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1 Introduction

Regularization theory constitutes a powerful framework for the derivation of
algorithms for supervised learning [14,41,42]. Given a series of data points
(xm, ym) ∈ Rd × R, m = 1, . . . ,M , the basic problem (regression) is to find a
mapping f : Rd → R such that f(xm) ≈ ym, without overfitting. The standard
paradigm is to let f be the minimizer of a cost that consists of a data-fidelity
term and an additive regularization functional [8]. The minimization proceeds
over a prescribed class H of candidate functions. One usually distinguishes
between the parametric approaches (e.g., neural networks), where H = HΘ is
a family of functions specified by a finite set of parameters θ ∈ Θ (e.g., the
weights of the network), and the nonparametric ones, where the properties of
the solution are controlled by the regularization functional. The focus of this
paper is on the nonparametric techniques. They rely on functional optimiza-
tion, which means that the minimization proceeds over a space of functions
rather than over a set of parameters. The regularization is usually chosen to be
an increasing function of the norm associated with a particular Banach space,
which results in a well-posed problem [10,9,56].

The functional-optimization point of view is often constructive, in that it
suggests or supports explicit learning architectures. For instance, the choice of
the Hilbertian regularization R(f) = ‖f‖2H where H is a reproducing kernel
Hilbert space (RKHS) results in a closed-form solution that is a linear combi-
nation of kernels positioned on the data [62,7]. In fact, the RKHS setting yields
a generic class of estimators that is compatible with the classical kernel-based
methods of machine learning, including support vector machines [62,41,50,49,
1,56]. Likewise, adaptive kernel methods are justifiable from the minimization
of a generalized total-variation norm, which favors sparse representions [11,
12,3]. These latter results actually take their root in spline theory [18,28,60].
Similarly, it has been demonstrated that shallow ReLU networks are solutions
of functional-optimization problems with an appropriate regularization. One
way to achieve this is to start from an explicit parameterization of an infinite-
width network [4] (the reverse engineering/synthesis approach). Another way
is to consider a regularization operator that is matched to the neuronal ac-
tivation with a L1-type penalty1; for instance, a second-order derivative for
d = 1 [48,36] or, more generally, the Radon-domain counterpart of the Laplace
operator whose Green’s function is precisely a ReLU ridge [35,37,57]. Similar
optimality results can be stated within the framework of reproducing-kernel
Banach spaces [6], which is a formal point of view that bridges the synthesis
and analysis approach of [4] and [37], respectively. Also relevant to the dis-
cussion is a variational formulation that links the ridgelet transform to the
training of shallow neural networks with weight-decay regularization [53].

The second important benefit of the functional-optimization approach is
that it gives insight on the approximation capabilities (expressivity) of the re-

1 The precise formulation involves the M-norm (or total variation), which is the weak
form of L1 associated with space of bounded Radon measures. In our account, we take it as
the default norm for the Lebesgue exponent p = 1, with a slight abuse of language.
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sulting learning architectures. This information is encapsulated in the choice/
definition of the native space H (typically, a Sobolev space), which goes hand-
in-hand with the regularization functional. Roughly speaking, the native space
H ought to be “large enough” to allow for the approximation of any continuous
function with an arbitrary degree of precision. This universal approximation
property is a central theme in the theory of radial-basis functions (RBFs) [31,
63]. In machine learning, the kernel estimators that meet this approximation
requirement are called universal [32]. When the basis functions are shifted
replicates of a single template h : Rd → R, then the condition is equivalent
to h being strictly positive definite, which means that its Fourier transform
is real-valued symmetric, and (strictly) positive [13]. Similar guarantees of
universal approximation exist for (shallow) neural networks under mild con-
ditions on the activation functions [16,25,30,5,39]. The main difference with
the RKHS framework, however, is that the universality results for neural nets
usually make the assumption that the input domain is a compact subset of
Rd.

The purpose of this paper is to unify and extend these various approaches
by introducing a universal regularization functional. The latter has two com-
ponents: an admissible differential operator L, and an Lp-type Radon-domain
norm. The resulting regularization operator is LR = KradRL, where R is the
Radon transform and Krad the “filtering” operator of computer tomography
[33]. Our main result (Theorem 5) gives the parametric form of the solution of
the corresponding functional-optimization problems under minimal hypothe-
ses. For p = 2, the outcome of our theorem is compatible with the type of
kernel expansions (RBFs) of classical machine learning for which there is a
vast literature [52,24]. For p = 1, the solution set is parameterized by a neural
network with one hidden layer whose activation function is determined by the
regularization operator. In particular, if we take L to be the Laplacian, then
one retrieves the popular ReLU activation. Remarkably, the connection with
neural networks also works the other way round: Parhi et al. [36,38] could
prove that the training of a shallow ReLU neural network that is sufficiently
wide, with weight-decay regularization, converges to the solution of a func-
tional optimization problem that is a special instance of the class considered
in this paper.

The foundation for our characterization is an abstract representer theo-
rem for direct-sum Banach spaces [58]. Thus, the primary effort in this paper
consists in the development of a functional framework that is adapted to the
Radon transform and that fulfills the hypotheses of the abstract theorem. The
main contributions can be summarized as follows.

1. Construction and characterization of an extended family of native Banach
spaces X ′LR

(Rd) associated with a generic Radon-domain norm ‖ · ‖X ′ and
a differential operator L, under the general admissibility conditions stated
in Definition 3 (Theorem 6).

2. Proof that (i) the sampling functionals δ(·−xm) : X ′LR
(Rd)→ R are weak*-

continuous; and (ii) the adjoint of the regularization operator has a stable
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generalized inverse L∗†R (see Theorem 7 and accompanying explanations).
These technical points are essential to the argumentation (existence of
solution).

3. Extension and unification of a number of earlier optimality results for RBF
expansions and neural networks. While the present setup for p = 2 and L =
(−∆)γ is reminiscent of thin-plate splines [17,29], the resulting solution for
a fixed γ does not depend on the dimension d, which makes it easier to
deploy. Likewise, our variational formulation with X ′ = M extends the
results of Parhi and Nowak [37] by: (i) proving that the neural network
parameterization applies to all the extreme points of the solution set, and
(ii) by covering a much broader class of activation functions, including
those with polynomial growth (of degree n0).

4. General guarantees of universality, subject to the admissibility condition
in Definition 3. While the result for p = 2 is consistent with the known
criteria for kernel estimators [32], its counterpart for neural networks (X ′ =
M) brings in a new twist: the addition of a polynomial component. The
latter, which is not present in the traditional theory [5,39], is necessary to
lift the hypothesis of a compact input domain. The two cases of greatest
practical relevance are the sigmoid and the ReLU activations which, in
our formulation, require the addition of a bias (n0 = 0) and an affine
term (n0 = 1), respectively. Interestingly, the ReLU case yields a neural
architecture with a skip connection akin to ResNet [22], which is highly
popular in practice.

The paper is organised as follows: We start with mathematical preliminaries
in Section 2. In particular, we state our criteria of admissibility for L and show
how to represent its polynomial null space. In Section 3, we review the main
properties of the Radon transform and specify the dual pair (XRad,X ′Rad) of
hyper-spherical Banach spaces that enter the definition of our native spaces.
We also provide formulas for the (filtered) Radon transform of RBFs and ridges
(the elementary constituents of neural networks). Section 4 is devoted to the
description and interpretation of our main result (Theorem 5). In particular,
we draw a connection with RKHS in Section 4.2. We discuss the issue of uni-
versality in Section 4.3 and show in Section 4.4 how our framework can be
extended to handle antisymmetric activations, including sigmoids. We com-
plement our exposition in Section 4.5 with a listing of specific configurations,
many of which are intimately connected to splines. The mathematical develop-
ments that support our formulation are presented in Section 5. They include
the characterization of the kernel of the inverse operator L∗†R —the enabling
ingredient of our formulation—and the construction of the predual Banach
space XLR

(Rd).
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2 Mathematical Preliminaries

2.1 Notations

We shall consider multidimensional functions f on Rd that are indexed by the
variable x ∈ Rd. To describe their partial derivatives, we use the multi-index
k = (k1, . . . , kd) ∈ Nd (where N includes 0) with the notational conventions

k! =
∏d
i=1 ki!, |k| = k1 + · · · + kd, x

k =
∏d
i=1 x

ki
i for any x ∈ Rd, and

∂kf(x) = ∂|k|f(x1,...,xd)

∂
k1
x1
···∂kdxd

. This allows us to write the multidimensional Taylor

expansion around x = x0 of an analytical function f : Rd → R explicitly as

f(x) =

∞∑
n=0

∑
|k|=n

∂kf(x0)(x− x0)k

k!
(1)

where the internal summation is over all multi-indices k such that k1 + · · ·+
kd = n.

