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Abstract— In this contribution we study the notion of affine
invariance (specifically, invariance to the shifting, scaling, and
rotation of the coordinate system), as a starting point for the
development of mathematical tools and approaches useful in the
characterization and analysis of multivariate fractional Brownian
motion (fBm) fields. In particular, using a rigorous and powerful
distribution theoretic formulation, we extend previous results of
Blu and Unser (2006) to the multivariate case, showing that
polyharmonic splines and fBm processes can be seen as the
(deterministic vs stochastic) solutions to an identical fractional
partial differential equation that involves a fractional Lapla-
cian operator. We then show that the wavelets derived from
polyharmonic splines have a behaviour similar to the fractional
Laplacian, which also turns out to be the whitening operator
for fBm fields. This fact allows us to study the probabilistic
properties of the wavelet transform coefficients of fBm-like
processes, leading for instance to ways of estimating the Hurst
exponent of a multi-parameter process from its wavelet transform
coefficients. We provide theoretical and experimental verification
of these results.
To complement the toolbox available for multi-resolution pro-
cessing of stochastic fractals, we also introduce an extended
family of multi-dimensional multi-resolution spaces for a large
class of (separable and non-separable) lattices of arbitrary
dimensionality.

Index Terms— Affine invariance, fractional Brownian motion
(fBm), Hurst exponent, whitening, fractional partial differen-
tial equations, polyharmonic splines, operator wavelets, multi-
dimensional wavelets, lattices.

I. I NTRODUCTION

T HE notion of invariance plays a significant role in
mathematical modelling. The development of fractals,

for instance, is entirely based on the idea of self-similarity
(i.e., scale-invariance up to a scalar factor) [1, 2]. This self-
similarity can be deterministic—in which case we are led to
deterministic fractals such as the famous Koch snowflake, or
the elaborate Mandelbrot set—but it can also be understood
in a statistical sense—leading to stochastic fractals, the prime
examples of which are fractional Brownian motion (fBm)
processes [3]. (See also Chainaiset al. [4] for a generalization
based on the notion of scaling.)
Fractional Brownian motion models generalize Lévy’s
Brownian motion [5] of Gaussian type. These processes have
long been associated with the phenomenon of long-range
dependence and1/fα-like power spectra that frequently ap-
pear in areas as diverse as hydrology, financial mathematics,
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network traffic analysis, terrain modelling, and image pro-
cessing [1, 6–8]. In the case of the latter, the relevance of
fBm processes in modelling images has been claimed on the
basis of observations of scale-invariance and the associated
power-law spectra in natural images [9–11].
A multi-variate fBm field BH is a non-stationary Gaussian
process1 identified by a single parameter0 < H < 1—the
Hurst parameter, after Harold Edwin Hurst (1880–1978), for
his seminal contribution to the study of such processes in the
context of hydrology [2, 12]—that characterizes its covariance
up to a scalar normalization factor:

E {BH(x)BH(x′)} ∝ ‖x‖2H + ‖x′‖2H − ‖x − x′‖2H .

Estimation of the Hurst parameter is important in practical
applications, and is e.g. used in image processing to classify
different types of texture based on their second order statist-
ics [13, 14].
Multi-resolution analysis [15, 16] was identified early on in
its development as a decidedly effective tool for the study
of self-similarity [17–26]. Its utility in the estimation of
parameters of self-similar processes (especially in the 1D
setting and for estimating the Hurst parameter) is therefore
well documented [20, 27–29]. The essential observation in this
regard is that the logarithm of the wavelet energy of an fBm
process varies linearly with scale, with a slope that depends
on the Hurst parameterH.
Intuitively, the above observation appears deceptively simple.
After all, this would seem to be a straightforward consequence
of the 1/fα-like power spectrum of fBm and the logarithmic
spectral partitioning afforded by the wavelet transform. A
rigorous derivation of this result is however subtler, as fBm—
being non-stationary—does not in fact have a power spectrum
in the classical sense.
In respect of the above, one of our main motivations in writing
this paper has been to propose a rigorous interpretation of the
spectral characterization of multi-variate isotropic fBm, in the
sense of a whitening/innovation model (§V). This distribu-
tional formulation, which is deduced from basic invariance
principles (§III), provides a powerful framework for defining
and analysing fBm and similar processes. Our results here
generalize those of Blu and Unser [30] who studied the single-
variable case. Operator models for self-similar fields were
also studied by Benassiet al. [31, 32], who focused on the
link between operators and multi-variate random fields and

1 In this paper we do not distinguish between randomprocessesand
randomfields,using both terms interchangeably to refer to multi-variate
random functions.
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their relation to wavelets. The one-dimensional analysis of
Wyss [33] is also relevant.
The said formulation also links the study of fBm processes
to spline theory via providing a convenient and unifying
interpretation of fBm processes and polyharmonic splines as
stochastic vs deterministic solutions to the same (fractional)
partial differential equation [34]. This, in the light of the
fundamental relation between splines and wavelets (§IV),
allows us to derive interesting and general results concerning
the wavelet analysis of fractional Brownian motion (§V). We
for instance show the quasi-whitening effect of a polyharmonic
wavelet transform on fBm processes.
To complement the mathematical toolset for the analysis of
multi-variate fBm, we have included a comprehensive account
of a general construction scheme for multi-dimensional poly-
harmonic spline multi-resolution spaces, proving all essential
properties for forming a multi-resolution analysis. The gener-
ality of our construction (which extends the works of Rabut
and Bacchelliet al. [35, 36] and Van De Villeet al. [37])
makes it suitable for multi-resolution approximation in any
number of dimensions and on virtually all sampling lattices
of interest that display some form of isotropy.
The organization of the remainder of the paper, in brief, is
as follows. In §II we review some mathematical prelimin-
aries. We formalize the idea of isotropic affine invariance
in §III and use it to identify a family of fractional partial
differential operators that appear in the characterization of
both polyharmonic splines and fBm processes. The theory
of multi-dimensional polyharmonic spline multi-resolution is
developed in §IV. Next, in §V we provide a characterization
of fBm based on an innovation model. We then exploit the
link between splines and fBm processes in §VI, to derive
some characteristic results concerning polyharmonic wavelet
analysis of fBm. Based on these results, estimation of the Hurst
parameter is also discussed and a few experimental results are
provided in §VI-B. Some final remarks conclude the paper.

II. M ATHEMATICAL PRELIMINARIES AND NOTATION

The theory of generalized random processes utilized in this
paper is exposited in the works of Gel’fandet al. [38, 39]. For
reference, some of the main definitions are summarized in this
section. This section shall also serve to fix our basic notation
and to recall some facts and definitions from the theory of
lattices.

A. Some notational conventions

We use theMATLAB notation for row and column vectors and
also follow the multi-index convention, according to which,
given a vectorx = [x1; . . . ;xd] ∈ R

d and a multi-indexk =
[k1; . . . ; kd] ∈ Z

d
≥0 (d always denotes the dimensionality of

the domain),

xk def
=

∏

1≤i≤d

xki

i , k!
def
=

∏

1≤i≤d

ki!, and |k|def
=
∑

1≤i≤d

ki.

Other notation is defined where first used.

B. Generalized functions

A regular functionu of a variablex ∈ R
d is characterized

by the value it assigns to its argumentx (i.e. u(x) for
x ∈ R

d). In contrast, ageneralized functionor distributionf is
specified in terms of inner-products2 〈f, u〉 with test functions
u belonging to some inner-product spaceK. Intuitively, these
inner-products can be interpreted as linear observations or
measurements off . The advantage is that in this framework
we can conceive of entities that need no longer be defined
point-wise. The space of all generalized functions defined by
their (bounded) inner-products with elements ofK is identified
with K′, the continuous dual ofK.
Given an operatorA with adjoint A∗, both defined on our
space of test functions, we may extend the domain ofA to
the corresponding space of generalized functions (K′) using
the following defining identity:

〈Af, u〉def
= 〈f,A∗u〉.

