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Abstract—Edge-Preserving smoothers need not be taxed by
a severe computational cost. We present in this paper a lean
algorithm that is inspired by the bi-exponential filter and pre-
serves its structure—a pair of one-tap recursions. By a careful
but simple local adaptation of the filter weights to the data, we
are able to design an edge-preserving smoother that has a very
low memory and computational footprint while requiring a trivial
coding effort. We demonstrate that our filter (a bi-exponential
edge-preserving smoother, or BEEPS) has formal links with the
traditional bilateral filter. On a practical side, we observe that
the BEEPS also produces images that are similar to those that
would result from the bilateral filter, but at a much-reduced
computational cost. The cost per pixel is constant and depends
neither on the data nor on the filter parameters, not even on the
degree of smoothing.

Index Terms—ilateral filter, nonlocal means, bi-exponential
filter, recursive filter.ilateral filter, nonlocal means, bi-exponential
filter, recursive filter.B

I. INTRODUCTION

MOOTHING an image can serve many purposes. One of them
is to remove its confounding details, with the goal of bringing
out its main features. To do so, early works on image processing
were concentrating on the straightforward theory of space-invariant
linear smoothers. Unfortunately, such filters perform an indiscrimi-
nate blurring, whereas maintaining the sharpness of the main edges
would instead be desirable. Thus, nonlinear filters were soon designed
that preserved edges while still smoothing out uninformative details.
Some of them, like the median filter, do not adapt to the data. Others,
like the bilateral filter first presented in [1] and later attributed to [2],
or the anisotropic-diffusion filter [3], do. It has been shown in [4]
how those two filters, along with additional denoising approaches like
weighted least squares and robust estimation, can be understood and
bridged within a Bayesian framework. A precursor to the bilateral
filter was described in [5], while a modern in-depth analysis is
available from [6]. Moreover, the bilateral filter is also related to
the nonlocal means introduced in [7] and accelerated in [8].
Nowadays, wavelets are often favored when it comes to denoising
data. Notwithstanding, the bilateral filter remains attractive for data-
simplification tasks, even though it is computationally heavy in its
original form. Consequently, accelerating this filter has attracted the
attention of researchers. For instance, it was proposed in [9] that
speedups could be obtained by relying on a strict quantization of
data on finitely many intensity levels, in which case the bilateral
filter can be implemented by the appropriate combination of a series
of convolutions. This method was used for instance in [10] to
homogenize the illumination of an image by compressing its dynamic
range, and further refined in [11], [12], [13]. Substantial acceleration
was also achieved in [14], again at the cost of some form of quan-
tization. An alternative approach to accelerate the bilateral filter was
proposed in [15], where the combination of a convolution in a higher-
dimensional space with two simple nonlinearities was down-sampled
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to achieve the desired speedup. Performing fast adaptive filtering in
a space-intensity manifold was similarly proposed in [16], where the
strength of one-dimensional edges is determined by measuring the
curvilinear length of the interpolated curve joining two data samples.
Achieving constant-time processing was also proposed in [17] by
refraining to actually operate directly on the data, relying instead on
a learning approach.

The bilateral filter contains two essential ingredients: a range filter
r and a spatial filter s. Some of the acceleration strategies cited above
succeed by focusing on the range filter. This is also the case with
the method proposed by some of us in [18] where, instead of taking
advantage of quantization, it is shown that a trigonometric form of
r can lead to time savings; meanwhile, s is left unconstrained. One
of several acceleration methods proposed in [13] follows a similar
approach, by considering a polynomial form for r. In this paper,
however, we take the opposite view and remove every restriction on
7; in return, we constrain s to take the form of a bi-exponential filter.
This allows for the design of a substitute to the one-dimensional
bilateral filter that runs as a pair of one-tap recursive filters. Such a
construction is therefore very fast. A major contribution of the present
paper is to show that, under appropriate hypotheses, our filter has
formal relations with the bilateral filter.

The roadmap for this paper is as follows: We initiate Section II
with a forthright exposition of the bi-exponential edge-preserving
smoother (BEEPS), which we then discuss in relation to the tra-
ditional bi-exponential filter at the core of our new method. We
devote Section III to the theoretical relation between the BEEPS
and the bilateral filter. The practical outcome of our proposal and
the discussion of its computational load are provided in Section IV,
along with an extensive experimental qualitative and quantitative
comparison between the BEEPS and the bilateral filter. We give in
Section V a glimpse on how to use the BEEPS in conditions that are
unaccessible to the bilateral filter, and we conclude in Section VI.

II. PROPOSED ALGORITHM

A. Description

Letr : R? [0, 1] be an arbitrary bivariate function that measures
the similarity of its arguments, taken to be a pair of image intensities.
Like in the case of the bilateral filter, we shall call r a range
filter. Moreover, let the parameter A € [0,1) control the degree of
smoothing of a convolutional space filter with impulse response s.
The algorithm for our bi-exponential edge-preserving smoother then
essentially consists of a pair of one-tap recursions.

