2(2m)? [Jw||2H+d log-likelihood approximate (leaving out the constant term):
N Trm 2
x <‘1 + (k=)D —2) {(w|8) =1 3" Nylogo?() + En_ (24)
P = " o;,(0)

— E{wo[D"k]wo[D"K']}. »
In the above formul@® = (H,C’")—with C’ a normalization

Proof: At scale0 we have factor—is the set of parameters to estimafé;is the set
. of levels used for estimation}V,, denotes the number of
E{wo [k]wo[k']} coefficients at leveh;
1 n
= 5 [k + vk Vo + 2 D0 o2(0) L E{w?[k]} = C'D|
— {2y s Yoy k) By — <<¢2%k/,w2%k/>>%ﬁ,] is the theoretical variance of level wavelet coefficients

(cf. Proposition 4); and, finallyF,, is the observedwavelet
The proposition is then proved using (28) and with a changgergy (i.e. the sum of coefficients squared) at levelin
of variables as in the previous proof. I the implementation we have used the previous regression
Remark 5:1t is relevant to compare the above result witlestimate as an initial guess and applied Newton’s method to
those obtained by Meyeet al. [23] in the 1D setting. The the derivative of/. This provides a fast (essentially real-time)
wavelets proposed by Meyeet al. depend on the Hurstway of producing an improved estimate H.
parameterH that is matched to the Hurst exponent of the
1D fBm process in consideration (which should be knowg Experimental results

a priori). Independence of the wavelet coefficients (i.aetr Th timat q tined iousl ied t
whitening) is a consequence of this perfect match. Thisdh fa € estimalion procedure outined previously was apple
tances of (periodic, due to discretization) two-dinienal

corresponds to the wavelets being orthogonal in terms of t ) . oo
P g g m, generated via Fourier domain filtering as per 8§ll1-B. (cf

positive-definite form({-, ), . Since this design depends o .
; : .. (22) and Remark 4). The wavelets used for analysis were
the Hurst exponent being known, in the problem of estlmatlrf tropic polyharmonic wavelets of Van De Villet al. [37],

H a parameter higher than the true unknown value must % i .
used, in which case the wavelet coefficients will again b ich have a fast FFT-based implementation. The order of

dhe wavelets was chosen to exce&t+ d/2 in order to
satisfy the requirements of Proposition 3. We used a quinc-

polyharmonic wavelets. In the actual implementation of evav "% subs_amplmg sche_me_, which offers a more gr_adual scale
lets for a given lattice, there is some room for incorpogitinprogress'on’ thus furnishing more regression points fer th

certain desired behaviours in the design of the wavelet ﬁltgstlmatmn. Another advantage is that the quincunx design

g[k], which will in turn affect the smoothing function Ofmvolves only a smg!e m_other-wavelet. .
Theorem 3 Hurst parameter estimation was performedL00 instances of

As a demonstration of potential, the above results (Pr(apogi12><512me Images for three different valuest(()._i%, 06
. . . nd0.9). Decomposition level8 to 8 were used for estimation.
tions 3 and 4 in particular) allow us to extend 1D wavel

estimators of the Hurst exponent reported in the literatide e( xamples of used fBm images and corresponding regression

20, 27-29] to the multi-dimensional setting. In its simplescur\./es. can be seen in Figure 2.) The average and stanqlard
N : . deviation of the estimated values, obtained by regression
form, estimation can be based on the identity

and ML estimation respectively, are given in Table I. In
logW (E{wZ[k]}) = (2H + d)n+C, (23) experiments we noticed very good fits and low values for

correlated. Also note that the results provided in the pres
paper are general and concemny family of semi-orthogonal

9 . 4 Note that, as is the case for the cited estimators, the ML fatiau
where C' = log Y1) (E {wo (K] }) is a computable constant is approximate where the wavelet is not specifically desigoezkactly
that depends on the choice of the wavelet (Proposition 4% Th match the process, as the correlation between wavelet gerfids not

. . . . taken into consideration. We have provided formulae for thedances,
means that a linear regression of the estimates of the warian :ich could in principle be used to improve the estimate. Thigever

in each sub-band in thieg scale provides an estimate &f. would substantially complicate the estimator.
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the standard deviation, which underline the robustnessef t in the estimation of the Hurst parameter associated
process. with fBm processes.