Schwartz’ space of smooth and rapidly decreasing test functions ϕ : Rd → R
equipped with the usual Fréchet-Schwartz topology is denoted by S(Rd). Its
continuous dual is the space S ′(Rd) of tempered distributions. In this setting,
the Lebesgue spaces Lp(Rd) for p ∈ [1,∞) can be specified as the completion of

S(Rd) equipped with the Lp-norm ‖·‖Lp , denoted as Lp(Rd) = (S(Rd), ‖ · ‖Lp).

For the endpoint p = ∞, we have (S(Rd), ‖ · ‖L∞) = C0(Rd) with ‖ϕ‖L∞ =
supx∈Rd |ϕ(x)|, which is the space of continuous functions that vanish at in-
finity. The continuous dual of C0(Rd) is the space M(Rd) = {f ∈ S ′(Rd) :
‖f‖M <∞} of bounded Radon measures with

‖f‖M = sup
ϕ∈S(Rd):‖ϕ‖L∞≤1

〈f, ϕ〉. (2)

The latter is a superset of L1(Rd), which is isometrically embedded in it, in
the sense that ‖f‖L1

= ‖f‖M for all f ∈ L1(Rd).
The Fourier transform of a function ϕ ∈ L1(Rd) is defined as

ϕ̂(ω)
M
= F{ϕ}(ω) =

1

(2π)d

∫
Rd
ϕ(x)e−i〈ω,x〉dx. (3)

Since the Fourier operator F continuously maps S(Rd) into itself, the trans-
form can be extended by duality to the whole space S ′(Rd) of tempered dis-

tribution. Specifically, f̂ = F{f} ∈ S ′(Rd) is the (unique) generalized Fourier

transform of f ∈ S ′(Rd) if and only if 〈f̂ , ϕ〉 = 〈f, ϕ̂〉 for all ϕ ∈ S(Rd), where
ϕ̂ = F{ϕ} is the “classical” Fourier transform of ϕ defined by (3).

To control the minimal order α ≥ 0 of decay (resp., the maximal rate of
growth) of functions, we use the dual pair of spaces L1,α(Rd) and L∞,−α(Rd) =(
L1,α(Rd)

)′
. These are the Banach spaces associated with the weighted norms

‖f‖L1,α

M
=

∫
Rd

(1 + ‖x‖)α|f(x)|dx (4)
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‖f‖L∞,−α
M
= ess sup

x∈R
(1 + ‖x‖)−α|f(x)|, (5)

respectively. Specifically, the inclusion f ∈ L∞,−n0(Rd) with n0 ∈ N indicates
that f cannot grow faster than a polynomial of degree n0, while the condition
f ∈ L1,α(Rd) implies that f(x) must be locally integrable and must decay
(slightly) faster than 1/‖x‖α+d as ‖x‖ → ∞.

2.2 Admissible Regularization Operators

The regularization operators L that are of interest to us are linear, shift-
invariant (LSI), and isotropic. For simplicity, we shall first specify the action
of L on test functions, with the understanding that the domain of the operator
will be extended to some corresponding “native space” that will be identified
as we progress through the paper.

Definition 1 The linear operator L : S(Rd)→ S ′(Rd) is said to be

– Shift-invariant: If L{ϕ(· − x0)} = L{ϕ}(· − x0) for all ϕ ∈ S(Rd) and
x0 ∈ Rd.

– Isotropic (or rotation-invariant): If L{ϕ(Rθ·)} = L{ϕ}(Rθ·) for all ϕ ∈
S(Rd) and any rotation matrix Rθ on Rd.

– Self-adjoint: If the adjoint operator L∗ : S ′′(Rd) = S(Rd) → S ′(Rd) has
the same Schwartz kernel (impulse response) as L.

Since the Schwartz kernel of a linear operator is unique [55], the property of
self-adjointness will be denoted as L = L∗, irrespective of the actual domain
and range of the operator. It is well-known that a LSI operator can always be
expressed as the convolution L{ϕ} = h ∗ ϕ, where h = L{δ} ∈ S ′(Rd) is the
impulse response of L. When L is isotropic, h is a purely radial function. Since
all isotropic functions are symmetric, this also implies that an isotropic LSI
operator is necessarily self-adjoint. All such operators are characterized by a
Fourier symbol (a.k.a. frequency response) L̂ = F{h} that is purely radial,

with L̂(ω) = L̂rad(‖ω‖), under the implicit assumption that the radial profile

L̂rad is identifiable as a measurable function R→ R.
Our condition for admissibility is that L be invertible in an appropriate

sense.

Definition 2 (Spline-admissible operators with trivial null space) An
isotropic LSI operator L has a trivial null space if its radial frequency profile
L̂rad does not vanish over R. We then say that it is spline-admissible if 1/L̂rad ∈
L1(R) and ρrad = F−1{1/L̂rad} ∈ L1(R) where the operator F−1 : L1(R) →
C0(R) is the classical inverse Fourier transform.

The typical scenario is L̂(ω) = (1 + ‖ω‖2)α/2 with α ≥ 1, which results in a
stable inverse operator L−1 whose radially symmetric impulse response is the
Bessel potential of order α. These operators play a central in the theory of
Sobolev spaces [21].
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Distribution theory allows us to go further and to invert operators with
nontrivial null spaces, but only if the zeros of the frequency response are
located at isolated points. When the operator is isotropic, this reduces the
options to the cases where L̂(ω) has a (multiple) zero at ω = 0. Specifically,

we shall say that L is of order γ0 if |L̂(ω)|/‖ω‖γ0 = C0 as ‖ω‖ → 0. The second

important parameter is the asymptotic growth exponent of L̂(ω). This is the

largest index γ1 such that |L̂(ω)| ≥ C1‖ω‖γ1 , for all ‖ω‖ > R. It determines
the smoothness of the Green’s function of the operator.

Definition 3 (Spline-admissible operators with nontrivial null space)

An isotropic LSI operator L with radial frequency profile L̂rad is said to be
spline-admissible with a polynomial null space of degree n0 if the following
conditions are satisfied.

1. The profile L̂rad does not vanish over R, except for a zero of order γ0 ∈
(n0, n0 + 1] at the origin; that is, |L̂rad(ω)|/|ω|γ0 = C0 as ω → 0.

2. There exists an order γ1 > 1, a constant C1 > 0, and a radius R1 > 0 such
that |L̂rad(ω)| ≥ C1|ω|γ1 for all |ω| > R1 (ellipticity).

3. For all ϕ ∈ S(Rd), L∗{ϕ} ∈ L1,n0
(Rd).

The connection between Condition 1 and the null space of L will be ex-
plained in Section 2.3. Conditions 1 and 2 with γ1 > 1 ensure that ρrad =
F−1{1/L̂rad}, which is the generalized inverse Fourier transform of the distri-

bution 1/L̂rad, is identifiable as a continuous function R → R. The order γ1
actually controls the degree of differentiability (Sobolev smoothness) of ρrad.
Condition 3 is a mild technical constraint on the decay of L∗{ϕ}; this con-
straint has not appeared to be a practical limitation so far. For instance, if L
is an ordinary differential operator (an arbitrary polynomial of the Laplace op-
erator ∆) then L∗{ϕ} ∈ S(Rd), which is included in L1,m(Rd) for any m ∈ Z.
We use this third condition for the handling of fractional operators whose
impulse response decays slowly.

An attractive class of admissible operators with γ0 = γ1 = α and n0 =

dα−1e are the fractional Laplacians (−∆)
α
2 with α ∈ (1,∞) whose frequency

response is ‖ω‖α. The inverse of the fractional Laplacian of order α, which
corresponds to a frequency-domain multiplication by ‖ω‖−α, is denoted by

(−∆)−
α
2 . Both operators are part of the same family (isotropic LSI and scale-

invariant), their distributional impulse response being given by

kα,d(x) = F−1
{

1

‖ω‖α

}
(x) =


Aα,d ‖x‖α−d, α− d,−α /∈ 2N
Bn,d ‖x‖2n log(‖x‖), α− d = 2n ∈ 2N
(−∆)n{δ}, −α/2 = n ∈ N,

(6)

with constants Ad,α =
Γ
(
d−α
2

)
2απd/2Γ

(
α
2

) and Bd,n = (−1)1+n

22n+d−1πd/2Γ
(
n+

d
2

)
n!