The first recursion is progressive. Letting x[k] be the current
sample of an input sequence x at location k € Z, we recursively
compute the elements of an auxiliary sequence ¢ as

plk] = (1 — o[k] A) @[k] + o[k] A o[k — 1], (1

where
o[k] = r(z[k], o[k — 1]). 2)

The second recursion is regressive and very similar to the first one,
except for a reversal of the order in which the indices are traversed.
We recursively compute a second auxiliary sequence ¢ as

ok] = (1 = plk] A) z[k] + p[k] A @[k + 1, ©)

where
plk] = r(z[k], o[k + 1]). 4)



We complete our algorithm by merging the resulting progressive
sequence ¢ and regressive sequence ¢ to produce the samples of the
output sequence y as

wlk] — (1 = A) z[k] + ¢[K]
1+ A ’

ylk] = 5)

B. Initialization of the Recursions

The algorithm of Section II-A requires a small, finite number of
operations per pixel. In return, the forward and backward recursions
must be properly initialized. In practice, we often know the sequence
z only through K samples indexed by k € [0... K — 1]. Thus, we
now face the task of choosing ¢[0] and ¢[K — 1], which depend on
the unknown values z[—1] and z[K], respectively. We propose the
trivial choice

z[0] (6)
z[K —1], @)

elo] =
oK 1] =

which offers the convenience of speed and simplicity.

C. Synthetic Whirl

To provide a preliminary illustration of the effect of the BEEPS,
we suggest to apply it to a synthetic image w that contains a variety of
frequencies and contrasts, to which we have applied the BEEPS with
A = 0.9 and s(u,v) = exp(— (u—v)*/(25?)), where & = 50.
This resulted in the image shown at the bottom of Figure 1. There,
we see that the features of w that had a low contrast (bottom-half)
have been smoothed away, unless their frequency content was low.
All the same, the features of w that had a high-frequency content
were also smoothed away (top-right), unless their contrast was strong
(top-left). Therefore, the general behavior of the BEEPS is that of an
edge-preserving smoother, akin to what would have resulted from a
bilateral filter.

D. Origin of the Proposed Algorithm

Since the range filter r is arbitrary, in general the BEEPS output
y is made to depend on the data in nonlinear fashion through (2)
and (4). Thus, to simplify our initial understanding of the BEEPS, we
start by removing this nonlinearity and temporarily set r(u,v) = 1
for all u,v € R. Then, Recursions (1) and (3) become recursive
filters with constant coefficients since ¢ = 1 = p. The progressive
and regressive z-transforms P(z) = >, ., ¢[K] 27% and R(z) =
> res @1kl 2% now exist for z € C\ {0} and for A € (—1,1).
They are given by

1-A
PE) = i X() ®
1-A
R(z) = T, X(2), )
where X (2) = Y, ., x[k]27" is the z-transform of the input

sequence x. Thus, from (5) with the simplification » = 1, the BEEPS
behaves like a linear filter with the transfer function

S(2) > sk "

keZ

2
= (St} : (10)
1=2AzH) (1-x2)

In an imaging context, the filter described by (10) is known as
the bi-exponential filter. It is a classical convolutional filter with an
even impulse response s that has an infinite support. In the one-
dimensional discrete domain, s is given by the samples at k € Z of
an exponential that decays away from the origin like

s[k] = AXFL, (11)
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Fig. 1. The whirl. Top: Original image w displaying a variety of frequencies
and contrasts. (Details about the synthesis of this image are discussed in the
appendix.) Bottom: The BEEPS suppresses features of jointly low contrast
and high frequency.

where the contra-decay A controls the decay (1 — \) of the impulse
response and where A is the normalization factor

11—

= Trn (12)

By convention, we shall assume that s[k] = §[k] when A = 0. (There,
0[] represents the unit sample.) Various decompositions of the bi-
exponential filter, either as a cascade [19] or as a sum [20] of two
recursive filters, have been proposed in the literature.

The zeroth-order moment of s is unity because

Z slk] =

= 1

S(e'*)

w=0

(13)
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Fig. 2. Frequency response § for A = %

Likewise, the ¢; norm ||s||, is also unity for a nonnegative contra-
decay, since then s = |s|. Therefore, the filter is stable in the
bounded-input, bounded-output sense—albeit the filter is non-causal.
Moreover, the first-order moment vanishes since s[k] = s[—k].
Finally, the variance of s is finite for nonnegative contra-decays
because

o d2S(e*)
2 2
Z Koslk] =] dw? B
keZ w=0
2\
= 7(1 Yl (14)

As illustrated in Figure 2, it turns out that the bi-exponential filter is
lowpass for A € [0, 1), the discrete-time Fourier transform § of its
impulse response s being given by

S(el)
1

- — (15)

1+ - )\)2 sin? g

S(w) =

It is a remarkable fact that the bi-exponential filter exhibits no
ripples in the frequency domain, which makes it better suited than
the box filter that is at the core of many histogram-based versions
of the bilateral filter [9], [10], [11], [12], [13]. Moreover, histograms
typically require quantization of some sort, while no quantization is
required with the BEEPS.