Our results relate, generalize, and formalize previousltes
of multiple authors, including those of Rabet al. [35,

36] and Van De Villeet al. [37] (on polyharmonic splines

TABLE |
WAVELET-BASED ESTIMATION OF H (100 REALIZATIONS)

true value | log-regression estimat¢ ML estimate and wavelets), Blu and Unser [30, 34] (on the distributional
i mean stdev mean _stdev characterization of 1D fBm), and Flandrin, Wornell, andtohi
0.3 0.290 0.007 0.293  0.004 .
0.6 0.590 0.008 0.593  0.004 and Abry [20, 27, 28] (on the wavelet analysis of 1D fBm).
0.9 0.890 0.008 0.893  0.005 In addition, given the generality of the approach, it opens a

interesting avenue of research for the future investigatb

Results of the same analysis applied to a single axial sliggy Of these subjects.

of a functional magnetic resonance image (fMRI) of the

brain are also shown in Figure 2. (Boundary and background VIII. A CKNOWLEDGEMENT

wavelet coefficients were discarded for the analysis ini@e This work was partially funded by the Swiss Science Found-
avoid boundary effects.) The corresponding fractal direens ation. The wavelet analysis of fMRI images was conducted
according to the improved estimateds+ 1 — H = 2.66. by Ms Katarina Bala. The authors are grateful to Dr Thierry

It has been suggested that anatomical growth processes IBafdand Ricard Delgado for interesting discussions. Thep al
to fractal-like structures. In the case of the brain, Bullthank the anonymous referees for their detailed and helpful
more et al. [52] have argued that the boundary betweereviews.

the white matter and the cerebral cortex has a fractal-like

shape. Additionally, based on recently made possible 3B-hig APPENDIX |
resolution imaging of the vasculature [53], the branchirfig o PROOFS OFTHEOREMS2 AND 3, AND THAT OF
the tree structure of the arteries appears to constitutacsalr PROPOSITION2

organization in space. As fMR imaging of brain tissue indirA
ectly measures the flow of oxygenated blood, these arguments

can in a way account for the fractal behaviour evidenced ffeof of MRA-1: By (16), the zeros 0fo, (w) are the same
Figure 2(d). as those ofAJ(w), with the exception of the zero at = 0

which disappears (see the proof of Proposition 1). From (15)
we can see thal\](w) is zero iff

Proof of Theorem 2

VIl. CONCLUSION —
Our approach in this paper was based on the observation y; Q 27 €z foralli
that certain families of splines and random processes candjfice the vectorQy; generate£,, by the definition of the
characterized as deterministic vs stochastic solutionthef dual lattice, the above condition is equivalent to
same fractional partial differential equation. w
Motivated by the works of Duchon [43], Arigovindan [44], o € £5.

and Kybicet al. [42] on invariances, in this paper we focuse .
y [42] pap %(Fmovmg the zero atv = 0 produces2w £5\{0} as the set

zeros ofpy., (w).

Property MRA-1 is then a consequence of the Poisson sum-
mation formula (cf. (4); also of direct relevance is Kolazam

kis [54, Egn (5)]). |
Proof of MRA-2: Property MRA-2 can be verified by writing

the Fourier expression of the refinement filter
CON-1. These operators (which turn out to be fractional

on a particular class of such equations that is singled o
by imposing certain fundamental invariance propertiesten {0
operator involved. This pointed us to a family of fractional
differential operators that are invariant to the translatiro-
tation, and scaling of the coordinate system. We substedtia
the following points.

iterations of the Laplacian) lead naturally to the i (w) =D |¢2w(D ow) _ |D‘VQ(ADS‘J-’)/HDS‘-"HQV
definition of polyharmonic B-splines and multi- ? hary (w) Vo(w)/|w|?
resolution spline spaces over a large family of multi- 2 V(D o(Diw)
dimensional lattices. = |D\ *?7
CON-2. The same operators whiten multi-variate fractional VQ( )

Brownian motion, and can thus be used to rigorousfifhe last step results from} being, per definition, a similarity
characterize this important family of random fieldstransform matrix; cf. LAT-1.) We observe that (i) the numer-
CON-3. The relation between deterministic and stochastitor and denominator of the last expression are, respbgtive
formulations provides a natural framework for th@r£* ;- and 27 £§-periodic; that (ii) the zeros of the numer-
analysis of fBm. In particular, a polyharmonic multi-ator and the denominator happen respectively over the sets
resolution analysis of fractional Brownian motion2r£*; and 2z £ and are all of ordeR~; and finally, that
has interesting properties that can be deduced frdiii) both the numerator and the denominator are bounded.
the parallelism between the two formulations. As aiVe know from Eqn (3) tha2r£{ C 2w £* . Therefore, first,
example, we showed an application of this observtidinom (i) it follows that ﬁo(w) is 2w £§-periodic. Secondly,
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(c) fBm (H = 0.90, Hiog = 0.85, Hyir, = 0.88)
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log /5(w
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level [n]