[19,47].

The kernel kα,d can also be interpreted as the Green’s function of (−∆)
α
2 ,
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with the corresponding radial profile in Definition 3 being ρrad(t) = kα,1(t).

In view of (6), this means that (−∆)
α
2 is admissible for α > 1.

We note that the impulse response of the filtering operator K in Theorem
1 is proportional to k−d+1,d(x), which tells us that it decays asymptotically
like 1/‖x‖2d−1 when d is even, or is a power of the Laplacian (local oper-
ator) otherwise. Functionally, this means that K

(
S(Rd)

)
= S(Rd) for even

dimensions, and K
(
S(Rd)

)
⊂ L1,d−1−ε(Rd) otherwise. Likewise, the impulse

response of the fractional Laplacians (of non-even order) decays asymptotically

like 1/‖x‖α+d, which implies that (−∆)
α
2
(
S(Rd)

)
⊂ L1,α−ε(Rd) for arbitrarily

small ε > 0, so that the third condition in Definition 3 is met.

2.3 Nontrivial Null Space and Related Projectors

Let L be a LSI operator whose frequency response L̂ satisfies the conditions

∂kL̂(0) = 0, for all k ∈ Nd with |k| ≤ n0, (7)

for some integer n0 ≥ 0. This flatness behavior at the origin implies that
L has the capacity to annihilate all polynomials of degree n0 by mapping
them to zero (see [61, p. 131]). The explanation lies in the property that the
Fourier transform of any polynomial is entirely concentrated at the origin. If,
in addition, we impose that L̂(ω) 6= 0 for all ω ∈ Rd\{0}, then we are also
making sure that the null space of L is limited to polynomials.

Next, we recall that the directional derivative of a function along the di-
rection ξ ∈ Sd−1 (i.e., ξ ∈ Rd with ‖ξ‖ = 1) is given by

Dξf = ξT∇f = ξ1∂
e1f + · · ·+ ξd∂

edf. (8)

The operator Dξ is LSI with frequency response D̂ξ(ω) = (iξTω). The nth
iterate of Dξ yields the nth derivative along ξ whose explicit expression in
terms of partial derivatives is

Dn
ξf(x) = F−1{(iξTω)nf̂(ω)}(x) =

∑
|k|=n

n!

k!
ξk∂kf(x), (9)

where the right-hand side follows from the application of the multinomial
expansion to (iξTω)n = (ξ1iω1 + · · ·+ ξdiωd)

n.

For isotropic operators, the directional derivatives Dn
ξ L̂(0) do not depen-

dent on the direction ξ and coincide with the radial derivatives L̂
(n)
rad(0). In

view of (9), (7) then has the radial equivalent

L̂
(n)
rad(0) =

dnL̂rad(0)

dωn
= 0, for n = 0, 1, . . . , n0, (10)

which is much simpler to test. It follows that an operator whose radial fre-
quency profile is such that |L̂rad(ω)|/|ω|γ0 = C0 as ω → 0 will annihilate all
polynomials up to degree n0 = dγ0 − 1e.
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Consequently, the null space of a spline-admissible operator L of order γ0
consists of the polynomials of degree n0 = (γ0 − 1) when γ0 is an integer and
n0 = bγ0c otherwise when γ0 /∈ N. We shall represent these polynomials by
expanding them in the monomial/Taylor basis

mk(x) =
xk

k!
(11)

with |k| ≤ n0. We also add a topological structure by equipping the space
with the `2 norm of the Taylor coefficients, which results in the description

Pn0
=
{
p0 =

∑
|k|≤n0

bkmk : ‖p0‖P <∞
}

with ‖p0‖P
M
= ‖(bk)|k|≤n0

‖2. (12)

To avoid a notational overload, we shall often denote this null space by P, with
the convention that P = Pn0

= {0} when n0 = dγ0−1e < 0 (for the operators
L whose null space is trivial). The important point here is that (12) specifies a
finite-dimensional Banach subspace of S ′(Rd). Its continuous dual P ′ is finite-
dimensional as well, although it is composed of “abstract” elements p∗0 ∈ P ′
that are, in fact, equivalence classes in S ′(Rd). Yet, it is possible to identify
every dual element p∗0 ∈ P ′ as a true function by selecting a particular dual
basis {m∗k}|k|≤n0

such that 〈m∗k,mk′〉 = δk−k′ (Kroneker delta). Our specific
choice is

m∗k = (−1)|k|∂kκiso ∈ S(Rd) (13)

with k ∈ Nd, where κiso is the isotropic function described in Lemma 1.

Lemma 1 (adapted from [57]) There exists an isotropic window κiso ∈
S(Rd) such that

〈mk, (−1)|n|∂nκiso〉 = δk−n (14)

for all k,n ∈ Nd, subject to the spectral constraints κ̂iso(ω) = 1 for ‖ω‖ < 1
2 ,

1 ≥ κ̂iso(ω) ≥ 0 for 1
2 < ‖ω‖ < 1, and κ̂iso(ω) = 0 for ‖ω‖ ≥ 1.

This allows us to describe the dual space explicitly as

P ′ = P ′n0
=
{
p∗0 =

∑
|k|≤n0

b∗km
∗
k : ‖p∗0‖P′ <∞

}
with ‖p∗0‖P′

M
= ‖(b∗k)‖2 (15)

where each elements p∗0 has a unique representation in terms of its coefficients
(b∗k)|k|≤n0

. We use the dual basis {m∗k} to specify the projection operator

ProjP : S ′(Rd)→ Pn0
as

ProjP{f} =
∑
|k|≤n0

〈f,m∗k〉 mk, (16)
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which is well-defined for any f ∈ S ′(Rd) since m∗k ∈ S(Rd). The “transpose”
of this operator is

ProjP′{ν} =
∑
|k|≤n0

〈mk, ν〉 m∗k, (17)

which returns the projection of ν onto P ′n0
⊆ S(Rd) under the implicit as-

sumption that ν has sufficient decay for ν 7→ 〈mk, ν〉 to be well-defined—for
instance, ν ∈ L1,n0

(Rd). Correspondingly, we also have that ProjP′{L∗ϕ} = 0
for all ϕ such that L∗{ϕ} ∈ L1,n0

(Rd) since 〈mk,L∗ϕ〉 = 〈Lmk, ϕ〉 = 0 for
|k| ≤ n0. The latter manipulation of the duality product is legitimate in rea-

son of the inclusion Pn0
⊂ L∞,−n0

(Rd) =
(
L1,n0

(Rd)
)′

.
Even though the null space of an admissible operator L may be non-trivial,

its intersection with S(Rd) is always {0}. This implies that L∗ = L is injective
on S(Rd) with L∗−1L∗{ϕ} = ϕ for all ϕ ∈ S(Rd) where L∗−1 = L−1 is the LSI

operator whose frequency response is 1/|L̂|.

3 Radon Transform

The Radon transform extracts the integrals of a function on Rd over all hy-
perplanes of dimension (d− 1). These hyperplanes are indexed over R× Sd−1,
where Sd−1 = {ξ ∈ Rd : ‖ξ‖2 = 1} is the unit sphere in Rd. The coordinates
of a hyperplane associated with an offset t ∈ R and a normal vector ξ ∈ Sd−1
satisfy

ξTx = ξ1x1 + · · ·+ ξdxd = t.

Here, we first review the classical theory of the Radon transform [27],
starting with the case of test functions (Section 3.1), and extending it by
duality to tempered distributions (Section 3.2). Then, in Section 3.3, we specify
the Radon transform and its inverse on an appropriate class of intermediate

Banach spaces Y with S(Rd) d.

↪−→ Y d.

↪−→ S ′(Rd) (Theorem 3). Finally, in Section
3.4, we provide the (filtered) Radon transforms of the dictionary elements—
isotropic kernels and ridges—that are relevant to our investigation.

3.1 Classical Integral Formulation

The Radon transform of the function f ∈ L1(Rd) is defined as

R{f}(t, ξ) =

∫
Rd
δ(t− ξTx)f(x)dx, (t, ξ) ∈ R× Sd−1. (18)

The adjoint of R is the backprojection operator R∗. Its action on g : R×Sd−1 →
R yields the function

R∗{g}(x) =

∫
Sd−1

g(ξTx︸︷︷︸
t

, ξ)dξ, x ∈ Rd. (19)
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Given the d-dimensional Fourier transform f̂ of f ∈ L1(Rd), one can cal-
culate R{f}(·, ξ0) for any fixed ξ0 ∈ Sd−1 through the relation

R{f}(t, ξ0) =
1

2π

∫
R
f̂(ωξ0)eiωtdω = F−11D {f̂(·ξ0)}{t}, (20)

In other words, the restriction of f̂ : Rd → C along the ray {ω = ωξ0 : ω ∈ R}
coincides with the 1D Fourier transform of R{f}(·, ξ0), a property that is
referred to as the Fourier-slice theorem.