Thus, e.g., for the shift operator we shall have

〈f(· − h), u(·)〉def
= 〈f(·), u(· + h)〉, for all u ∈ K.

The Fourier transform defines a one-to-one mapping between
a suitably chosen spaceK of test functions and the spacêK of
their Fourier transforms. With Parseval’s identity in mind, the
Fourier transform of a generalized functionf(x) ∈ K′ can be
defined as the generalized function̂f(ω) ∈ K̂′ that satisfies
the identity

〈f̂(ω), û(ω)〉 = (2π)
d〈f(x), u(x)〉, for all u ∈ K.

If we chooseK to be the Schwartz space ofd-variate rapidly
decaying smooth functions (denoted here byS(Rd) or simply
by S), K andK̂ (and thereforeK′ andK̂′) coincide. A familiar
example of a generalized function defined overS is Dirac’s
delta:

〈δ, u〉def
= u(0).

The Fourier transform ofδ(x) is the constant1, since〈1, û〉 =∫
dω 1û(ω) = (2π)du(0) = (2π)d〈δ, u〉.

C. Generalized random processes and random fields

To generalize the notion of a random process a similar ap-
proach may be used, where one replaces point values by inner
products. Accordingly, in the stochastic analysis of Gel’fand
and Vilenkin [39], a generalized random processX is defined
as a random generalized function, which is to say that it
corresponds to a family of random variables

Xu
def
= 〈X, u〉, u ∈ K,

characterized by the consistent specification of a joint probab-
ility measure for all finite sets of test functionsu. This should
be compared with the definition of classical random processes,
where point-wise random variablesX(x) replace theXu’s.

2 What we shall here refer to as an inner-product is in more accurate (but
perhaps less familiar) terms a duality pairing.
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The characteristic functional:A (real-valued) generalized
random processX can also be described by its characteristic
functional

ZX(u)
def
= E

{
ej〈X,u〉

}

(whereE denotes the expectation functional). The character-
istic functional is continuous and positive-definite, and is equal
to 1 for u ≡ 0. It provides a complete description of the
random processX. This is due to the fact that

ZX




∑

1≤k≤N

ωkuk





is a continuous and positive-definite function ofωk ’s and
hence, by Bochner’s theorem, corresponds to the Fourier
transform of a probability measure—specifically, the joint
probability measure ofXu1

, . . . ,XuN
[39, ch. III, §2.6].

(In comparison, in the classical theoryE
{
ej

P

k ωkX(xk)
}

provides the Fourier transform of the joint probability measure
of X(x1), . . . ,X(xN ). Informally, this would correspond to
choosing

∑
1≤k≤N ωkδ(· − xk) as the ‘test’ function.)

The correlation form: The correlation form〈〈u, v〉〉X of the
(real) random processX is defined as

〈〈u, v〉〉X def
= E{XuXv}.

The following relationship exists between the generalized
correlation form 〈〈u, v〉〉X and the (generalized) correlation
function cX(x,x′) of a generalized random process:

〈〈u, v〉〉X =

∫
dxdx′ cX(x,x′)u(x)v(x′). (1)

In addition, for a Gaussian random process, the characteristic
functional and the correlation form are related by the equation

ZX(u) = e−
1
2 〈〈u,u〉〉X .

This shows that, as expected, a Gaussian process is fully
characterized by its correlation form.

D. Lattices

A lattice £0 in R
d is the set of all integer linear combinations

of d linearly independent vectorsq1, . . . , qd; that is,

£0 = QZ
d,

with Q = [q1, . . . , qd] [40, 41]. In general, there exist several
generator matricesQ that lead to the same lattice. Yet,
they all have the same absolute determinant|Q| (known as
the sampling density). For simplicity, we shall assume the
normalization|Q| = 1.
A multi-dimensional lattice may be partitioned into so-called
cosetsthat are translates of one another. This is a general-
ization of the concept of dividing the set of integersZ into
even and odd numbers, or, more generally, intok equivalence
classes modulok. In the case of lattices inRd, such a
partitioning is achieved by means of asubsampling matrix
D, which plays the role of the integerk in the 1D case.D is
an integerd×d matrix with all eigenvalues strictly greater than

1 in the absolute. It is used to define a subsampling relation
for lattices:

£n+1 = QDQ−1
£n

def
= DQ£n. (2)

From there,
£n = QDn

Z
d = Dn

Q
£0.

Similar to the partitioning of the integers modulok, we find
a two-scale relationship for the decomposition of£n into |D|
cosets, which are translated versions of the lower resolution
lattice £n+1:

£n =




⋃

1≤i<|D|
£n+1 + QDnζi



 ∪ £n+1. (3)

Here the multi-integer vectorsζi—taken to be of minimum
length and dubbedprincipal coset representatives—are spe-
cified uniquely moduloDZ

d.
For a given lattice hierarchy£n, n ∈ Z, the dual (or
reciprocal) lattice hierarchy£∗

−n is defined by the relation

pTq ∈ Z, for all q ∈ £n,p ∈ £
∗
−n.

It follows that this hierarchy can be constructed using the
matrix pair ofQ−T def

= (QT)−1 andDT. Accordingly, we also

defineD∗
Q

def
= Q−TDTQT.

We define thelattice convolution operatoror lattice filter
corresponding to a sequencev[k], k ∈ Z

d, as the operator

VQ : f(·) 7→
∑

k∈Zd

v[k]f(· − Qk).

Its Fourier expression is

V̂Q(ω) =
∑

k∈Zd

v[k]e−jkT
Q

Tω.

Conversely, those and only those operators with Fourier ex-
pressions that can be written in the above form represent lattice
convolutions. These Fourier expressions are in effect those that
are2π£∗

0-periodic (i.e.2πp-periodic for anyp ∈ £
∗
0).

We also have a lattice version of the Poisson formula:

F





∑

k∈Zd

δ(x − Qk)




 =
(2π)d

|Q|
∑

k∈Zd

δ(ω − 2πQ−Tk). (4)

Remark 1:The families of multi-scale lattices that we shall
consider in this work are restricted in two ways:

LAT–1. First, for our multi-resolution construction we are
interested inself-similar multi-scale lattices.This
means that the lattice coarsening matrixDQ—and,
consequently, its dualD∗

Q
—should correspond to sim-

ilarity transforms.
LAT–2. Secondly, we require the existence of ad × N

integer matrixY
def
= [y1, . . . ,yN ] (N ≥ d), such that

the lattice vectorsQy1, . . . ,QyN generate£0, and
constitute a tight frame forRd. The latter is equivalent
to requiring that

QYYTQT =
∑

1≤i≤N

Qyiy
T
i QT = µ2I (5)
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for some scalarµ. We furthermore assume{Qyi}
to be simple, i.e. not to contain any pair of linearly
dependent vectors.

We note that forany lattice, there exist infinitely many
subsampling schemes that satisfy the first requirement. In
addition, the second requirement is satisfied by virtually all
lattices that are typically used in multi-dimensional multi-
resolution signal processing (such as the Cartesian, quincunx,
and hexagonal lattices inR2; and the Cartesian, FCC, and BCC
lattices inR

3). For instance, for the Cartesian and quincunx
lattices inR

2 (both with Q = [1, 0; 0, 1]), the matrices

Y =

[
1 0
0 1

]
and Y′ =

[
1 0 1 −1
0 1 1 1

]

provide two examples of such systems. A similar system for
the hexagonal lattice (withQ ∝ [1, 0.5; 0,

√
3

2 ]) uses the matrix

Y′′ =

[
1 0 1
0 1 −1

]
.