Finally, our proposed algorithm originates from—and closely fol-
lows the structure of—a bi-exponential filter, except that the BEEPS
has space-varying coefficients. By setting » = 1, we just showed
that the BEEPS is able to replicate a bi-exponential filter for any
value of its parameter A. Moreover, for the special case A = 0,
we leave to the reader to check that the restriction » = 1 can be
lifted: in the absence of smoothing, the BEEPS acts as the identity,
irrespectively of the choice of the range filter r. Furthermore, in the
special case when the range filter is chosen to satisfy r(u,v) = 0
for u # v and r(u,u) = 1, then it can be seen that the BEEPS
again falls back to identity, this time irrespectively of the choice of
the smoothing parameter \ of the space filter s. Taken together, these
properties conspire at making the BEEPS a well-behaved method that
gracefully accommodates widely different range filters, from r = 1
(the variance of r is infinite) to r(u,v) = 0 for u # v (the variance
of r is zero).

III. EDGE PRESERVATION
A. BEEPS

We consider now the general use of the BEEPS, with some non-
vanishing degree of smoothing 0 < A < 1 and a nontrivial range
filter r. Although r can be chosen freely, it is customary to assume

that it takes the shape of a centered bump function. In particular, a
prototypical instance is the de-normalized Gaussian function

_(u—v)?
r(u,v) =e 202

(16)

where o is a parameter that controls the width of the bump.

Focusing on the progressive recursion (1) and (2) in which ¢ and p
are determined, respectively, we can check that the hypothetical case
z[k] =~ @[k — 1] would lead to g[k] ~ 1 in (2) and, consequently,
to ¢[k] =~ z[k] in (1). Additional implications would then be p[k] ~
plk—1] and z[k] &~ [k — 1], which shows that this hypothetical case
corresponds to that of a sequence z that has slow local variations.
In other words, the hypothesis z[k] ~ @[k — 1] is valid away from
edges. Conversely, as an edge is encountered during the progressive
recursion k — (k + 1), the hypothesis z[k] ~ @[k — 1] must be
abandoned. Then, because of (2) and (16) we have that g[k] ~ 0,
which loosens the dependence of ¢[k] on @[k — 1] through (1) and
reinitializes the recursion like in (6). Consequently, when 7 is a bump-
like function, we observe that ¢ measures the degree of monotony
experienced during the recursion: Unless an edge is found, o remains
close to unity. In the presence of an edge between indices (k — 1) and
k, however, the value of g[k] drops and ¢][k] is properly reinitialized
before the recursion is resumed. A similar reasoning applies to p and
¢ in the context of the regressive recursion.

Finally, the effect of our proposed algorithm is to smooth the data
sandwiched between edges, and to maintain the edges themselves.
The function r provides the tool to gradually discriminate between
edge and non-edge. Smoothing is provided by a bi-exponential filter
s controlled by the contra-decay parameter A. We chose to name r
a range filter and s a space filter to suggest a link between our bi-
exponential edge-preserving smoother and the bilateral filter. In the
next sections, we investigate this link further.

B. Bilateral Filter

The bilateral filter has been proposed as another heuristic solution
to the preservation of edges while smoothing an image [4], [6]. The
governing principle is to locally adapt the coefficients of a linear
smoothing filter to perform smoothing only over neighboring data of
similar photometry (i.e., intensity). In its discrete version, the value yo
at coordinates k € Z that results from the application of a bilateral
filter to the image x is given by

2 neza "(2[K], z[k —n]) sin] 2]k — n]
Yneza T(x(k], 2k —n])s]

There, the bivariate function r is used to measure the degree of
photometric similarity of its arguments, while the spatial filter of
impulse response s determines the spatial extent of the bilateral filter.
By convention, it is customary to assume that that the values taken by
the range filter r satisfy r € [0, 1], so that a small » forbids any sort
of smoothing, and a large r authorizes the smoothing provided by the
spatial filter s. By design, the denominator of (17) ensures a proper
normalization—observe that, through r, this normalization depends
on data in a nonlinear fashion and must therefore be computed anew
at every coordinate k.

For the purpose of discussion, we assume one-dimensional data,
with d = 1. Moreover, we take s to be the bi-exponential filter (11).
This leads us to rewrite (17) as

Tkkn
Z “Bo[k]

T'kkA

yolk] = 17)

A" z[k — n]

Jrz Tkk+n

where the normalization factor By of the bilateral filter is

Jr

"zlk +n], (18)

= Z Tlhon AN + 10 A+ Z Thoktn A A"

n=1

(19)

n=1



and where we have taken advantage of the short-hand notation

Vm,n € Z : r(z[m], z[n]) = rmn. (20)

C. Link Between the BEEPS and the Bilateral Filter

To discover a relation between (18) and the algorithm of Section I,
we suggest first to rewrite (1) and (3) in a way that conceals the
explicit dependence of ¢[k] on @[k — 1] and of ¢[k] on ¢[k + 1]. By
expanding the recursions, we obtain

olk] = §j<f19wm)<1Mkmx>Vmwm
n=1 p=0
+ (1 — g[k] ) z[k] (21)
oK) = > (H plk +p}> (1= plk +n]X) A" x[k + 7]

+ (1= plk] A) a[K]. (22)
These expressions will come useful for analysis purpose only.