To describe the functional properties of the Radon transform, one needs
the (hyper)spherical (or Radon-domain) counterparts of the spaces described
in Section 2.1. There, the Euclidean indexing with x ∈ Rd must be replaced
by (t, ξ) ∈ R × Sd−1. The spherical counterpart of S(Rd) is S(R × Sd−1).
Correspondingly, an element g ∈ S ′(R×Sd−1) is a continuous linear functional
on S(R×Sd−1) whose action on the test function φ is represented by the duality
product g : φ 7→ 〈g, φ〉Rad. When g can be identified as an ordinary function
g : (t, ξ) 7→ g(t, ξ) ∈ R, one can write that

〈g, φ〉Rad =

∫
Sd−1

∫
R
g(t, ξ)φ(t, ξ)dtdξ (21)

where dξ stands for the surface element on the unit sphere Sd−1.
The key property for analysis is that the Radon transform is continuous on

S(Rd) and invertible [27,23,43]. In addition to a backprojection, the inversion
involves the so-called “filtering” operator.

Definition 4 The filtering operator K : S(Rd)→ S ′(Rd) is defined as

K{ϕ} = F−1{K̂ϕ̂} with K̂(ω) = cd‖ω‖d−1, (22)

where cd = 1
2(2π)d−1 .

The filtering operator is isotropic LSI and, as such, has a Radon-domain coun-
terpart (see Definition 5) denoted by Krad that exclusively acts along the radial
variable.

Definition 5 (Radon-domain counterpart of an isotropic LSI oper-
ator) Let L : S(Rd) → S ′(Rd) be an isotropic LSI operator with radial fre-

quency profile L̂rad : R → R. Then, the Radon-domain counterpart of L is
Lrad : S(R× Sd−1)→ S ′(R× Sd−1), which is defined as

Lrad{φ(·, ξ)}(t) = F−11D {L̂radφ̂(·, ξ)}(t), (23)

where φ̂(ω, ξ) =
∫
R φ(t, ξ)e−iωtdt is the 1D Fourier transform of t 7→ φ(t, ξ).

Theorem 1 (Continuity and invertibility of the Radon transform on
S(Rd)) The Radon operator R continuously maps S(Rd) → S(R × Sd−1).
Moreover, KR∗R = R∗KradR = R∗RK = Id on S(Rd).
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Based on this result, we can identify the filtering operator as K = (R∗R)−1 =

cd(−∆)
d−1
2 (fractional Laplacian). Alternatively, one can perform the filter-

ing in the Radon domain by means of the operator Krad, which implements
a 1D convolution along the radial variable. The connection is that the fre-
quency response of Krad coincides with the radial frequency profile of K so
that K̂(ω) = K̂rad(‖ω‖) with K̂rad(ω) = cd|ω|d−1.

While the Radon transform R : S(Rd) → S(R × Sd−1) is invertible, it
is not surjective, which means that not every hyper-spherical test function
φ ∈ S(R × Sd−1) can be written as φ = R{ϕ} with ϕ ∈ S(Rd). A necessary
condition is that φ be even, but this is not sufficient [20,27,23]. The good news,
however, is that the range of R on S(Rd) is a closed subspace of S(R× Sd−1)

[23, p. 60]. Accordingly, one can identify the range space SRad
M
= R

(
S(Rd)

)
equipped with the Fréchet topology of S(R × Sd−1). Since the domain and
range spaces are both Fréchet, we then invoke the open-mapping theorem [45,
Theorem 2.11] to deduce that the transform ϕ 7→ R{ϕ} is a homeomorphism
of S(Rd) onto SRad.

Corollary 1 The operator R : S(Rd) → SRad is a continuous bijection, with
a continuous inverse given by R−1 = (R∗Krad) : SRad → S(Rd).

3.2 Distributional Extension

To extend the framework to distributions, one proceeds by duality. By invoking
the property that R∗KradR = Id on S(Rd), we make the manipulation

∀ϕ ∈ S(Rd) 〈f, ϕ〉 = 〈f,R∗KradR{ϕ}〉
= 〈R{f},KradR{ϕ}〉Rad = 〈R{f}, φ〉Rad, (24)

with φ = KradR{ϕ} ∈ KradR
(
S(Rd)

)
and ϕ = R∗{φ}. Relation (24), which is

valid in the classical sense for f ∈ L1(Rd), is then used as definition to extend
the scope of R for f ∈ S ′(Rd).

Definition 6 The distribution g = R{f} ∈
(
KradR

(
S(Rd))

)′
is the (formal)

Radon transform of f ∈ S ′(Rd) if

∀φ ∈ KradR
(
S(Rd)

)
: 〈g, φ〉Rad = 〈f,R∗{φ}〉. (25)

Likewise, g̃ = KradR{f} ∈ S ′Rad is the (formal) filtered projection of f ∈
S ′(Rd) if

∀φ ∈ SRad : 〈g̃, φ〉Rad = 〈f,R∗Krad{φ}〉. (26)

Finally, f = R∗{g} ∈ S ′(Rd) is the backprojection of g ∈ S ′(R× Sd−1) if

∀ϕ ∈ S(Rd) : 〈R∗{g}, ϕ〉 = 〈g,R{ϕ}〉Rad. (27)
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While (27) identifies R∗{g} as a single, unique distribution in S ′(Rd), this is

not so for (26) (resp., (25)), as the members of S ′Rad (resp., of
(
KradR

(
S)
)′

) are
equivalence classes in S ′(R× Sd−1). To make this explicit, we take advantage
of the equivalence R∗{g} = 0⇔ 〈g, φ〉Rad = 0 to identity the null space of the
backprojection operator as being

NR∗ = {g ∈ S ′(R× Sd−1) : 〈g, φ〉Rad = 0,∀φ ∈ SRad}, (28)

which is a closed subspace of S ′(R×Sd−1). It is then possible to describe S ′Rad

as the abstract quotient space S ′(R × Sd−1)/NR∗ . In other words, if we find
a hyper-spherical distribution g0 ∈ S ′(R × Sd−1) such that (26) is met for a
given f ∈ S ′(Rd), then, strictly speaking, KradR{f} ∈ S ′Rad is the equivalence
class (or coset) given by

KradR{f} = [g0] = {g0 + h : h ∈ NR∗}. (29)

Since [g0] = [g] for any g ∈ KradR{f}, we refer to the members of KradR{f}
as “formal” filtered projections of f to remind us of this lack of unicity.

Based on those definitions, one obtains the classical result on the invert-
ibility of the (filtered) Radon transform on S ′(Rd) [27], which is the dual of
Corollary 1.

Theorem 2 (Invertibility of the Radon transform on S ′(Rd)) It holds
that R∗KradR = Id on S ′(Rd). More precisely, the filtered Radon transform
KradR : S ′(Rd) → S ′Rad is a continuous bijection, with a continuous inverse
given by (KradR)−1 = R∗ : S ′Rad → S ′(Rd).

To illustrate the fact that (26) does not identify a single distribution, we
consider the Dirac ridge δ(ξ0x−t0) ∈ S ′(Rd) and refer to the definition (18) of
the Radon transform to deduce that, for all φ = R{ϕ} ∈ SRad with ϕ ∈ S(Rd),

〈δ(ξT0 · −t0),R∗Krad{φ}〉 = 〈δ(ξT0 · −t0),

Id︷ ︸︸ ︷
R∗KradR{ϕ}〉

=

∫
Rd
δ(ξT0x− t0)ϕ(x)dx = R{ϕ}(−t0,−ξ0)

= 〈δ
(
·+(t0, ξ0)

)
,R{ϕ}〉Rad = 〈δ

(
·+(t0, ξ0)

)
, φ〉Rad,

which shows that δ
(
· +z0

)
with z0 = (t0, ξ0) is a formal filtered projection

of δ(ξT0x − t0). Moreover, since δ(ξT0x − t0) = δ(−ξT0x + t0), the same holds

true for δ(· − z0), as well as for δRad,z0

M
= 1

2

(
δ(· − z0) + δ(· + z0)

)
, which

has the advantage of being symmetric. While the general solution in S ′Rad is

KradR{δ(ξT0 · −t0)} = [δ
(
· ±z0

)
], we shall see that there also exists a way to

specify a representer that is unique (i.e., δRad,z0
) by restricting the range of