(b) fBm (H = 0.60, Hiog = 0.55, H\p, = 0.58)

30

3 4 5 6
level [n]

(d) fMRI (Hog = 0.37, Hyr, = 0.34)

(a), (b), and (c): regression plots for the estimatdrHurst exponent of discretized bivariate Brownian motion ¥arious values of the Hurst

parameter, all generated from the same instance of pseudormanoise; (d): regression plot for an fMRI image (original gea are given as insets).

from (ii) and (iii) one concludes thdi,(w) is bounded, with
its set of zeros being

{w] Ho(w) =0} =27 (£2,\£7)
=2r J(£5+Q D).

1<i<|D|

(25)

These observations establish tiig(w) is the lattice Fourier
transform of a sequencé € /;. The two-scale relation
therefore holds. |

factors being bounded). This, in addition to the boundesines
of ¢4,(w), confirms the existence of an upper bound and
completes the proof of the Riesz property. |

B. Proof of Proposition 2
Proof of 1: Any elementf(x) of V,, o can be expressed in
the Fourier domain as
- Alw)
Colw) 222,
T w2

Proof of MRA-3: Proving the existence of lower and uppewhere the2r £-periodic and locally square integrable func-
Riesz bounds is equivalent to showing that the Fourier trant®n Cq(w) is the lattice Fourier transform of a sequence
form of the autocorrelation filter (Eqn (18)) is bounded away c ¢,. By applying A to f we shall have

from zero.

Since Ay(w) is 27 £4-periodic, we can restrict our attention

to the unit cell corresponding to the Voronoi regionofvith

respect t@r .£§. Within this region, we rewrite (18), replacing

(]}27 from (16) and noting the periodicity and boundedness
Vo(w):

A(()W—Wo)(w)
HwH?(v—%)
= Co(w)AL (w)Pa(y o) el (W)

Yince Co(w)AL (w) is also a2z £5-periodic and locally
square integrable function (due to the periodicity and loewaia

F{A" f} = Co(w) AP ()

. \Y (w) ness of the second factor), it corresponds to the Fourier
A _ Q, 4~y
o(w) = Z |w + 27QTk[* transform of somels sequencec’. A" f can therefore be
ke written in the form
V w N CTy—
- T;jrél(v ) + Vaay (w) Z lw +27Q ™ Tk| ™. Z [kl da(y—n0) (- — QK),
kezd\{0} kezd
There, the existence of a positive lower bound is evident Y9€rebYA™ f € Vo _y0) 0- 1

Aq(w) is bounded from below by, (w) = Vg4 (w)/|w|*,
which is strictly positive in the noted region.

Also, since we assumeg > d/4, the second sum converges
for all w in the unit cell, and is bounded from above (with both

Proof of 2: From the assumption, by the definition of
polyharmonic splines (see Egn (11)) we have

ATAs(x) = Y clk]o(@ — Qk).

kezd
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Using (7) we can write APPENDIXII

N PROOF OFTHEOREM4

YT7Yo0 — _

ATT0s(x) = Zd clk]o(z — Qk), As was mentioned in the introduction, the characteristicfu
ke tional of a Gaussian fielé satisfies (see Gel'fandt al. [39,

which, per definition, establishes(xz) as a polyharmonic ch. I, §2.6])

spline of order2y + 2. | Ze(w) = exp (_;«% u»x>-

C. Proof of Theorem 3 Therefore, in our case we need to show that(fer H < 1,

Proof: The semi-orthogonality condition is equivalent to stat- €2 |i(w) — 4(0)]?

ing that (s = / “wpard @8
(2 (Dg @), 12 (Dt — Qk)) = 0. (26) This correlation form is related to the (generalized) datren

function ¢, (x, ") thus [bid., ch. Ill, §2.1]:
We replace the B-spling,., and the wavelet),, in the above
equality by their higher resolution B-spline expansiorisery (u,v)m, = /dwdw' ey (2, 2 Ju(x)o(z'). (29)

in Eqn (19) for and below forys. :
an (19) forgs, Vay The correlation function of a normalized fractional Broami