Next, we adopt the hypothesis of weak smoothing whereby 0 <
A < 1. This allows us to use (21) and (22) to write one sample of
the output (5) of the BEEPS as

i) = ALAZ RN gy gy Lo dBA
+MHUI£§+HMAxm+u+l%§§3ﬂH
— Az[k] + O(\?)
o okA plk] A
= T zlk — 1]+ T z[k +1]
N (1 B W) o[k] + O2). (23)

a

We apply the same hypothesis to write the normalization factor of
the bilateral filter as

Bo[k} = Tkk—1 AA—O—TkykA-i-Tk’kJrl AA+O()\2) (24)

In the weak-smoothing regime, we also establish the outcome of the
bilateral filter (18) as

Thyk—1 A

-
Yolk] Thkt1 A+ 7ok + 7o p—1 XA+ O(A2)

z[k — 1]

aop
Tk,k

* Thk41 A+ Trk + T p—1 A+ O(A2)

(k]

ag
n Th k41 A
Thk+1 A+ Trk + T o—1 A+ O(A2)

z[k + 1]

a0R
+ O(\?). (25)

We are now equipped to perform a term-by-term compari-
son of (23) and (25). Given the definitions of {ar,a,ap} and
{aor, a0, aop} provided in (23) and (25), respectively, the ratio of
the coefficients of matched terms is

ap. o[KI A (Thks1 A+ 7ok + Tho—1 A+ O(A?))
Thk—1 A (1 + )\)
olk] A + O(N?)

= 26
Tk,k—l)\+0()\2) ’ (26)

aop

a (1 - %%) (Pkot1 A+ Tk + Tho—1 A+ O(X?))
a Thk
[k]+p[k]
- 14 Thk+1 — %Tk,k + Tkk—1 A OO, @
Th,k
ar PRI (Peaers A+ T -1 A+ O(A?))
AoR Tk,k+1 )\ (1 + A)
2
_ PlE] ATk + O(X ) 28)

T k+1 A+ O(A2)

We then assume that the otherwise arbitrary range function r is
constrained to reach unity when its two arguments take the same
value, which is usually the case for the functions of interest. Formally,
we demand that

Tk = L. (29)
We then conclude from (2), (4), and (20) that
_ap_ r(z[k], ok —1])
I e = v,k —1)
lim — = 1
A—=0 ag
an _ r(alk], ofk +1))
e T relklalk+ 1)) e

Finally, we observe from (1) and (3) that a vanishing A would
lead to ¢[k] = z[k] = ¢[k]. This results in limy—o ;= = 1 =
limy o ;)—1;, which shows that the BEEPS and the bilateral filter are
equivalent under the conditions described.

The equivalence established in this section can be summarized by

observing the parallel between (23) and (25), like in

ylk] =
volk] =

In doing so, it is crucial to remember that the various coefficients
{ap,a,ar, aop, ao,aor } are not constant-valued but depend on the
data. What we have shown is that this data dependence is identical
for the bilateral filter and for the BEEPS when A vanishes. For small
A, it follows that these two edge-preserving methods will yield nearly
identical results. For larger A\, we shall see in Section IV that the two
methods still behave similarly.

ap z[k — 1] + az[k] + ar z[k + 1] + O(N\*)  (31)
aop [k — 1] + ao z[k] + aor z[k + 1] + O(X\*)(32)

D. Adjustment of the Contra-Decay

While, in its original form, the bilateral filter (17) can accommo-
date any arbitrary range filter r and spatial filters s, it has nonetheless
become customary to choose a Gaussian in each case. Since the
BEEPS can accommodate any arbitrary range filter as well, it is
natural to impose that the range filter of a BEEPS be proportional to
the range filter of a bilateral filter when it is desired that the former
copies the behavior of the latter. However, the normalization found
in the denominator of (17) is indeed explicit, while it is only implicit
in the BEEPS. Thus, a de-normalized Gaussian taking the form (16)
has to be used in the case of a BEEPS, while normalization or de-
normalization is irrelevant in the case of the bilateral filter.

When as much similarity as possible is desired between the BEEPS
and the bilateral filter while keeping the spatial filter a bi-exponential
for the former and a Gaussian for the latter, the contra-decay A of
the BEEPS must be tuned to match the spatial standard deviation o
that characterizes the spatial Gaussian filter of the bilateral filter. To
do so, we take advantage of (14), which suggests the relation

V20Z+1-1

of

A=1-— (33)
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Fig. 3. Average of the row-first and column-first separable application of
the bi-exponential edge-preserving smoother.

E. Application to Several Dimensions

The BEEPS proposed in Section II is one-dimensional, like the bi-
exponential filter it originates from. Likewise, it contains progressive
and regressive recursions, which precludes a comprehensive extension
of these two filters to higher dimensions. Thus, the prevailing way
to apply either filter in several dimensions is to design a sepa-
rable implementation where successive one-dimensional operations
are carried over various directions. This extension is natural with
the bi-exponential filter because it is a linear filter and the order
of exploration of the one-dimensional operations does not matter.
However, one major issue with the BEEPS is that it is nonlinear.
This implies that the order of exploration matters for the BEEPS.
Along D directions there are D! possible ways to put separability
to fruition, which leads to (d D!) one-dimensional processes in d
dimensions. In the context of two-dimensional images, the standard
practical choice consists in D = 2 and D! = 2, which corresponds
to the application of the BEEPS along rows and columns, in either
order. The next practical choice for d = 2 would be D = 4 and
D! = 24, where the main diagonals would be added to the mix.