KradR to a suitable subspace of measures.
The distributional extension of the Radon transform inherits most of the

properties of the “classical” operator defined in (18). Of special relevance to
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us is the quasi-commutativity of R with convolution, also known as the in-
tertwining property. Specifically, let h, f ∈ S ′(Rd) be two distributions whose
convolution h ∗ f is well-defined in S ′(Rd). Then,

R{h ∗ f} = R{h}~ R{f} (30)

where the symbol “~” denotes the 1D convolution along the radial variable
t ∈ R with (u~ g)(t, ξ) = 〈u(·, ξ), g(t− ·, ξ)〉. In particular, when h = L{δ} is
the (isotropic) impulse response of an LSI operator whose frequency response

L̂(ω) = L̂rad(‖ω‖) is purely radial, we get that

R{h ∗ f} = RL{f} = LradR{f}, (31)

where Lrad is the corresponding Radon-domain operator of Definition 5. Like-
wise, by duality, for g ∈ S ′(R× Sd−1) we have that

LR∗{g} = R∗Lrad{g}, (32)

under the implicit assumption that L{R∗g} and Lrad{g} are well-defined distri-
butions. By taking inspiration from Theorem 1, we can then use these relations
for L = K = (R∗R)−1 to show that R∗KradR{f} = R∗RK{f} = KR∗R{f} = f
for a broad class of distributions. The first form is valid for all f ∈ S ′(Rd) (The-
orem 2), but there is a slight restriction with the second form (resp., third
form), which requires that K{f}

(
resp., K{g} with g = R∗R{f} ∈ S ′(Rd)

)
be

well-defined in S ′(Rd). While the latter condition is always met when d is odd,
it may fail2 in even dimensions with distributions (e.g., polynomials) whose
Fourier transform is singular at the origin. The good news for our regular-
ization framework is that these problematic distributions are either excluded
from the native space or annihilated by L, so that it is legitimate to write that
LR = KradRL = RKL, where the second form has the advantage that K and
L can be pooled into a single augmented operator (KL). An alternative form
is LR = QradR, where Qrad = KradLrad is the radial Radon-domain operator
whose frequency response is Q̂rad(ω) = cd|ω|d−1L̂rad(ω).

3.3 Radon-Compatible Banach Spaces

Our formulation requires the identification of Radon-domain Banach spaces
over which the backprojection operator R∗ is invertible. This is a non-trivial
point because the extended operator R∗ : S ′(R×Sd−1)→ S ′(Rd) in Definition
6 is not injective. In fact, it has the highly non-trivial null space ker(R∗) =
S⊥Rad, which is a superset of the odd Radon-domain distributions [20]. Yet, R∗

is invertible on S ′Rad and surjective on S ′(Rd) (Theorem 2).
To ensure invertibility, we therefore need to restrict ourselves to Banach

spaces that are embedded in S ′Rad. To identify such objects, we consider a

2 For d = 2n even, K̂(ω) ∝ ‖ω‖2n−1 which is C∞ everywhere, except at the origin where
it is only C2n−2. This means that K can properly handle (and annihilate) polynomials only
up to degree (2n− 2).
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generic Banach space X = (X , ‖ · ‖X ) such that S(R× Sd−1)
d.

↪−→ X d.

↪−→ S ′(R×
Sd−1). This dense-embedding hypothesis has several implications:

1. The space X is the completion of S(R× Sd−1) in the ‖ · ‖X norm; i.e.,

X =
(
S(R× Sd−1), ‖ · ‖X

)
. (33)

2. The dual space X ′ ↪−→ S ′(R× Sd−1) is equipped with the norm

‖g‖X ′ = sup
φ∈X : ‖φ‖X≤1

〈g, φ〉 = sup
φ∈S(R×Sd−1): ‖φ‖X≤1

〈g, φ〉, (34)

where the restriction of φ ∈ S(R× Sd−1) on the right-hand side of (34) is
justified by the denseness of S(R× Sd−1) in X .

3. The definition of ‖g‖X ′ given by the right-hand side of (34) is valid for any
distribution g ∈ S ′(R×Sd−1) with ‖g‖X ′ =∞ for g /∈ X ′. Accordingly, we
can specify the topological dual of X as

X ′ =
{
g ∈ S ′(R× Sd−1) : ‖g‖X ′ <∞

}
. (35)

Likewise, based on the pair (SRad,S ′Rad), we specify the Radon-compatible
Banach subspaces

XRad = (SRad, ‖ · ‖X ) (36)

X ′Rad =
(
XRad

)′
=
{
g ∈ S ′Rad : ‖g‖X ′Rad

<∞
}

(37)

where the underlying dual norms have a definition that is analogous to (34)
with SRad and XRad substituting for S(R× Sd−1) and X .

Theorem 3 (adapted from [57]) Let (XRad,X ′Rad) be the dual pair of spaces
specified by (36) and (37). Then,

1. the map R∗Krad : XRad → Y = R∗Krad

(
XRad

)
is an isometric bijection,

with RR∗Krad = Id on XRad;
2. the map R∗ : X ′Rad → Y ′ = R∗

(
X ′Rad

)
is an isometric bijection, with

KradRR∗ = Id on X ′Rad.

Moreover, if there exists a complementary Banach space X c
Rad such that X =

XRad⊕X c
Rad, then X ′ = X ′Rad⊕ (X c

Rad)′ where (X c
Rad)′ can be identified as the

null space of the backprojection operator R∗ : X ′ → Y ′ ↪−→ S(Rd).

The prototypical examples where those properties are met are (X ,X ′) =(
Lp(R × Sd−1), Lq(R × Sd−1)

)
with p ∈ [1,∞) and q = p/(p − 1) (conju-

gate exponent), as well as (X ,X ′) =
(
C0(R × Sd−1),M(R × Sd−1)

)
. In fact,

those hyper-spherical spaces have the convenient feature of admitting a de-
composition in their even and odd components.

Lemma 2 Let Z = R × Sd−1. Then, for X = Lp(Z) with p ∈ [1,∞) and
X = C0(Z) for p =∞, we have that X = XRad ⊕X c

Rad where

XRad = Xeven = {g ∈ X : g(z) = g(−z),∀z ∈ Z} (38)

X c
Rad = Xodd = {g ∈ X : g(z) = −g(−z),∀z ∈ Z}. (39)
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Proof To establish this result directly is tricky because the characterization of
SRad involves some general moment conditions [20,23,27]. Instead, we consider
the smaller space of even Radon-domain Lizorkin test functions [26] described
by

SLiz,Rad = {φ ∈ Seven(Z) :

∫
R
tkφ(t, ξ)dt = 0,∀ξ ∈ Sd−1, k ∈ N}, (40)

which is such that SLiz,Rad ⊂ SRad ⊂ Seven(Z). We then invoke a gen-

eral result by Samko [46] that implies that (SLiz,Rad, ‖ · ‖Lp) = Lp,even(Z) ⊃
(SRad, ‖ · ‖Lp) for p ∈ [1,∞) and (SLiz,Rad, ‖ · ‖L∞) = C0,even(Z) otherwise
[34]. The claim then follows from the observation that Lp(Z) = Lp,even(Z)⊕
Lp,odd(Z) with Lp,even(Z) = (SRad, ‖ · ‖Lp) (because the completion is unique)
and suitable adaptation for p =∞. ut

Correspondingly, we get that X ′Rad = Peven(X ′) = X ′even and (X c
Rad)′ = (Id−

Peven)(X ′) = X ′odd, with the cases of greatest interest to us being MRad =
Meven(R× Sd−1) and L2,Rad = L2,even(R× Sd−1).

3.4 Specific Radon Transforms

The Fourier-slice theorem expressed by (20) remains valid for tempered dis-
tributions [43] and therefore also yields a characterization of R{f} that is
compatible with the Banach framework of Theorem 3. It is especially helpful
when the underlying function ρiso is isotropic with a known radial frequency
profile ρ̂rad such that F{ρiso}(ω) = ρ̂rad(‖ω‖).

Proposition 1 (Radon transform of isotropic distributions) Let ρiso be
an isotropic distribution whose radial frequency profile is ρ̂rad : R→ R. Then,

R{ρiso(· − x0)}(t, ξ) = ρrad(t− ξTx0) (41)

KradR{ρiso(· − x0)}(t, ξ) = νrad(t− ξTx0) (42)

with ρrad(t) = F−1{ρ̂rad(ω)}(t) and νrad(t) = 1
2(2π)d−1F−1{|ω|d−1ρ̂rad(ω)}(t).