III. O PERATORS AND INVARIANCES

The fundamental observation that underlies this work is that
we can characterize specific classes of splines and stochastic
processes as solutions to a fractional partial differential equa-
tion of the form

U{solution} = driving term,

whereU is a fractional partial differential operator with certain
properties, and thedriving termis either a sum of Dirac deltas
(in the deterministic formulation, leading toU-splines) or a
white Gaussian noise process (in the stochastic formulation,
leading to random processeswhitenedby U).
In this section we shall use invariance principles to define a
particular family of such fractional partial differentialoperat-
ors that produce polyharmonic splines (§IV) as deterministic
solutions and also characterize isotropic multi-dimensional
fractional Brownian motion (§V) in the stochastic setting.
The link between the deterministic and stochastic formulations
is later explored in §VI, where we investigate the properties of
polyharmonic wavelet analysis of fractional Brownian motion.

A. Scale- and rotation-invariant operators

The invariances we shall consider are those under the scaling,
shifts, and rotations of the coordinate system [1], with the
first leading to self-similar fractal structures, and the latter two
relieving us from the—uncomfortable and often arbitrary—
choice of an origin and a set of preferred directions.
Specifically, we shall study a family of convolution operators
with continuous Fourier expressions, which, in addition to
shift-invariance (intrinsic to convolution), have the following
invariance properties.

INV–1. Scale-invariance:The operators of interest commute
with scaling operators (up to a constant that may vary
continuously with scale) in order to allow multi-scale
constructions. In mathematical notation, we want

U ◦ Sa = α(a) Sa ◦ U,

where Sa : f(x) 7→ f(a−1x), a > 0, represents
the scaling operator andα(a) is a strictly positive
continuous function.

INV–2. Rotation-invariance: The operators are in addition
invariant under rotations of the coordinate system and
therefore lead to isotropic models. In other words, the
operators commute with rotations about the origin:

U ◦ Rθ = Rθ ◦ U.

The following is a known result in the context of rotation-
and scale-invariant quadratic functionals (in this caseQ(f)

def
=

‖Uf‖2
2) [42–44].

Theorem 1:The (per assumption continuous) Fourier expres-
sion of a real operatorU fulfilling requirements INV–1
and INV–2 has the following form for someγ ≥ 0.

Û(ω) = c‖ω‖2γ . (6)

The normalized version of such an operator (withc = 1),
which we denote by∆γ , can be considered theγ-th real
(fractional) iterate of the Laplacian (albeit discarding afactor
of (−1)

γ). The following are easy to check:

∆0 = identity; ∆γ∆γ′

= ∆γ+γ′

. (7)

The fractional Laplacian has a non-trivial null-space and,as
a result, infinitely many inverses differing in terms from the
null-space.
Remark 2:The null-space includes, for instance, certain func-
tions with (generalized) Fourier transforms concentratedat the
origin (i.e. at ω = 0). Since any such generalized Fourier
symbol can be written as a finite sum of derivatives ofδ(ω)
[45, ch. II, §4.5, p. 119, Theorem], the corresponding members
of the null-space are all of polynomial functions up to a certain
degree. This, however, is not a complete characterization of the
null-space in general.

B. Inverse operators

Looking back at (7), one may be tempted to define the inverse
of ∆γ as the operator∆−γ with the Fourier expression

‖ω‖−2γ .

It is immediately noticed, however, that this Fourier form has
a non-summable singularity at the origin for2γ ≥ d; therefore
in general the integral

∆−γf(x) = (2π)−d

∫

Rd

dω ejxTω‖ω‖−2γ f̂(ω) (8)

needs to be properly interpreted, i.e. regularized.3 Since reg-
ularization can be done in more than one way,∆−γ in fact
represents a family of inverses rather than a single one.
Different regularizations essentially correspond to different
(boundary or other) linear constraints on the solution of a
fractional differential equation of the form

∆γρ(x) = f(x).

3 ‘Regularization’ here stands for a general way of assigninga value to
an integral with a singular kernel, in a manner that would be consistent
with what one would expect when evaluating the integral for asmooth
function that vanishes in a neighbourhood of the singularity (and for
which the integral can be evaluated).



5

These constraints may be satisfied by adding an appropriate
term from the null-space of∆γ to a particular solution.
One of the possible inverse operators is theleft inverse (in-
troduced by Blu and Unser in the single-variable setting [30];
denoted∆̀−γ here), which is obtained by removing a sufficient
number of lower order terms from the Taylor series expansion
of f̂(ω) at the origin:

∆̀−γf(x)
def
= (2π)

−d

×
∫

Rd

dω ejxTω
f̂(ω) −∑|k|≤⌊2γ− d

2 ⌋ f̂
(k)(0)ωk

k!

‖ω‖2γ
. (9)

It can be checked that

∆̀−γ∆γf = f

for any f ∈ S, hence the nameleft inverse.
The adjoint of∆̀−γ over S is the operatoŕ∆−γ defined by

∆́−γf(x)
def
= (2π)

−d

×
∫

Rd

dω
ejxTω −∑|k|≤⌊2γ− d

2 ⌋
j|k|xkωk

k!

‖ω‖2γ
f̂(ω). (10)

It satisfies
∆γ∆́−γf = f

for all f ∈ S and is called theright inverse. We can extend
∆́−γ to a subset ofS ′ by duality:

〈∆́−γf, u〉def
= 〈f, ∆̀−γu〉,

wherever the r.h.s. is meaningful for allu ∈ S.
While the above definitions may look arbitrary at first glance,
they have intuitive interpretations. For example, supposing
f(x) to be a well-behaved test function whose moments vanish
up to degree⌊2γ − d

2⌋, (9) simply corresponds to a shift-
invariant inverse (all the terms in the sum will be zero in
this case), while (10) defines an inverse with all derivatives
up to order⌊2γ − d

2⌋ forced to be zero at the origin. This
latter property is significant in the characterization of fractional
Brownian motion as there, by definition, the process should
equal zero atx = 0.
It also bears mentioning that, unlike the fractional Laplacian,
these inverse operators are in generalnot shift-invariant when
applied to members ofS. (They are, however, scale- and
rotation-invariant in the previously defined sense.)

IV. POLYHARMONIC SPLINES AND WAVELETS

A. Splines and operators

By differentiating a polynomial spline a sufficient number
of times, we procure a sum of Dirac deltas located at the
knots. This observation underlies a conceptual framework in
which splines are defined as functions that are mapped to
a sum of Dirac deltas by some suitably chosen operatorU.
This approach leads to interesting generalizations: one may
for example use fractional derivatives to obtain splines of
fractional order [34, 46].

Formally, in this framework, given a shift invariant operator
U, we define alattice U-splineas a functions(x) for which

Us(x) =
∑

k∈Zd

c[k]δ(x − Qk), (11)

with c ∈ ℓ∞(Zd) and where the pointsQk belong to a lattice.
One may try to solve the equation

U̺(x) = δ(x), (12)

for ̺(x) (Green’s function), e.g. by finding an inverse operator.
s(x) can then be expressed in terms of̺(x) and its lattice
shifts, plus a term from the null-space ofU; that is,

s(x) =
∑

k∈Zd

c[k]̺(x − Qk) + s0(x),

with Us0 = 0.
In practice, it is often of interest to limit oneself to splines
s(x) ∈ L2(R

d), in which case we consider a modified version
of the above problem, where we introduce alocalization
operator (filter)VQ and study the equation

Uφ(x) = VQδ(x) =
∑

k∈Zd

v[k]δ(x − Qk) (13)

in place of (12). B-splines, which form spatially localized
bases for square-integrable spline spaces, are in fact solutions
to such equations [34, 37].
In the remainder of this section, we first introduce such
localized (B-spline) bases for spaces of square-integrable
polyharmonicsplines, for which the operatorU is a fractional
Laplacian, andVQ is its discretization over any one of the
lattices introduced in Remark 1. Next, in §IV-C, we show
how these B-splines can act as scaling functions for a multi-
resolution analysis (Theorem 2). We follow this by the invest-
igation of one of the main properties of wavelets derived from
these B-splines, namely that polyharmonic wavelet kernels
behave like low-frequency approximations of the fractional
Laplacian (Theorem 3).