1/127(D51m) _ Z glk]¢2 (z — Qk), fielq with parameterH, 0 < H < 1, derived from its
kezd variogram, is

whereg € ¢, is the stable wavelet filter. The autocorrelation ¢, (z, ') = (|=||*" + [|«'|*" — |z — «'||*").  (30)
. def . .
filter a[k] = (¢2,(- — QK), ¢2,(-)) appears in the resulting 1o show (28), we plug (30) into (29), and break the integral

equation. Using its symmetry, we can restate (26) as followg the additions to get (after replaciagin the first, ' in the
o ! H 1 .
(b axg)[Dk] =0, second, ande’ — « in the last integral, all byr):

I fu s, = (a2, 7 {a(0)a(w) })
with h[k] = h[—k]. o
. 2 —1) ~ ~
Let us defineb % « a + g. The above relation then finds + ()", 7 {U(w)u(o)}>
the following Fourier domain expression (cf. Viscito and IR e
Allebach [55%): ’ ( = (laf*, 7 i) )
5 . = (|||, Z7~H{o(w)}); (31)
Bo(w) + Y Bo(w—27Q TD7T¢;) = 0.
1<i<|D| where
A~ def Z7 < ~ N7 N\~ 7N~
From the definition of we have b(w) = a(0)id(w) + i(w)d(0) — d(w)i(w)
B () = lo(e0) Ao () Co() @7) 0 —aOF ~ E(O)F
W) = w w w).
¢ ¢ ¢ ¢ is a linear combination of test functions and is therefore a
Therefore, valid test function itself.
R - In the sense of distributions, the inner product in (31) can
G (W) = _21§z‘<\D\BQ(“’ -2rQ7'D7G) be evaluated in the Fourier domain by applying the Parseval
Q - = N . .
Ho(w)Aq(w) equivalence
We see from (25) and (27) that the numerator has an uncafl®l*”, # ' {8(w)}) = —(21) U R]|w|| 7>, 8(w)),
celled (and isotropic) zero of degree at the origin. Since (32)

G(w) is by definition bounded (ag € ¢1), this means that we Valid fg}r{ QdH_ # —d,—d — 2,... [38, p. 363]. Here
can extract the symbdjkw||2” (corresponding ta\") from the Rllw[|7*"7% is a generalized function (distribution) that
Fourier transform of the wavelet filter, and consequentyrfr €orresponds to a particular (canonical) regularizatiorthef

the Fourier transform of the wavelet itself. In other worite ~ function ||w||72H7.d- The canonical regularization is to be
function conducted according to the recipe given in Gel'fatdil. [38,

A(w)déwaH,MJ) () §3.3], as detailed below.
g 2y We restate (32) in (hyper)spherical coordinates as

will be continuous ap. —d 2 —2H-1 .
) u,uhm,, = (2m) " %€, Qa0 (R, ,Ss ;
We also note that the wavelet, by construction, has the same { ot Ja = )f ua(Rp o(p))
Sobolev regularity as the B-splines; i.e., its Fourier sfarm where p = ||w|, Qq 2f the area of the unit hypersphere

decays like|w| =27, leading to a|w||~*-like decay forj(w). in R?, and S;(p) denotes the average af(w) over the
From this we deduce thaj(x) is of the claimed Sobolev unit hypersphere of radiugp centred at the origin. Also,
regularity. That it is also a polyharmonic spline of order Rp~2#~1 denotes the particular regularization pf27—!
follows from the second part of Proposition 2. I invoked in (33).



Ss(p) is a smooth and even function pfwith rapid decay, [13]
with a Taylor series expansion of the form

Si(p) = 0(0) + agp® + asp® + - - - + agrp®® + o(p*"). (14]
For0 < H < 1 we have—3 < —2H — 1 < 0 and from [15]
there, by the definition of the generalized functigp—27 !

(see [38, p. 363)), [16]
R 21 S5(0) = [ o p 1 Si(p) — 0(0)) (33) O

0
18]

(where the right-hand integral should be interpreted as@)li
By expandingS; (p) and returning to Cartesian coordinates we
can now write [19]

(ol 21, o)) = [ ol 21 fo(w) — a0y
[21]
= [aw w2 i) - aoF

(using the definition ofi(w)). From combining this with (32)

we arrive at the desired result, i.e. (28). 1 (23
Remark 6: The following lemma allows us to generalize the
results given here fob < H < 1 to the case of non-integer[24]

H > 1. The proof is technical and is not reproduced here.
Lemma 1:Let v(x) be a test function andf > 0 be non- [?°]
integer. Then, in the sense of generalized functions off@el
and Vilenkin, [26]
(", v(a)) =~ [dw w21 e
i d AF§(0) w2 28]
0<2k<|2H | : 2 [29]
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