The other important building blocks for representing functions are ridges.
Specifically, a ridge is a multidimensional function

rξ0 : Rd → R : x 7→ r(ξT0x) (43)

that is characterized by a profile r : R→ R and a direction ξ0 ∈ Sd−1. In effect,
rξ0 varies along the axis specified by ξ0 and is constant within any hyperplane
perpendicular to ξ0. The connection between ridges and the Radon transform
is given by the ridge identity

∀ϕ ∈ S(Rd) : 〈rξ0 , ϕ〉 = 〈r,R{ϕ}(·, ξ0)〉, (44)
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where the right-hand side duality product (1D) is well-defined for any r ∈
S ′(R) because R{ϕ}(·, ξ0) ∈ S(R) (by Theorem 1). When the profile r : R→ R
is locally integrable, (44) is a simple consequence of Fubini’s theorem. For more
general distributional profiles r ∈ S ′(R), we use the ridge identity as definition,
which then leads to the following characterization [57].

Theorem 4 (Filtered Radon transform of a ridge) The filtered Radon
transform of the (generalized) ridge rξ0 with profile r ∈ S ′(Rd) and direction
ξ0 ∈ Sd−1 is given by

KradR{rξ0}(t, ξ) = [r(t)δ(ξ − ξ0)], (45)

where [r(t)δ(ξ − ξ0)] ∈ S ′Rad is the equivalence class of distributions specified
by (29). If r ∈M(R), then the latter has the unique, concrete representer

KradR{rξ0}(t, ξ) =
1

2

(
r(t)δ(ξ − ξ0) + r(−t)δ(ξ + ξ0)

)
(46)

in MRad =Meven(R× Sd−1).

An important special case of (46) is the Radon transform of a Dirac ridge:
KradR{δ(ξT0 · −t0)} = δRad,(t0,ξ0)

= 1
2

(
δ(· − t0)δ(· − ξ0) + δ(· + t0)δ(· + ξ0)

)
,

which has already been mentioned in Section 3.2 (see also [35, Example 1]).

4 Unifying Variational Formulation

4.1 Representer Theorem for Radon-Domain Regularization

From now on, we shall use the generic symbol X to designate the hyper-
spherical Banach space Lq(R × Sd−1) with q = (1,∞) or C0(R × Sd−1) for
q =∞, which fall into the category described by (33) with ‖ · ‖X = ‖ · ‖Lq .

The formulation of Theorem 5 below requires the specification of a native
space, X ′LR

(Rd), that is tied to a Radon-domain norm ‖·‖X ′ and an admissible
regularization operator LR. Informally, our native space is the largest function
space over which the proposed regularization functional f 7→ ‖LR{f}‖X ′ is
well-defined. The precise description of X ′LR

(Rd), however, is a bit more in-
volved. As first step, we need to restrict the dual pair (X ,X ′) to the range of
the (filtered) Radon transform. This yields the Banach spaces (XRad,X ′Rad), as
defined by (36) and (37), with the pairs of interest being (C0,Rad,M0,Rad) and
(Lq,Rad, Lp,Rad) with 1

p + 1
q = 1 and p ∈ [1,∞). Given some spline-admissible

operator L (Definition 2 and 3), we then define our regularization operator
and its adjoint as

LR
M
= KradRL : X ′LR

(Rd)→ X ′Rad,

L∗R = L∗R∗Krad : XRad → XLR
(Rd)

where R denotes the Radon transform and Krad is the (self-adjoint) filtering
operator such that KradRR∗ = Id on X ′Rad (Theorem 3). In order to establish
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isometries, one needs to be able to invert L : X ′LR
(Rd)→ R∗(X ′Rad) as well as

LR, which is feasible if one factors out the null space P, which is common to
both. This motivates us to define the directed inverse operators

L−1P
M
= (Id− ProjP)L−1 : R∗

(
X ′Rad

)
→ X ′LR

(Rd) (Right inverse of L)

L−1∗P = L−1∗(Id− ProjP′) : XLR
(Rd)→ KradR(XRad) (Left inverse of L∗)

L†R
M
= L−1P R∗ : X ′Rad → X ′LR

(Rd) (47)

L∗†R = RL−1∗P : XLR
(Rd)→ XRad (48)

where the operators L†R and L∗†R are generalized inverses3 of LR and L∗R, re-
spectively. We now have all the ingredients to specify our native space as

X ′LR
(Rd) = L†R

(
X ′Rad

)
⊕ P

= {f ∈ L∞,−n0
(Rd) : ‖LR{f}‖X ′ + ‖ProjP{f}‖P <∞}

= {L†R{w}+ p0 : (w, p0) ∈ X ′Rad × P}, (49)

which is isometrically isomorphic to X ′Rad ×P, as expressed by (49). The key

property there is that LRL†R = Id on X ′Rad, while LR{p0} = 0 for all p0 ∈ P
(Theorem 6). Moreover, X ′LR

(Rd) is the topological dual of the predual space

XLR
(Rd) = L∗R

(
XRad

)
⊕ P ′

= {ν ∈ S ′(Rd) : ‖ν‖XLR
= max(‖L∗†R {ν}‖X , ‖ProjP′{ν}‖P′) <∞}

= {L∗R{v}+ p∗0 : (v, p∗0) ∈ XRad × P ′}, (50)

which is a Banach space, as shown in Theorem 9. The validity of this dual
pairing can be checked formally in the absence of null space components: For
any (f, ν) ∈ X ′LR

(Rd) × XLR(Rd) with ProjP{f} = 0 and ProjP′{ν} = 0, we
have that

〈f, ν〉 = 〈L†R{w},L
∗
R{v}〉 = 〈LRL†R{w}, v〉Rad = 〈w, v〉Rad

with (w, v) ∈ X ′Rad×XRad. Finally, since ProjP continuously maps X ′LR
(Rd)→

P iso.

↪−→ X ′LR
(Rd), we can identify ProjP′ as its adjoint (ProjP)∗ = ProjP′ :

XLR(Rd)→ P ′ iso.

↪−→ XLR(Rd).
To ensure that the generic regression problem in Theorem 5 is well-defined,

we also need a mild hypothesis on the structure of the data points.

Definition 7 (Admissible data points) Let N0 = dimP where P = Pn0 is
the polynomial null space of LR. Then, the set of data points {x1, . . . ,xM} ⊂
Rd with M ≥ N0 is said to be P-admissible if the sampling matrix H =[
v1 · · · vM

]T ∈ RM×N0 with vm =
(
〈δ(· − xm),mk〉

)
|k|≤n0

∈ RN0 is of rank

N0.

3 The precise properties of these inverse operators are stated in Theorem 6 and 9 .
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The rank condition is precisely the condition under which the classical least-
squares polynomial fitting problem

min
f∈P

M∑
m=1

|ym − f(xm)|2 = min
b∈RN0

‖y −Hb‖2 (51)

is well-posed. Indeed, the formal solution of (51) is p0(x) =
∑
|k|≤n0

bkmk(x)

with b = (bk) = (HTH)−1HTy where the rank condition guarantees the
invertibility of the normal matrix (HTH) ∈ RN0×N0 .

We are now ready to formulate our extended representer theorem, which
supports a rich panorama of regression models. A case of direct practical

relevance is obtained by setting L = (−∆)
α+1
2 (fractional Laplacian) with

L̂rad(ω) = |ω|α+1. Indeed, we shall see that, for X = L2, this essentially yield
the classical thin-plate splines (see Section 4.2), while, for X ′ =M, it results
in neural networks with activation functions (ρrad) labelled as “ridge splines”
(including ReLU) and “fractional splines” in Table 1 (Section 4.5).

Theorem 5 Let us consider the following setting.

– A proper, lower-semicontinuous, coercive, and convex loss functional E :
R× R→ R+ ∪ {+∞}.

– An isotropic, spline-admissible operator L with frequency profile L̂rad and
polynomial null space Pn0 of degree n0, possibly trivial with the convention
that P−1 = {0}.

– A convex, increasing function ψ : R+ → R+.
– A set {x1, . . . ,xM} ⊂ Rd of Pn0

-admissible data points.

Then, for any fixed y = (ym) ∈ RM , the generic functional-optimization prob-
lem

S = arg min
f∈X ′LR

(Rd)

(
M∑
m=1

E(ym, f(xm)) + ψ(‖LR{f}‖X ′)

)
, (52)

with LR = KradRL, and ψ, X ′ as stated below, always has a solution.