B. Polyharmonic B-Splines

If we take the operatorU of the previous subsection to be the
fractional Laplacian∆γ , solutions to (11) (which in this case
is a polyharmonic equation) are dubbedpolyharmonic splines.
As noted in §III-B, when the function̂f(ω) has sufficiently
many zeros at the origin, the fractional Laplacian can be
inverted via (8) without difficulty. Indeed, one of the ways
to deal with singular integrals is to multiply the integration
kernel by a function that vanishes at the singularity.
It is therefore reasonable in our problem to first choose
an appropriate localization filterVQ whose Fourier symbol
V̂Q(ω) approximates that of∆γ at its zero at the origin, thus
cancelling the singularity of∆−γ and permitting us to solve
the spline equation

∆γφ2γ(x) = VQδ(x) (14)

in the Fourier domain, for the B-splineφ2γ(x). Different
choices of such an operatorVQ lead to different famil-
ies of polyharmonic B-splines (quasi-isotropic, orthogonal,
etc.) [37].
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In the simplest case, the elementary localization filterVQ

corresponds (up to a factor of(−1)γ) to the γ-th fractional
iteration of an elementary discretization of the Laplacian.
Specifically, forγ = 1 we define the elementary localization
operator,∆

Q
, in the spatial domain as follows.

∆
Q
f

def
=

1

µ2

∑

1≤i<N

2f(·) − f(· − Qyi) − f(· + Qyi)

(see LAT–2 for the definition ofyi’s). Note also its Fourier
symbol,

∆̂
Q
(ω) =

4

µ2

∑

1≤i<N

sin2(
yT

i QTω

2
). (15)

For other values ofγ > 0 we simply define

∆̂γ
Q
(ω)

def
=
[
∆̂

Q
(ω)
]γ

.

This choice of the localization operator leads to a fractional
generalization of Rabut’s elementaryγ-harmonic B-splines,
here denotedφ2γ,el [35, 37].
More generally, the localization operatorV̂Q used in (14) can
be any one with a Fourier symbol factorizable as

V̂Q(ω) = ∆̂γ
Q
(ω) T̂γ

Q
(ω);

where T̂γ
Q (ω)

def
=
[
T̂Q(ω)

]γ
is the continuous Fourier expres-

sion of some lattice operator (filter), and is bounded from
above and below with a strictly positive lower bound. We shall
assumêTQ(ω) to be normalized witĥTQ(0) = 1.
Remark 3:The choice of̂Tγ

Q (ω), apart from these constraints,
is essentially arbitrary in so far as it corresponds to a discrete
(lattice) filter, as all such choices lead to the same multi-
resolution subspaces. However, as will be seen shortly, dif-
ferent choices of̂TQ do lead to different B-spline functions
spanning the same spaces, andT̂Q may be specifically selected
so as to give these functions a desired correlation structure.
The solution to (14) can now be written explicitly in the
Fourier domain:

φ̂2γ(ω) =
V̂Q(ω)

‖ω‖2γ
= T̂γ

Q
(ω)

∆̂γ
Q (ω)

‖ω‖2γ

= T̂γ
Q
(ω)φ̂2γ,el(ω).

(16)

where φ̂2γ,el(ω)
def
=

∆̂γ

Q
(ω)

‖ω‖2γ is the Fourier transform of the
elementaryγ-harmonic B-splineφ2γ,el that was mentioned
before.
In order for thepolyharmonic B-splinefunction φ2γ(x) thus
defined to be square-integrable we need to have

γ >
d

4
. (17)

The following proposition summarizes the smoothness and
integrability properties ofφ2γ(x).
Proposition 1: φ2γ , with γ > d/4, belongs to the Sobolev
spaceHs for any s < 2γ − d

2 .

Proof: Using the Taylor expansion of̂∆γ
Q (ω), we can imme-

diately see that̂φ2γ,el(ω) tends to1 as‖ω‖ → 0:

lim
‖ω‖→0

φ̂2γ,el(ω) = lim
‖ω‖→0

∣∣∣∣∣∣

∑
i

4
µ2 sin2(

yT
i Q

Tω

2 )

‖ω‖2

∣∣∣∣∣∣

γ

= lim
‖ω‖→0

∣∣∣∣∣∣

ωT

(∑
i

Qyiy
T
i Q

T

µ2

)
ω

ωTω

∣∣∣∣∣∣

γ

= 1

(cf. Eqn (5)). In addition, both∆̂γ
Q (ω) and T̂γ

Q (ω) are by
definition continuous and bounded. What all this means is that
φ̂2γ(ω) is continuous and bounded everywhere and decays
like ‖ω‖2γ (cf. (16)). It then follows from the Fourier-domain
definition of the Sobolev spaceHs that φ2γ ∈ Hs for all
s < 2γ − d

2 .
As was already mentioned, the trivial choice ofT̂Q(ω) ≡
1 in (16) leads to elementary fractional polyharmonic B-
splines. Among other possibilities, one can e.g. opt for the
orthogonal polyharmonic B-splineφ⊥2γ(x). In effect, starting
from any localization operatorVQ and its corresponding B-
spline φ2γ(x), one can define the orthogonal localization
operatorV⊥

Q
as

V̂⊥
Q

(ω) =
V̂Q(ω)√∣∣∣ÂQ(ω)

∣∣∣
,

where we have introduced the autocorrelation filter

ÂQ(ω)
def
= ÂQ{φ2γ}(ω) =

∑

k∈Zd

∣∣∣φ̂2γ(ω + 2πQ−Tk)
∣∣∣
2

(18)

defined as the lattice Fourier transform ofa[k]
def
= 〈φ2γ(· −

Qk), φ2γ(·)〉. Division by the square root of̂AQ{φ2γ}(ω)
guarantees that〈φ⊥2γ(· − Qk), φ⊥2γ(·)〉 = δk. (The above
orthogonalization depends on the positivity and boundedness
of ÂQ. The demonstration of these properties is included in
the proof of Theorem 2.)

C. Polyharmonic multi-resolution analysis

The following theorem allows us to form a multi-resolution
analysis based on polyharmonic B-splines (in their different
flavours).
Theorem 2:The polyharmonic B-splines defined in (16) have
the following properties.

MRA–1. They form a partition of unity.
MRA–2. They fulfil a two-scale relation of the following

form:

φ2γ(D−1
Q

x) =
∑

k∈Zd

h[k]φ2γ(x − Qk), (19)

with h ∈ ℓ1(Z
d).

MRA–3. They generate a Riesz basis for theirℓ2 span.

Proofs are given in Appendix I.
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Properties MRA–1–3 are those necessary to form a Mallat-
type multi-resolution analysis [15, 16, 47]. The basic spline
approximation subspace is defined as

V2γ,0
def
=

{∑

k∈Zd

c[k]φ2γ(· − Qk)

∣∣∣∣ c ∈ ℓ2(Z
d)

}
.

More generally, then-th level multi-resolution spline space is

V2γ,n
def
=

{
f(D−n

Q
·)
∣∣∣∣ f(·) ∈ V2γ,0

}
.