In this paper, we choose to apply the one-dimensional BEEPS four
times to process a two-dimensional image, with d = 2 and D! = 2.
More precisely, we apply first a horizontal BEEPS to the original
image and submit the resulting intermediate image to a subsequent
vertical application. These two sequential applications we call row-
first. Separately, we also apply the opposite sequence of vertical then
horizontal BEEPS to the original image, which we call column-first.
‘We then average the row-first and column-first outcomes to obtain the
final result. We give a sketch of our strategy in Figure 3. This strategy
comes at the price of doubling our computational cost because we
consider two branches in the sketch of Figure 3, but improves over
the early solution for the separability of the bilateral filter proposed
in [21] where a single branch was followed. As discussed in [16],
a complementary way to increase isotropy would be to iterate the
separable one-dimensional filters n times. In that case, due to the
additivity of the variance (14), the target compound variance o is
achieved after n applications of BEEPS, each of which with the
contra-decay A\, =1 — 7V27w;2;ntn

Our proposed algorithm offers improvements over several aspects
of the edge-aware recursive filtering that is briefly described in [16]
and that also involves one-dimensional recursive filters. In particular,
our range filter can be chosen and tuned freely, while the weight-
adaptive method of [16] restricts itself to the use of curvilinear lengths
in a space-intensity manifold. Moreover, we take advantage of the
recursive feedback offered by (2) and (4) to make the adaptation of
the range filter less local than that proposed in [16]. Finally, we apply
the two recursions (1) and (3) in parallel and merge them in (5),
which ensures that our filter is anisotropic in one dimension. By
contrast, the formulation of [16] suggests that the progressive and
the regressive recursions be applied in sequence instead. Suppose
that the progressive recursion is applied first: this would imply that
the interruption of the forward propagation chain mentioned in [16]
would be smoothed out when the subsequent regressive filter is
applied, thus leading to anisotropy, even with one-dimensional data.

TABLE 1
SIZE (Ws X W;) OF THE SPATIAL FILTER s OF THE BILATERAL FILTER.

Al 025 050 080 090 095 0.98
o5 0.9 2.0 6.3 13.4 275 70.0
W 7 13 39 83 167 421

IV. EXPERIMENTS

A. Illustration

We now apply the BEEPS to the (876 x 584) GreekDome image
found in a publicly available collection devoted to the task of
investigating bilateral filters'. To illustrate the impact of several
combinations of the range parameter ¢ and of the spatial parameter
A, we organize Figure 4 as a grid of images where o increases
from left to right and A from top to bottom. More precisely,
the spatial smoothing corresponds to a filter of standard deviation
{6.3,13.4,27.5}, while the range filter takes a Gaussian shape and
is characterized by o € {20,50,100}.

With ¢ = 100, the right-most part of Figure 4 presents results that
are close to those that would be achieved by the bi-exponential linear
filter of Section II-D, because there r is flat and barely distinguishes
low-contrast from high-contrast features. In particular, because of the
initialization we chose to implement for ¢[0] and ¢[K —1], the image
that corresponds to A — 1 will take a constant value that is the
average of the four corner pixels of the input image. Meanwhile,
with o = 20, the left-most part of Figure 4 presents results that take
a cartoon-like appearance when the spatial smoothing becomes large
enough, which is indeed the hallmark of edge-preserving smoothers.

B. Comparison to the Bilateral Filter

Since we could establish in Section III-C a formal link between
the BEEPS and the bilateral filter, and since practitioners were able
to gain proficiency in tuning the parameters of the long-established
bilateral filter, a direct practical comparison between these two filters
is of relevance. At the same time, we feel the need to stress that
the BEEPS is a filter in its own right, and that the bilateral filter
is as much an approximation of the BEEPS as the BEEPS is an
approximation of the bilateral filter.

The theoretical result of Section III-C is valid in one dimension and
when the spatial filter of the bilateral filter is bi-exponential, which
lead to (18). Thus, to maximize the fairness of the comparisons in
the context of two-dimensional images, we have let s in (17) be
the tensor product of bi-exponential filters as well. Further, to make
its non-recursive implementation practical, we have truncated this
impulse response to a half width of three standard deviations. We
indicate in Table I the size of the truncated filters for the series of
contra-decays A used in this paper, along with the corresponding
standard deviation of the spatial filter. Furthermore, we have followed
a brute-force approach to implement (17) in a non-separable and
straightforward—albeit excruciatingly slow—fashion. To compute the
sums in (17) while letting the index n run over the whole support
of s, we have extended virtually the input image x in a way that is
consistent with (6) and (7), as

I[O,kz}, k1 <0
_ x[Klka?L K Skl
$[k17k2] - CL‘[k‘l,O}, ko <0 (34)
x[kl,Kgfl], Kg Skz.

Our first comparison is visual. We give in Figure 5 the outcome of
applying the Bilateral filter (top row) and the BEEPS (bottom row)
to the Rock image, for a series of range filters and for a fixed spatial
filter. We qualitatively observe that the bilateral and the BEEPS
results are very much alike in the sky region, which is characterized
mostly by smooth edges. This is also true of the widely separated

Uhttp://people.csail.mit.edu/sparis/bf/



Fig. 4. Gallery of results of the BEEPS applied to the GreekDome image. The spatial smoothing increases from top to bottom with A € {0.8,0.9,0.95}.
From left to right, there is an increase in the standard deviation of the range filter o € {20, 50,100}. The original image is visually close to the topmost,
leftmost image in the gallery. The computational cost was identical for all images.