1. When X = X ′ = L2(R × Sd−1) and ψ is strictly convex, the solution of
(52) is unique and representable by the linear kernel expansion

f(x) = p0(x) +

M∑
m=1

amρiso(x− xm), (53)

where ρiso = 2(2π)d−1F−1{1/(|L̂rad(‖ω‖)|2‖ω‖d−1)} is a radial basis func-
tion, (am) ∈ RM an adequate set of coefficients, and p0 ∈ Pn0

a polynomial
that lies in the null space of LR.
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2. When X ′ = Lp(R × Sd−1) with p ∈ (1, 2] and ψ is strictly convex, the
solution is unique and admits the parametric representation

f(x) = p0(x) + L†R ◦ Jq{
M∑
m=1

amνxm}(x) (54)

with basis functions νx1
, . . . , νxM ∈ Lq(R × Sd−1) specified by (70) and

parameters (am) ∈ RM , p0 ∈ Pn0
, and where Jq is the pointwise nonlin-

earity given by (92) with q = p/(p − 1). (The latter is the duality map
JX : X → X ′ with X = Lq(R× Sd−1)—see Appendix A for explanations).

3. When X ′ = M(R × Sd−1) and ψ is strictly increasing, the solution set
is the weak∗-closed convex hull of its extreme points, which are all of the
form

fext(x) = p0(x) +

K0∑
k=1

akρrad(ξTkx− τk) (55)

with activation function ρrad = F−1{1/L̂rad}, for some K0 ≤M−dimPn0 ,
(ak, ξk, τk) ∈ R × Sd−1 × R for k = 1, . . . ,K0, and a null-space compo-
nent p0 ∈ Pn0

. The optimal regularization cost associated with (55) is

‖LRfext‖M =
∑K0

k=1 |ak| and is shared by all solutions.

Proof Since L∗R is injective on SRad and, by extension, on the completed space
XRad, the image space U = L∗R

(
XRad

)
is complete as well (see proof of Theo-

rem 9 for the details of the construction of U). Its continuous dual is given by
U ′ = L−1P R∗

(
X ′Rad

)
, in reason of the identities RL−1∗P L∗R = RL−1∗P L∗R∗Krad =

RR∗Krad = Id on XRad. Likewise, P ′, as identified by (15), is a finite-dimensional
Banach space. Its dual is simply (P ′)′ = P (the null space of both L and
LR), owing to the property that all finite-dimensional spaces are reflexive.
Using the notation for direct-sum topologies of [58], we then observe that
XLR

(Rd) = (U⊕P ′)`∞ , whose formal dual (U⊕P ′)′`∞ = (U ′⊕P)`1 is precisely

the native space X ′LR
(Rd) described by (49). By writing f = L−1P R∗{w} + p0

and recalling that LL−1P = Id (right-inverse property), we then identify the
regularization functional as

‖LRf‖X ′ = ‖KradR{LL−1P R∗w + Lp0}‖X ′
= ‖KradRR∗{w}+ KradR{0}‖X ′
= ‖w‖X ′Rad

= ‖ProjU ′f‖U ′

which, in effect, converts the seminorm over X ′LR
(Rd) into a norm over U ′

by factoring out the null space of LR. The other mathematical ingredient for
the optimization problem (52) to be well-posed is the weak∗ continuity of the
sampling functionals δ(· − xm) : f 7→ f(xm) in the underlying topology. This
is equivalent to δ(·−xm) ∈ XLR(Rd) for any xm ∈ Rd. In the present context,

this condition can be reframed as νxm = L∗†R {δ(· − xm)} ∈ XRad, which is a
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property that is established in Theorem 7 for the cases X = C0 and X = Lq
for any q ≥ 2.

The existence of the solution and the parametric descriptions (53), (54),
and (55) then follows from the three cases of the abstract representer theorem
for direct sums [58, Theorem 3]. The link with the abstract theorem is made
by identifying Np = P, U ⊕ Np∗ = XLR(Rd), U ′ ⊕ Np = X ′LR

(Rd) and νm =
δ(· − xm) for m = 1, . . . ,M . As for the required technical assumptions, they
directly follow from the weak∗ continuity of the sampling functionals (i.e.,
νm ∈ U⊕Np∗) and the P-admissibility hypothesis in Definition 7, with the vm
being the same as in the statement of the abstract theorem. The duality map
that is required for the first and second scenarios is JU = L†R ◦J◦L∗†R : U → U ′

(see Appendix A, Proposition 4 with T = L∗R, T−1 = L∗†R = R∗L∗−1P , and

(T∗)−1 = L†R = L−1P R∗).
To describe the solution set for the non-reflexive case X ′ = M, we in-

voke the third case of [58, Theorem 3], which tells us that the extreme points
of S can all be expressed as the sum of a null-space component plus a lin-
ear combination of K0 ≤ M − dim(P) atoms ek that are selected adap-
tively within a dictionary consisting of the extreme points of the unit ball
in U ′: B(U ′) = {u ∈ U ′ : ‖u‖U ′ ≤ 1}. Because of the linear isomorphism

U ′ = L†R
(
MRad

)
, extB(U) = L†R

(
extB(MRad)

)
. Next, we use the property

that MRad = Meven(R× Sd−1) whose extreme points are {±δRad,z}z∈Pd .
Each δRad,zk ∈ extB(MRad) then bijectively maps into an extreme point ek =

L†R{δRad,zk} ∈ extB(U ′), and vice versa. Finally, by recalling that L†R = (Id−
ProjP)L−1R∗ and by invoking Theorem 4 to show that L−1R∗{δRad,(tk,ξk)

} =

L−1R∗KradR{δ(ξTkx− tk)} = L−1{δ(ξTkx− tk)} = ρrad(ξTkx− tk), we find that

ek = ±ρrad(ξTkx− tk)∓ p0,k, (56)

where p0,k = ProjP{ρrad(ξTkx− τk)} ∈ P. Since every extreme point of B(U ′)
is necessarily of the form (56), we can substitute this expression in the generic

expansion fext = p̃0 +
∑K0

k=1 akek which, upon collection of all null-space com-
ponents, yields (55). ut

The two cases in Theorem 5 that are of direct practical relevance to machine
learning are Items 1 and 3. The first scenario yields a learning architecture that
is a linear expansion of RBFs, which also has a classical RKHS interpretation,
as explained in Section 4.2.

The form of the solution in Item 3 is equivalent to a shallow network with
the weights (ξk) of the hidden layer being normalized. It actually turns out that
this normalization is inconsequential when the activation is a homogeneous
function. This happens for instance when the regularization operator L =

(−∆)
α+1
2 is a fractional Laplacian which maps into ρRad(t) ∝ |t|α. Indeed, for

any (wk, bk) ∈ Rd × R, we have that

|wT
kx− bk|α = ‖wk‖α|ξTkx− tk|α (57)
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with ξk = wk/‖wk‖ and tk = bk/‖wk‖, which indicates that the normalization
(or lack thereof) can be absorbed in the weights (ak) of the output layer. The
case α = 1 with L = ∆ (Laplacian) is particularly attractive, as it nicely
maps into a ReLU network with one hidden layer and a skip connection to
implement the affine component [37].

The form of the solution in Item 2 is more involved, but still useful to get
insight into the transition with p from RBFs to neural nets. The equivalence
with Item 1 for p = 2 is demonstrated in the Section 4.2. As for the behavior
as p→ 1, we observe that the effect of the duality map Jq as q →∞ is to pull
a few maximal values to infinity, while attenuating all other (non-supremum)

values towards zero. In effect, this means that Jq{
∑M
m=1 amνxm} will exhibit

peaks that become more and more pronounced, and eventually converge to a
sum of impulses as p → 1, which is consistent with the limit form given by
(55).

4.2 Connection with RKHS Methods

The scenario X = L2 in Theorem 5 is compatible with the kernel models
of “classical” machine learning [40,50]. This is because the underlying native
space is a reproducing-kernel Hilbert space whose topological structure is now
made explicit.