(Note that becausêTγ
Q (ω) is bounded away from zero, the

definition of the above spaces is independent of its particular
choice.) As a consequence of Theorem 2, these spaces are
nested,

{0} ⊂ · · · ⊂ V2γ,1 ⊂ V2γ,0 ⊂ V2γ,−1 ⊂ · · · ⊂ L2,

and the closure of their union isL2.
The next result concerns the fractional derivatives and integrals
of polyharmonic splines, which are polyharmonic splines in
their own right, but of a different order. (See Appendix I for
the proof.)
Proposition 2:
1. Theγ0-th fractional Laplacian of a polyharmonic spline of

order2γ belonging toV2γ,0, with γ > γ0, is a lower order
spline inV2(γ−γ0),0.

2. If ∆γ0s(x) is a polyharmonic spline of order2γ, thens(x)
is a polyharmonic spline of order2γ + 2γ0.

Polyharmonic wavelets: Polyharmonic wavelets can be
defined as basis functions that span the orthogonal com-
plements in the series of nested approximation spaces. For
a given multi-resolution hierarchy there will in general be
|D| − 1 distinct mother-waveletsψi

2γ , 1 ≤ i < |D|. (We shall
subsequently drop the indexi as all arguments apply equally
to all wavelets.)
The semi-orthogonality condition imposed on the wavelet
spaces forces the wavelets to have a behaviour similar to the
operator∆γ at low frequencies. This quality is encapsulated
in the next theorem (a proof is given in Appendix I).
Theorem 3:A semi-orthogonal polyharmonic wavelet of order
2γ can be written as

ψ2γ(x) = ∆γη(x),

whereη(x) (the smoothing kernel) is a polyharmonic spline
of order 4γ that belongs to the Sobolev spaceHs for any
s < 4γ − d

2 .
A special case of the general multi-resolution construction
studied in this section can be found in a previous paper [37],
where an explicit construction scheme for the two-dimensional
quincunx lattice (requiring the design of only one mother
wavelet) was provided.

V. CHARACTERIZATION OF FRACTIONAL BROWNIAN

RANDOM FIELDS

A random field is said to beself-similarwhen applying a sim-
ilarity transform to its domain does not change its stochastic
behaviour (apart from a possible renormalization factor).For
a review of self-similar random fractals we refer the readerto

Benassi and Istas [32]. Gaussian self-similar processes were
also studied by Dobrushin in his 1979 paper [48].
Fractional Brownian motions form a subset of (continuous)
self-similar fields distinguished by their Gaussian statistics
and stationary increments [3]. Stochastic self-similarity and
stationary increments in particular force the fields to haveho-
mogeneous (self-similar) variance functions. Given that fBm’s
are Gaussian and hence are fully defined by their second-order
statistics, one traditional way of characterizing them is by
specifying their variogram, which, for a normalized fBm of
Hurst exponentH, has the following form [49, ch. 18]:

E{|BH(x) − BH(x′)|2} = 2‖x − x′‖2H .

H is called the Hurst parameter of the fBmBH(x). BH is
additionally postulated to have zero mean and to be zero at
x = 0 almost surely. One remarks that the derived variance
function is indeed homogeneous:

E{|BH(x)|2} = 2‖x‖2H .

Some of the other definitions of fBm fields are in terms of
integrals of white noise [50] and by their spectral harmonizable
representation [31, 51]. (The latter formulation is closely
related to what we present in the sequel. See Remark 4.)
An important approach to characterization often used in the
analysis and synthesis ofstationary random processes relies
on the notion ofwhitening. In this formulation, an operator is
sought after whichwhitensthe process in question, i.e., maps
it to white noise. Next, a suitable inverse operator needs tobe
identified, which can then be applied to white noise in order
to recreate instances of the desired random process. While
standard in the study of stationary processes, this scheme can
be extended to certain non-stationary cases, and in particular
to the definition of fBm, by adopting a distribution theoretic
formalism. This will be demonstrated in this section.
In effect, in the sequel we will show that fractional
Laplacians introduced previously whiten multi-variate fBm
fields of correspondingH-exponent (as also discussed by
Benassiet al. [31]); that is,

∆
H
2 + d

4 BH = ǫHW,

where W is normalized white Gaussian noise andǫH is a
constant. We also show that an fBm field may be obtained by
applying theright inverse(cf. §III-B) to white Gaussian noise,
which is to say that

BH = ǫH∆́−H
2 − d

4 W.

In addition to being conceptually interesting, the above char-
acterization of multi-variate fractional Brownian motionleads
to a natural generalization of the definition to values ofH
outside the(0, 1) range.
Furthermore, fractal properties of the process find their corres-
pondent in the operator: the scale-invariance property imposed
on the operator induces the statistical self-similarity ofthe
process, while rotation-invariance entails its statistical isotropy.
These results all follow from a multi-variate generalization of
Theorem 1 of Blu and Unser [30], which provides a spectral
characterization of fBm through its characteristic functional
(cf. §II-C).
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Theorem 4:Let 0 < H < 1. An fBm field with Hurst
parameterH and variogram2‖x − x′‖2H has the following
characteristic functional:

ZBH
(u) = exp

(
− ǫ2H

2(2π)
d

∫
dω

|û(ω) − û(0)|2
‖ω‖2H+d

)
, (20)

where

ǫ2H = −22H+dπd/2 Γ(H + d
2 )

Γ(−H)
. (21)

Proof: A complete proof can be found in Appendix II.
The main step of the demonstration consists in showing
that (20) defines a Gaussian process whose correlation function
cBH

(x,x′) is that of an isotropic fractional Brownian motion
with Hurst parameterH, that is, the function

cBH
(x,x′) = ‖x‖2H + ‖x′‖2H − ‖x − x′‖2H .

We recall the characteristic functional of the unit random field
W (a.k.a. white Gaussian noise):

ZW(u) = exp

(
−1

2

∫
dx |u(x)|2

)

= exp

(
−1

2
(2π)

−d
∫

dω |û(ω)|2
)

.

From comparing this with (20) and by applying a duality
argument we can deduce that

ZBH
(u) = ZW(ǫH∆̀−γ0u) = ZǫH∆́−γ0W

(u),

with γ0 = H
2 + d

4 . This means that the random field obtained
by applying the right inversé∆−γ0 to the unit (generalized)
random fieldW is a multi-variate fBm with Hurst parameter
H:

BH = ǫH∆́−H
2 − d

4 W. (22)

Equation (22) is an alternative characterization of fractional
Brownian motion, and can be used to extend the definition
to non-integerH > 1. The covariance function of these
extensions can be obtained with the aid of Lemma 1 of
Appendix II.
It also follows that fractional Brownian motion iswhitenedby
the fractional Laplacian operator,

∆
H
2 + d

4 BH = ǫHW,

a fact that leads to the innovation model depicted in Fig. 1.
Remark 4:For 0 < H < 1, a related characterization
of real fractional Brownian fields is by theirharmonizable
representation as the stochastic integral

∫

Rd

ejxTω − 1

‖ω‖H+ d
2

Ŵ (dω),

whereŴ is a (Hermitian symmetric) complex random meas-
ure corresponding to the Fourier transform of real-valued white
Gaussian noise. (See Samorodnitsky and Taqqu [51] for an in-
depth discussion of the single-parameter case.) The integrand
ejx

T
ω−1

‖ω‖H+ d
2

is comparable to the spectral representation of the

right inverse in (10), which reduces to the said integrand for
0 < H < 1. (The treatment of Benassiet al. [31] is also of
direct pertinency, and includes similar extensions.)