Fig. 5. Bilateral filter (top row) and BEEPS (bottom row), as applied to the Rock image. The contra-decay is constant with A\ = 0.9. The standard deviation
of the range filter increases from left to right with o € {10, 20, 50, 100}.



TABLE I
SIMILARITY OF THE BILATERAL FILTER WITH RESPECT TO THE BEEPS AT
OPTIMAL AND MATCHED CONTRA-DECAYS.

o 2 5 10 20 50 100 200
Os ABF Optimal Agp¢
09 0.25 | .231 .233 231 .234 .237 .241 243
20 050 | .411 .416 .415 .447 473 .485 489
6.3 0.80 | .367 .619 .672 .719 .776 .800 .798
134 0.90 | .196 .704 .857 .864 .891 .910 905
275 0.95 | .108 .211 .948 956 .962 .964 .956
70.0 0.98 | .052 105 177 0 .999  .999  .996 986
Os  ABF Jopt (PSNR) at Optimal )\opt
09 025 | 74.2 66.5 55.7  57.0 63.4 688
20 0.50 | 63.9 56.3 49.9 45.5 46.7 53.8 62.5
6.3 080 | 57.6 49.6 43.4 38.7 387 453 539
134 0.90 | 56.7 47.5 41.5 36.7 35.6 40.4 47.1
275 095 | 57.1 46.8 40.3 353 33.1 36.2 41.7
700 0.98 | 583 47.2 39.6 33.7 30.7 33.2 38.2
s Apr | Similarity Loss (Jopt — J% at Matching A = Apr
09 0.25 | 057 0.34 0.3 0.99 248 4.18
20 0.50 | 0.58 047 0.38 0.24 0.33 0.70 2.55
63 080 | 1.16 0.33 0.20 0.14 0.08 0.00 0.02
134 090 | 246 0.17 0.03 0.04 0.01 0.28 0.58
275 095 | 414 0.85 0.00 0.00 0.07 0.83 1.10
700 0.98 | 6.40 257 0.65 0.10 0.61 1.90 1.99

sharp edges found in the rocky area. In the tree area, characterized by
fine-grained texture, the BEEPS may appear—on print—to maintain
more details than the bilateral filter when the standard deviation of
the range filter is strong. A full-scale zoom on the image (not shown)
reveals however that the anisotropy of the BEEPS is defective in this
region.

In our next comparison, we let the range filter » of the bilateral
filter and the range filter of the BEEPS be fixed, built according
to (16). We then vary the contra-decay Agr associated to the bilateral
filter; independently, we explore several (possibly mismatched) values
of the contra-decay A associated with the BEEPS and measure
the mean-square difference between the images resulting from the
application of these two edge-preserving smoothers. This difference
is expressed in dB as the peak signal-to-noise ratio (PSNR) J defined
by

2552
ﬁﬁti > wea (Wolk] —y[k])*

We give in Figure 6 a few typical curves that correspond to this
experiment for the Rock image. We see that the highest similarity
between the bilateral filter and the BEEPS is achieved when the
contra-decays A and App approximately match each other. This
provides us with an experimental verification of the prediction made
in Section III-C, according to which the similarity J is maximized
by letting A = Apr. Moreover, the examination of Figure 6 also
confirms the prediction that the degree of similarity increases when
the contra-decays get smaller. We confirm these results in Table II
which complements Figure 6 by extending the domain of explored
range variances and contra-decays for the Rock image. We conclude
from this table that setting A to Apr (instead of the objectively
optimal Aop¢) leads to a decrease in similarity that has no practical
impact. We illustrate visually in Figure 7 the results of the comparison
at 0 = 50 and matching . Additional images lead us to the same
conclusions (results not shown).

In our final comparison, we consider only the case A = Agrp
and investigate how the bilateral filter and the BEEPS differ, on
the basis of the series of images that we provide in Figure 8. At
first, we investigate the visual impact of both filters on the cutouts
indicated in this figure. The results are provided at constant spatial
smoothing corresponding to the contra-decay A = 0.9 in Figure 9,
and at constant range filter characterized by o = 50 in Figure 10. At
constant smoothing (Figure 9), we observe that the BEEPS removes
details earlier than the bilateral filter as the range filter becomes
flatter. This is particularly true at o = 50 where edges of medium
strength seem to resist simplification with the bilateral filter but do

J{yo,y} = 10 log,, (35)

TABLE 111
PSNR WITH RESPECT TO THE BILATERAL FILTER.
or 2 5 10 20 50 100 200

os A Whirl

09 025 ]| 7.6 685 61.2 543 478 47.0 50.2
20 050 | 66.0 580 51.0 44.6 385 386 44.6
6.3 0.80 | 59.1 51.3 44.8 38.9 32.7 30.2 381
134 090 | 584 499 436 374 30.7 280 364
275 095 | 579 49.2 42.8 36.6 29.7 27.1 358
70.0 0.98 | 56.7 48.1 41.7 357 29.1 27.0 35.8
o5 A Dragon

09 025|712 637 60.1 582 59.0 614 62.6
20 050 | 60.9 534 498 479 497 546 574
6.3 080 | 54.7 46.6 422 394 40.3 459 bH4.1
134 090 | 53.3 44.7 398 36.1 354 392 46.9
275 095 | 526 43.6 38.3 339 31.6 33.7 40.0
70.0 0.98 | 52.2 42.8 37.1 321 28.2 29.0 33.7
o5 A GreekDome

09 025|723 662 629 616 638 67.7 69.5
20 050 | 62.6 56.0 527 515 546 61.0 64.7
6.3 0.80 | 56.5 494 45.6 43.7 458 524 60.8
134 090 | 54.9 476 43.2 40.3 40.8 452 53.1
275 095 | 53.7 46.5 41.6 37.7 36.4 389 450
700 098 | 52.0 45.1 39.8 35.1 319 333 38.2
Os A Turtle

09 025|720 647 60.2 56.9 558 580 60.5
20 0.50 | 61.7 54.6 50.0 46.6 45.7 494 545
6.3 0.80 | 55.2 47.7 427 38.6 36.6 39.9 472
134 0.90 | 53.5 456 40.2 35.6 32.5 34.1 39.6
275 095 | 526 444 38.7 33.7 294 293 331
700 0.98 | 52.0 434 374 319 265 246 26.8
o A Rock

09 025|736 66.2 59.7 554 56.0 609 64.6
20 0.50 | 63.3 559 49.5 452 46.4 53.1 59.9
6.3 0.80 | 56.4 49.3 432 385 38.6 453 5338
134 090 | 54.2 473 41.5 36.6 356 40.2 46.5
275 095 | 529 459 40.3 353 33.1 354 406
700 098 | 51.9 44.6 39.0 33.6 30.1 31.3 36.2

disappear with the BEEPS, like those found in the tunic of the eye
(Dragon), in the texture of the scales and the lower eyelid (Turtle),
and the fine structure of stone (Rock). Instead, the BEEPS and the
bilateral filter seem to be in agreement for weaker and stronger edges
alike, for instance the weak edges found in the texture of the wall
(GreekDome) and of the sky (Rock); this agreement extends to the
strong edges of the lintel (GreekDome) and the contrast between
stone and sky (Rock). At constant standard deviation of the range
filter (Figure 10), we observe that the bilateral filter yields sometimes
unforeseen results. For instance, the outlines of the scale (Turtle) are
attenuated when increasing A from 0.5 to 0.8, which is expected;
however, it is an unexpected result that they seem to get sharper as
smoothing increases from A = 0.8 to A = 0.95. Similarly, details
in the corner of the mouth of the dragon are present with strong
smoothing and absent with weak smoothing. This at-first counter-
intuitive aspect of the bilateral filter is absent from the BEEPS, which
makes this filter easier to understand: the image just gets simpler and
less detailed as the smoothing is increased, all the while preserving
edges in accordance with the prescriptions of the range filter.

We provide in Table III an objective comparison of the bilateral
filter and the BEEPS, where we give the similarity J computed
over the whole support of the images used in this paper, for various
combinations of spatial smoothing and range filters. Again, at small
A we verify the validity of the predictions of Section III-C. As A
increases, the two methods consistently produce diverging results.
The divergence is the most pronounced when the range filter takes
the standard deviation ¢ = 50. For both smaller and larger values,
however, the bilateral filter and the BEEPS tend to agree more with
each other. In particular, the two methods produce very similar results
for narrow range filters, which are difficult to handle by several of
the acceleration techniques applied to the bilateral filter.

C. Performance

A remarkable feature of the BEEPS is that it runs in constant
time, irrespective of A or o. For instance, the powerful smoothing
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Fig. 6. Peak signal-to-noise ratio versus contra-decay A of the BEEPS, between the bilateral filter and the BEEPS applied to the Rock image. From left to
right, the contra-decay associated to the bilateral filter is indicated by a vertical bar, with Agr € {0.5,0.8,0.9,0.95}. The dotted, dashed, long-dashed, and
mixed curves correspond to the standard deviations o € {10, 20, 50,100} of the range filter, respectively.

Fig. 7.

Bilateral filter (top row) and BEEPS (bottom row), as applied to the Rock image. The contra-decay increases from left to right with

A € {0.5,0.8,0.9,0.95}. The standard deviation of the range filter is constant with o = 50.

appearing in the bottom row of Figure 4 is achieved as quickly as the
unobtrusive smoothing found in the top row of the same figure. In this
respect, the BEEPS differs markedly from methods like the bilateral
filter, where the degree of smoothing is ultimately controlled by the
support of s, which imposes the number of terms that participate in
both the numerator and denominator sums found in (17). For instance,
even in [22], the computational cost of exploring s depends on the
perimeter of the support of s.

Many proposals have been put forth to accelerate traditional edge-
preserving smoothers. Most of those that reach real-time performance,
however, rely on technological aids such as graphic cards [23] or
FPGAs [24]. In this paper, we propose an algorithmic solution that
we have implemented in a general-purpose language (Java), and that
runs on a general-purpose processor. We found its execution is so
fast that we have no need to seek further acceleration, all the while
keeping a minimalistic coding effort, and at a negligible memory
footprint. Nonetheless, such acceleration remains easy to achieve,
for the BEEPS lends itself well to parallelization. The following
strategies are compatible with one another; each one brings additional
time savings:

o The top and bottom branches of Figure 3 can be executed
concurrently, which can potentially double the speed;

o Each line (whether a row or a column) can be processed
independently of the other lines, which can potentially multiply
the speed by K for an image of size (K x K);

o Within a line, the progressive recursion and the regressive
recursion of Section II can proceed in parallel, which can
multiply the speed by a factor about 3/2.