VI. POLYHARMONIC WAVELET ANALYSIS OF

MULTI -VARIATE FBM

Considering the inherent link between polyharmonic splines
and fBm’s that has been emphasized throughout this article,it
should not come as a surprise that a wavelet analysis of multi-
variate fBm would have interesting properties. We study some
of these in the first part of this section. Next, we complement
and verify our derivations through some experimental results.

A. The probability distribution of wavelet coefficients

Proposition 3: The polyharmonic spline wavelet transform of
order 2γ ≥ 2γ0, with γ0

def
= H

2 + d
4 , maps the non-stationary

processBH into a series of stationary (discrete) Gaussian
processes.
Proof: We can rely on Theorem 3 and the innovation model
to see that, e.g., the wavelet coefficients at leveln = 0
are stationary Gaussian processes obtained by filtering white
noise:

w0[k] = 〈BH , ψ2γ(· − Qk)〉
= 〈∆γ0BH ,∆

γ−γ0η(· − Qk)〉
= 〈ǫHW,∆γ−γ0η(· − Qk)〉.

(Note that even though the polyharmonic spline∆γ−γ0η(· −
Qk) is not a Schwartz test function, its inner-product with
the white noise process is nonetheless well-defined as it is
continuous and belongs toHs for somes > 0; cf. Theorem 3.)
The demonstration for an arbitrary leveln is similar, except
that a scale-dependent normalization factor also appears.
What this property means is that thew0[k]’s correspond to the
lattice samples of astationaryprocess with power spectrum
ǫ2H‖ω‖2γ−2γ0 |η̂(ω)|2 (which is well-defined in theL2 sense
sinceη ∈ Hs for all s < 4γ − d

2 ). This relation is essentially
scale-invariant up to a proportionality factor.
Proposition 4: The variance of the polyharmonic wavelet
coefficients depends exponentially on the Hurst exponent and
the scalen:

E
{
w2

n[k]
}

= |D|
(2H+d)n

d E
{
w2

0[k]
}

.

Proof: This property can be shown using the correlation form
〈〈·, ·〉〉BH

. One has (cf. Eqn (28)):

E
{
w2

n[k]
}

= 〈〈|D|−n
2 ψ2γ(D−n

Q
x − Qk),

|D|−n
2 ψ2γ(D−n

Q
x − Qk)〉〉BH

=
ǫ2H

(2π)
d

∫
dω

|ψ̂2γ(ω)|2
‖Q−TD−nTQTω‖2H+d

= |D|n
d
(2H+d) ǫ2H

(2π)
d

∫
dω

|ψ̂2γ(ω)|2
‖ω‖2H+d

= |D|n
d
(2H+d)〈〈ψ2γ(x), ψ2γ(x)〉〉BH

= |D|n
d
(2H+d)

E
{
w2

0[k]
}

.

More generally, we have the following result.
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Fig. 1. Innovation model for multi-variate fractional Brownian motion.

Proposition 5: The covariance of intra-scale wavelet coeffi-
cients is given by the relation

E{wn[k]wn[k′]}
|D|n

d
(2H+d)

=
ǫ2H

2(2π)
d

∫
dω

|ψ̂2γ(ω)|2
‖ω‖2H+d

×
(∣∣∣1 + ej(k−k′)T

D
nT

Q
Tω
∣∣∣
2

− 2

)

= E{w0[D
nk]w0[D

nk′]}.

Proof: At scale0 we have

E{w0[k]w0[k
′]}

=
1

2

[
〈〈ψ2γ,k + ψ2γ,k′ , ψ2γ,k + ψ2γ,k′〉〉BH

− 〈〈ψ2γ,k, ψ2γ,k〉〉BH
− 〈〈ψ2γ,k′ , ψ2γ,k′〉〉BH

]
.

The proposition is then proved using (28) and with a change
of variables as in the previous proof.
Remark 5: It is relevant to compare the above result with
those obtained by Meyeret al. [23] in the 1D setting. The
wavelets proposed by Meyeret al. depend on the Hurst
parameterH that is matched to the Hurst exponent of the
1D fBm process in consideration (which should be known
a priori). Independence of the wavelet coefficients (i.e. true
whitening) is a consequence of this perfect match. This in fact
corresponds to the wavelets being orthogonal in terms of the
positive-definite form〈〈·, ·〉〉BH

. Since this design depends on
the Hurst exponent being known, in the problem of estimating
H a parameter higher than the true unknown value must be
used, in which case the wavelet coefficients will again be
correlated. Also note that the results provided in the present
paper are general and concernany family of semi-orthogonal
polyharmonic wavelets. In the actual implementation of wave-
lets for a given lattice, there is some room for incorporating
certain desired behaviours in the design of the wavelet filter
g[k], which will in turn affect the smoothing function of
Theorem 3.
As a demonstration of potential, the above results (Proposi-
tions 3 and 4 in particular) allow us to extend 1D wavelet
estimators of the Hurst exponent reported in the literature[18,
20, 27–29] to the multi-dimensional setting. In its simplest
form, estimation can be based on the identity

log d
√

|D|
(
E
{
w2

n[k]
})

= (2H + d)n+ C, (23)

whereC = log d
√

|D|
(
E
{
w2

0[k]
})

is a computable constant
that depends on the choice of the wavelet (Proposition 4). This
means that a linear regression of the estimates of the variance
in each sub-band in thelog scale provides an estimate ofH.

An improved estimate may be obtained using a maximum-
likelihood (ML) formulation. This is essentially a multi-
dimensional adaptation of the ML-estimator of Wornell [27,
29].4 The estimate is defined as the minimizer of a negative
log-likelihood approximate (leaving out the constant term):

ℓ(w|θ) = 1
2

∑

n∈N
Nn log σ2

n(θ) +
En

σ2
n(θ)

. (24)

In the above formulaθ
def
= (H,C ′)—with C ′ a normalization

factor—is the set of parameters to estimate;N is the set
of levels used for estimation;Nn denotes the number of
coefficients at leveln;

σ2
n(θ)

def
= E

{
w2

n[k]
}

= C ′|D|
(2H+d)n

d

is the theoretical variance of leveln wavelet coefficients
(cf. Proposition 4); and, finally,En is the observedwavelet
energy (i.e. the sum of coefficients squared) at leveln. In
the implementation we have used the previous regression
estimate as an initial guess and applied Newton’s method to
the derivative ofℓ. This provides a fast (essentially real-time)
way of producing an improved estimate ofH.

B. Experimental results

The estimation procedure outlined previously was applied to
instances of (periodic, due to discretization) two-dimensional
fBm, generated via Fourier domain filtering as per §III-B (cf.
(22) and Remark 4). The wavelets used for analysis were
isotropic polyharmonic wavelets of Van De Villeet al. [37],
which have a fast FFT-based implementation. The order of
the wavelets was chosen to exceedH + d/2 in order to
satisfy the requirements of Proposition 3. We used a quinc-
unx subsampling scheme, which offers a more gradual scale
progression, thus furnishing more regression points for the
estimation. Another advantage is that the quincunx design
involves only a single mother-wavelet.
Hurst parameter estimation was performed on100 instances of
512×512 fBm images for three different values ofH (0.3, 0.6,
and0.9). Decomposition levels2 to 8 were used for estimation.
(Examples of used fBm images and corresponding regression
curves can be seen in Figure 2.) The average and standard
deviation of the estimated values, obtained by regression
and ML estimation respectively, are given in Table I. In
experiments we noticed very good fits and low values for

4 Note that, as is the case for the cited estimators, the ML formulation
is approximate where the wavelet is not specifically designedto exactly
match the process, as the correlation between wavelet coefficients is not
taken into consideration. We have provided formulae for the covariances,
which could in principle be used to improve the estimate. This however
would substantially complicate the estimator.
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the standard deviation, which underline the robustness of the
process.