We give in Table IV the time spent processing images of different
sizes. (The processor was a 2 x 2.8 GHz Quad-Core Intel
Xeon.) Under these conditions, we were able to measure a consistent
throughput of about 5 x 10° pixel-per-second. The code is freely

TABLE IV
PERFORMANCE OF THE BEEPS.

Size [Mpixel] | Time [s] Frame rate [Hz]
256 x 256 0.1 0.014 69.4
512 x 512 0.3 0.039 25.5
1024 x 768 0.8 0.165 6.0
1280 x 720 0.9 0.196 5.1
1024 x 1024 1.0 0.205 4.8
1920 x 1080 2.1 0.426 2.3

available as a plugin for Image]®. We finally observe that the BEEPS
allows for high-throughput processing without recourse to specialized
hardware.

V. POSSIBLE EXTENSIONS

In some respects, the BEEPS is very much similar to the bilateral
filter. In that capacity, it can be used as its potential substitute, for
instance in some popular applications like the compression of high-
dynamic-range images [9]. However, it also allows for the emergence
of additional capabilities, as we are now going to demonstrate.

Definition (17) of the bilateral filter involves a ratio of terms. With
uncooperative data, it could happen that the numerator differs from
zero while the denominator vanishes, provided at least one of the
range filter 7 or the spatial filter s is allowed to take negative values.
For this reason, the conditions 0 < r and 0 < s are enforced in the
context of the bilateral filter.

By contrast, the BEEPS described in Section II-A suffers no such
limitation, which offers new intriguing opportunities. For instance, the
spatial filter can be made to promote high frequencies by choosing
—1 < A < 0. We illustrate in Figure 11 the application of the BEEPS

Zhttp://bigwww.epfl.ch/thevenaz/beeps/



Fig. 8. Test images and cutouts. The (80 x 182) cutout of the Dragon image (left) encloses its eye and has high contrast, with round and wavy shapes. The
(80 x 60) cutout of the GreekDome image (top right) encloses the lintel of a window and contains both low- and high-frequencies. The (80 x 60) cutout of

the Turtle image (middle right) encloses a part of its head and has a wide dynamic range. The (80 x 60) cutout of the Rock image (bottom right) encloses
an outline of the rock against a fuzzy texture in the sky.

Fig. 11. Our algorithm can generate a dithered image. Fig. 12.  Our algorithm can fulfill creative drives—here, a silver lining.



Fig. 9. Application of the bilateral filter (top row) and the BEEPS (bottom row) to the cutouts from Figure 8. The contra-decay of the bi-exponential spatial
filter is kept constant, with A = 0.9. The Gaussian range filter takes the standard deviation o € {10, 20,50, 100}, from left to right.

Fig. 10. Application of the bilateral filter (top row) and the BEEPS (bottom row) to the cutouts from Figure 8. The bi-exponential spatial filter takes the
contra-decay A € {0.5,0.8,0.9,0.95}, from left to right. The standard deviation of the Gaussian range filter is kept constant, with o = 50.



with A = —0.9 and 0 = 10 to the Rock image, with subsequent
black-and-white thresholding. The result is a dithered version of
the original where detailed elements such as tree branches are well
preserved. The BEEPS can also accommodate range filters that the
bilateral filter cannot. For instance, we have created a silver-lining
effect by combining A = —0.5 with a range filter  in the shape of a
signed sigmoid curve, as realized by a hyperbolic tangent. We give
the outcome in Figure 12.

VI. CONCLUSION

We have proposed an edge-preserving smoother that is essentially
a version of the bi-exponential filter with adaptive weights. We have
designed the mechanism of weight adaptation to ensure that our
algorithm falls back to standard smoothing in limit cases. We were
able to show that, with the appropriate hypotheses, it has formal
links with the bilateral filter. Contrarily to several methods already
available to accelerate the bilateral filter, ours never quantizes data,
neither in terms of grayscale intensity nor in terms of range filter. In
our case, the choice of the range filter enjoys complete freedom, at
no penalty whatsoever. Making use of separability, we have extended
our proposed filter beyond a single dimension and suggested ways
to weaken the resulting lack of isotropy. We have implemented our
algorithm in Java and discussed its performance on a general-purpose
processor. The simplicity of our algorithm makes it effortless to
code. No pre-computations are involved, and its memory footprint is
negligible. We have conducted numerous experiments, qualitative and
quantitative, and performed an extensive comparison of the results of
our method with those of the bilateral filter. We conclude that ours
offers an inexpensive way to perform edge-preserving smoothing,
while producing results that closely mimic those of the bilateral filter.
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APPENDIX
We have built the whirl image w : R? + [0, 255] as
w(A,0) = ? + ? (1 —sin g) % arcsin(— cos(2mA* —9)).

(36)
We have rasterized w so as to build an (N x N) Cartesian array

indexed by n € [0... N — 1]?, with 210 = (QW w2 — W) and
A cosf = x1, A sinf = x2. In practice, we have set NV = 512 and
W = 5. We show the original w at the top of Figure 1.
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