TABLE I

WAVELET-BASED ESTIMATION OFH (100 REALIZATIONS)

true value log-regression estimate ML estimate
mean stdev mean stdev

0.3 0.290 0.007 0.293 0.004
0.6 0.590 0.008 0.593 0.004
0.9 0.890 0.008 0.893 0.005

Results of the same analysis applied to a single axial slice
of a functional magnetic resonance image (fMRI) of the
brain are also shown in Figure 2. (Boundary and background
wavelet coefficients were discarded for the analysis in order to
avoid boundary effects.) The corresponding fractal dimension
according to the improved estimate isd+ 1 −H = 2.66.
It has been suggested that anatomical growth processes lead
to fractal-like structures. In the case of the brain, Bull-
more et al. [52] have argued that the boundary between
the white matter and the cerebral cortex has a fractal-like
shape. Additionally, based on recently made possible 3D high-
resolution imaging of the vasculature [53], the branching of
the tree structure of the arteries appears to constitute a fractal
organization in space. As fMR imaging of brain tissue indir-
ectly measures the flow of oxygenated blood, these arguments
can in a way account for the fractal behaviour evidenced in
Figure 2(d).

VII. C ONCLUSION

Our approach in this paper was based on the observation
that certain families of splines and random processes can be
characterized as deterministic vs stochastic solutions ofthe
same fractional partial differential equation.
Motivated by the works of Duchon [43], Arigovindan [44],
and Kybicet al. [42] on invariances, in this paper we focused
on a particular class of such equations that is singled out
by imposing certain fundamental invariance properties on the
operator involved. This pointed us to a family of fractional
differential operators that are invariant to the translation, ro-
tation, and scaling of the coordinate system. We substantiated
the following points.

CON–1. These operators (which turn out to be fractional
iterations of the Laplacian) lead naturally to the
definition of polyharmonic B-splines and multi-
resolution spline spaces over a large family of multi-
dimensional lattices.

CON–2. The same operators whiten multi-variate fractional
Brownian motion, and can thus be used to rigorously
characterize this important family of random fields.

CON–3. The relation between deterministic and stochastic
formulations provides a natural framework for the
analysis of fBm. In particular, a polyharmonic multi-
resolution analysis of fractional Brownian motion
has interesting properties that can be deduced from
the parallelism between the two formulations. As an
example, we showed an application of this observtion

in the estimation of the Hurst parameter associated
with fBm processes.

Our results relate, generalize, and formalize previous results
of multiple authors, including those of Rabutet al. [35,
36] and Van De Villeet al. [37] (on polyharmonic splines
and wavelets), Blu and Unser [30, 34] (on the distributional
characterization of 1D fBm), and Flandrin, Wornell, and Veitch
and Abry [20, 27, 28] (on the wavelet analysis of 1D fBm).
In addition, given the generality of the approach, it opens an
interesting avenue of research for the future investigation of
any of these subjects.
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APPENDIX I
PROOFS OFTHEOREMS2 AND 3, AND THAT OF

PROPOSITION2

A. Proof of Theorem 2

Proof of MRA–1: By (16), the zeros of̂φ2γ(ω) are the same
as those of∆̂γ

Q (ω), with the exception of the zero atω = 0

which disappears (see the proof of Proposition 1). From (15)
we can see that̂∆γ

Q (ω) is zero iff

yT
i QT ω

2π
∈ Z for all i.

Since the vectorsQyi generate£0, by the definition of the
dual lattice, the above condition is equivalent to

ω

2π
∈ £

∗
0.

Removing the zero atw = 0 produces2π£∗
0\{0} as the set

of zeros ofφ̂2γ(ω).
Property MRA–1 is then a consequence of the Poisson sum-
mation formula (cf. (4); also of direct relevance is Kolountza-
kis [54, Eqn (5)]).
Proof of MRA–2: Property MRA–2 can be verified by writing
the Fourier expression of the refinement filterh:

ĤQ(ω) = |D| φ̂2γ(D∗
Q
ω)

φ̂2γ(ω)
= |D| V̂Q(D

∗
Q
ω)/‖D∗

Q
ω‖2γ

V̂Q(ω)/‖ω‖2γ

= |D|1−
2γ
d

V̂Q(D
∗
Q
ω)

V̂Q(ω)
.

(The last step results fromD∗
Q

being, per definition, a similarity
transform matrix; cf. LAT–1.) We observe that (i) the numer-
ator and denominator of the last expression are, respectively,
2π£∗

−1- and2π£∗
0-periodic; that (ii) the zeros of the numer-

ator and the denominator happen respectively over the sets
2π£∗

−1 and 2π£∗
0 and are all of order2γ; and finally, that

(iii) both the numerator and the denominator are bounded.
We know from Eqn (3) that2π£∗

0 ⊂ 2π£∗
−1. Therefore, first,

from (i) it follows that ĤQ(ω) is 2π£∗
0-periodic. Secondly,
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Fig. 2. (a), (b), and (c): regression plots for the estimationof Hurst exponent of discretized bivariate Brownian motion for various values of the Hurst
parameter, all generated from the same instance of pseudo-random noise; (d): regression plot for an fMRI image (original images are given as insets).

from (ii) and (iii) one concludes that̂HQ(ω) is bounded, with
its set of zeros being

{
ω
∣∣ ĤQ(ω) = 0

}
= 2π

(
£

∗
−1\£∗

0

)

= 2π
⋃

1≤i<|D|

(
£

∗
0 + Q−TD−Tζ∗

i

)
. (25)

These observations establish thatĤQ(ω) is the lattice Fourier
transform of a sequenceh ∈ ℓ1. The two-scale relation
therefore holds.
Proof of MRA–3: Proving the existence of lower and upper
Riesz bounds is equivalent to showing that the Fourier trans-
form of the autocorrelation filter (Eqn (18)) is bounded away
from zero.
Since ÂQ(ω) is 2π£∗

0-periodic, we can restrict our attention
to the unit cell corresponding to the Voronoi region of0 with
respect to2π£∗

0. Within this region, we rewrite (18), replacing
φ̂2γ from (16) and noting the periodicity and boundedness of
V̂Q(ω):

ÂQ(ω) =
∑

k∈Zd

V̂Q,4γ(ω)

|ω + 2πQ−Tk|4γ

=
V̂Q,4γ(ω)

|ω|4γ
+ V̂Q,4γ(ω)

∑

k∈Zd\{0}
|ω + 2πQ−Tk|−4γ .

There, the existence of a positive lower bound is evident as
ÂQ(ω) is bounded from below bŷφ4γ(ω) = V̂Q,4γ(ω)/|ω|4γ ,
which is strictly positive in the noted region.
Also, since we assumedγ > d/4, the second sum converges
for all ω in the unit cell, and is bounded from above (with both

factors being bounded). This, in addition to the boundedness
of φ̂4γ(ω), confirms the existence of an upper bound and
completes the proof of the Riesz property.

B. Proof of Proposition 2

Proof of 1: Any elementf(x) of V2γ,0 can be expressed in
the Fourier domain as

ĈQ(ω)
∆̂γ

Q (ω)

‖ω‖2γ
,

where the2π£∗
0-periodic and locally square integrable func-

tion ĈQ(ω) is the lattice Fourier transform of a sequence
c ∈ ℓ2. By applying∆γ0 to f we shall have

F{∆γ0f} = ĈQ(ω)∆̂γ0
Q

(ω)
∆̂

(γ−γ0)
Q (ω)

‖ω‖2(γ−γ0)

= ĈQ(ω)∆̂γ0
Q

(ω)φ̂2(γ−γ0),el(ω).

Since ĈQ(ω)∆̂γ0
Q (ω) is also a 2π£∗

0-periodic and locally
square integrable function (due to the periodicity and bounded-
ness of the second factor), it corresponds to the Fourier
transform of someℓ2 sequencec′. ∆γ0f can therefore be
written in the form

∑

k∈Zd

c′[k]φ2(γ−γ0)(· − Qk),

whereby∆γ0f ∈ V2(γ−γ0),0.
Proof of 2: From the assumption, by the definition of
polyharmonic splines (see Eqn (11)) we have

∆γ∆γ0s(x) =
∑

k∈Zd

c[k]δ(x − Qk).
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Using (7) we can write

∆γ+γ0s(x) =
∑

k∈Zd

c[k]δ(x − Qk),

which, per definition, establishess(x) as a polyharmonic
spline of order2γ + 2γ0.

C. Proof of Theorem 3

Proof: The semi-orthogonality condition is equivalent to stat-
ing that

〈φ2γ(D−1
Q

x), ψ2γ(D−1
Q

x − Qk)〉 ≡ 0. (26)

We replace the B-splineφ2γ and the waveletψ2γ in the above
equality by their higher resolution B-spline expansions, given
in Eqn (19) forφ2γ and below forψ2γ :

ψ2γ(D−1
Q

x) =
∑

k∈Zd

g[k]φ2γ(x − Qk),

whereg ∈ ℓ1 is the stable wavelet filter. The autocorrelation
filter a[k]

def
= 〈φ2γ(· − Qk), φ2γ(·)〉 appears in the resulting

equation. Using its symmetry, we can restate (26) as follows:

(ȟ ∗ a ∗ g)[Dk] ≡ 0,

with ȟ[k]
def
= h[−k].

Let us defineb
def
= ȟ ∗ a ∗ g. The above relation then finds

the following Fourier domain expression (cf. Viscito and
Allebach [55]):

B̂Q(ω) +
∑

1≤i<|D|
B̂Q(ω − 2πQ−TD−Tζi) = 0.

From the definition ofb we have

B̂Q(ω) = ĤQ(ω)ÂQ(ω)ĜQ(ω). (27)

Therefore,

ĜQ(ω) = −
∑

1≤i<|D|B̂Q(ω − 2πQ−TD−Tζi)

ĤQ(ω)ÂQ(ω)
.

We see from (25) and (27) that the numerator has an uncan-
celled (and isotropic) zero of degree2γ at the origin. Since
Ĝ(ω) is by definition bounded (asg ∈ ℓ1), this means that we
can extract the symbol‖ω‖2γ (corresponding to∆γ) from the
Fourier transform of the wavelet filter, and consequently from
the Fourier transform of the wavelet itself. In other words,the
function

η̂(ω)
def
= ‖ω‖−2γψ̂2γ(ω)

will be continuous at0.
We also note that the wavelet, by construction, has the same
Sobolev regularity as the B-splines; i.e., its Fourier transform
decays like‖ω‖−2γ , leading to a‖ω‖−4γ-like decay forη̂(ω).
From this we deduce thatη(x) is of the claimed Sobolev
regularity. That it is also a polyharmonic spline of order4γ
follows from the second part of Proposition 2.

APPENDIX II
PROOF OFTHEOREM 4

As was mentioned in the introduction, the characteristic func-
tional of a Gaussian fieldX satisfies (see Gel’fandet al. [39,
ch. III, §2.6])

ZX(u) = exp

(
−1

2
〈〈u, u〉〉X

)
.

Therefore, in our case we need to show that for0 < H < 1,

〈〈u, u〉〉BH
=

ǫ2H

(2π)
d

∫
dω

|û(ω) − û(0)|2
‖ω‖2H+d

. (28)

This correlation form is related to the (generalized) correlation
function cBH

(x,x′) thus [ibid., ch. III, §2.1]:

〈〈u, v〉〉BH
=

∫
dxdx′ cBH

(x,x′)u(x)v(x′). (29)

The correlation function of a normalized fractional Brownian
field with parameterH, 0 < H < 1, derived from its
variogram, is

cBH
(x,x′) =

(
‖x‖2H + ‖x′‖2H − ‖x − x′‖2H

)
. (30)

To show (28), we plug (30) into (29), and break the integral
at the additions to get (after replacingx in the first,x′ in the
second, andx′ − x in the last integral, all byx):

〈〈u, u〉〉BH
= 〈‖x‖2H ,F−1

{
û(0)û(ω)

}
〉

+ 〈‖x‖2H ,F−1
{
û(ω)û(0)

}
〉

− 〈‖x‖2H ,F−1
{
û(ω)û(ω)

}
〉,

= −〈‖x‖2H ,F−1{v̂(ω)}〉; (31)

where

v̂(ω)
def
= û(0)û(ω) + û(ω)û(0) − û(ω)û(ω)

= |û(ω) − û(0)|2 − |û(0)|2

is a linear combination of test functions and is therefore a
valid test function itself.
In the sense of distributions, the inner product in (31) can
be evaluated in the Fourier domain by applying the Parseval
equivalence

〈‖x‖2H ,F−1{v̂(ω)}〉 = −(2π)−d〈ǫ2HR‖ω‖−2H−d, v̂(ω)〉,
(32)

valid for 2H 6= −d,−d − 2, . . . [38, p. 363]. Here
R‖ω‖−2H−d is a generalized function (distribution) that
corresponds to a particular (canonical) regularization ofthe
function ‖ω‖−2H−d. The canonical regularization is to be
conducted according to the recipe given in Gel’fandet al. [38,
§3.3], as detailed below.
We restate (32) in (hyper)spherical coordinates as

〈〈u, u〉〉BH
= (2π)−dǫ2HΩd〈Rρ−2H−1, Sv̂(ρ)〉;

where ρ
def
= ‖ω‖, Ωd

def
= the area of the unit hypersphere

in R
d, and Sv̂(ρ) denotes the average of̂v(ω) over the

unit hypersphere of radiusρ centred at the origin. Also,
Rρ−2H−1 denotes the particular regularization ofρ−2H−1

invoked in (33).



13

Sv̂(ρ) is a smooth and even function ofρ with rapid decay,
with a Taylor series expansion of the form

Sv̂(ρ) = v̂(0) + a2ρ
2 + a4ρ

4 + · · · + a2kρ
2k + o(ρ2k).

For 0 < H < 1 we have−3 < −2H − 1 < 0 and from
there, by the definition of the generalized functionRρ−2H−1

(see [38, p. 363]),

〈Rρ−2H−1, Sv̂(ρ)〉 =

∫ ∞

0

dρ ρ−2H−1 [Sv̂(ρ) − v̂(0)] (33)

(where the right-hand integral should be interpreted as a limit).
By expandingSv̂(ρ) and returning to Cartesian coordinates we
can now write

〈‖ω‖−2H−d, v̂(ω)〉 =

∫
dω ‖ω‖−2H−d [v̂(ω) − v̂(0)]

=

∫
dω ‖ω‖−2H−d|û(ω) − û(0)|2

(using the definition of̂v(ω)). From combining this with (32)
we arrive at the desired result, i.e. (28).
Remark 6:The following lemma allows us to generalize the
results given here for0 < H < 1 to the case of non-integer
H > 1. The proof is technical and is not reproduced here.
Lemma 1:Let v(x) be a test function andH > 0 be non-
integer. Then, in the sense of generalized functions of Gel’fand
and Vilenkin,

〈‖x‖2H , v(x)〉 = −ǫ2H
∫

dω ‖ω‖−2H−d

×



v̂(ω) − Γ
(d
2

) ∑

0≤2k≤⌊2H⌋

∆kv̂(0)‖ω‖2k

22kk!Γ(k + d
2 )



 .
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