Proposition 2 (Characterization of RKHS for X = L2) Let L be a spline
admissible operator with a polynomial null space of degree n0 and consider the
self-adjoint operator A = (L∗KL)−1. Then, the native space H = L′2,LR

(Rd),
defined by (49) with X ′ = X = L2, is the reproducing-kernel Hilbert space
H = U ′ ⊕ P associated with the composite inner product

〈f1, f2〉H = 〈LR{f1},LR{f2}〉Rad +
∑
|k|≤n0

〈m∗k, f1〉〈m∗k, f2〉 (58)

= 〈(L∗KL){f1}, f2〉+
∑
|k|≤n0

〈m∗k, f1〉〈m∗k, f2〉

whose leading term can also be written as

〈(L∗KL){f1}, f2〉 = 〈(L∗KL)ProjU ′{f1},ProjU ′{f2}〉
= 〈ProjU ′{f1},ProjU ′{f2}〉U ′ , (59)

where ProjU ′ = Id− ProjP : H → U ′. The topological dual of H is the Hilbert
space H′ = L2,LR

(Rd) = U ⊕ P ′ equipped with the inner product

〈g1, g2〉H′ = 〈L∗†R {g1},L
∗†
R {g2}〉Rad +

∑
|k|≤n0

〈mk, g1〉〈mk, g2〉 (60)

= 〈L†RL∗†R {g1}, g2〉+
∑
|k|≤n0

〈mk, g1〉〈mk, g2〉

= 〈AProjU{g1},ProjU{g2}〉+
∑
|k|≤n0

〈mk, g1〉〈mk, g2〉,
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where ProjU = Id − ProjP′ : H′ → U . The corresponding linear isometries
(Riesz maps) that map U → U ′, P ′ → P, and H → H′ are

JU = A : U → U ′

= (Id− ProjP)A(Id− ProjP′) : U ⊕ P ′ → U ′,
JP′ = ProjP : P ′ → P,

= ProjPProjP′ : U ⊕ P ′ → P,
JH = ((Id− ProjP)A(Id− ProjP′) + ProjPProjP′) : H → H′,

where the second, alternative forms of JU and JP′ that include projectors are
the proper extension of those operators to the whole space H = U ′ ⊕ P.

Proposition 2 is obtained as a corollary of Theorems 6 and 9 with X =
X ′ = L2, with the help of the intertwining property LR = KradRL = RKL
(see the discussion at the end of Section 3.2). The technical part is to establish
the completeness of U (resp., H′ = U ⊕ P ′), which then implies that of U ′
(resp., H = H′′ = U ′ ⊕ P) by duality. As for the Hilbert-space property, the
maps defined by (58) and (60) are obviously bilinear and symmetric. To show
that (58) is also positive definite, we invoke Theorem 6, which states that

any f ∈ H = U ′ ⊕ P has a unique decomposition as f = L†R{w} + p0, with
w = LR{f} ∈ X ′ and p0 = ProjP{f} =

∑
|k|≤n0

bkmk ∈ P with bk = 〈m∗k, f〉.
This then yields that

〈f, f〉H = 〈LR{f},LR{f}〉+
∑
|k|≤n0

|bk|2 = 〈w,w〉L2(R×Sd−1)︸ ︷︷ ︸
‖w‖2X′

+ ‖b‖22︸︷︷︸
‖p0‖2P

≥ 0,

which vanishes if and only if f = 0. Likewise, one readily verifies that the semi-
inner products associated with each individual term in (60) induce the two
component norms ‖v‖X and ‖p∗0‖P′ for X = L2 that appear in the definition
(50) of the predual space.

The denomination RKHS applies to any Hilbert space H of functions on
Rd such that δ(· − x0) ∈ H′ for any x0 ∈ Rd. In our case, this property is

equivalent to L∗†R {δ(· − x0)} ∈ L2,Rad, which follows from Theorem 7.

To get further insight, we now show that the RBF solution (53) is a par-
ticular case of the Lp solution (54) with p = 2. Since L2 = (L2)′ is its own
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dual, J = Id, which allows us to manipulate (54) as

f = p0 + L−1P R∗RL−1∗P {
M∑
m=1

amδ(· − xm)}

= p0 + L−1P K−1L−1∗P {
M∑
m=1

amδ(· − xm)}

= p0 + (Id− ProjP)A(Id− ProjP′){
M∑
m=1

amδ(· − xm)} (61)

= p0 + A{
M∑
m=1

amδ(· − xm)} = p0 +

M∑
m=1

amρiso(x− xm), (62)

where ρiso = (L∗KL)−1{δ} = A{δ} : Rd → R is the Green’s function of (L∗KL)
and p0 ∈ P. The nonobvious simplification from (61) to (62) results from
two crucial observations: (1) the “orthogonality-to-the-null-space” condition∑M
m=1 amδ(· −xm) ∈ U is necessary for optimality; and (2) the availability of

the identity

∀u ∈ U : (Id− ProjP)A(Id− ProjP′){u} = A{u} = u∗ ∈ U ′,

which is tightly linked to the specification of the underlying spaces in Propo-
sition 2. Likewise, we find that the quadratic regularization cost associated
with the linear model (62) is aTGa, where G ∈ RM×M is a symmetric, con-
ditionally positive-definite matrix (see [31]) whose entries are calculated as
follows:

[G]m,n = 〈LRρiso(· − xm),LRρiso(· − xn)〉Rad

= 〈RKL{ρiso(· − xm)},RKL{ρiso(· − xn)}〉Rad

= 〈KL{ρiso(· − xm)},R∗RKL{ρiso(· − xn)}〉
= 〈ρiso(· − xm),L∗K R∗RK︸ ︷︷ ︸

Id

L{ρiso(· − xn)}〉

= 〈ρiso(· − xm), δ(· − xn)〉 = ρiso(xn − xm) = ρiso(xm − xn).

As variant of the L2 result in Theorem 5, we may also consider the mod-

ified regularization operator L̃ = K−
1
2 L whose frequency response is ̂̃L(ω) =√

2(2π)(d−1)/2L̂(ω)/‖ω‖(d−1)/2. For this particular setting, L̃R = RK
1
2 L, which

translates into

‖L̃R{f}‖2L2(R×Sd−1) = ‖RK
1
2 L{f}‖2L2(R×Sd−1) = ‖L{f}‖2L2(Rd),

owing to the property that RK
1
2 is an L2 isometry [27]. The proposed Radon-

domain regularization therefore reduces to the standard energy functional as-
sociated with (semi-)reproducing-kernel Hilbert spaces. The resulting basis

function is ρ̃iso(x) = F−1{1/|L̂|2}(x), which is the same as the one encoun-
tered in the classical formulation that does not involve the Radon transform.
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While this may suggest that the two formulations are equivalent, there is an
important difference that concerns the dimension of the null space.

As a matter of illustration, we now compare two schemes that utilize the
same “linear” radial basis ρiso(x) ∝ ‖x‖. Based on (6), we deduce that this

corresponds to the choice |L̂(ω)|2 = ‖ω‖d+1 in the classical formulation, which
induces the regularization norm ‖(−∆)(d+1)/2{f}‖L2

with a polynomial null
space of degree n0 = d(d+1)/2e > d/2 [17,63]. In our proposed Radon-domain
variant, the appropriate regularization norm is ‖RK(−∆)1/2{f}‖L2 with a null
space of polynomial degree n0 = 0. This solution is attractive because it does
not depend on the dimensionality of the data.

4.3 Universal Approximation Properties

The universal-approximation properties of the supervised-learning scheme spec-
ified by (52) are supported by Theorem 6 below, which summarizes the prop-
erties of the native space X ′LR

in relation to the regularization operator LR and

its generalized inverse L†R. This result is a direct corollary (dual counterpart)
of Theorem 9, whose proof is given in Section 5.2.

Theorem 6 (Properties of the native space X ′LR
) Let L be an isotropic

LSI operator that is spline-admissible with a polynomial null space P (possibly
trivial) of degree n0. Then, the operators LR = KradRL : X ′LR

→ X ′Rad and

L†R = (Id−ProjP)L−1R∗ : X ′Rad → L∞,−n0(Rd) (the adjoint of L∗†R in Theorem
9) are continuous and have the properties

∀w ∈ X ′Rad : LRL†R{w} = w (63)

∀p0 ∈ P : LR{p0} = 0 (64)

∀f ∈ X ′LR
(Rd) : L†RLR{f} = (Id− ProjP){f} = ProjU ′{f}, (65)

where X ′LR
(Rd) M

= L†R(X ′Rad)⊕P is equipped with the composite norm ‖f‖X ′LR
=

‖LR{f}‖X ′Rad
+ ‖ProjP{f}‖P . The space X ′LR

is complete and isomorphic to

X ′Rad × P with f = L†R{w} + p0 7→ (w, p0) = (LR{f},ProjP{f}). Moreover,

S(Rd) ↪−→ X ′LR
(Rd) ↪−→ L∞,−n0

(Rd) d.

↪−→ S ′(Rd).

To explain how Theorem 6 relates to universality, let us first consider
the case X ′ = L2 for which we have just shown that X ′LR

= H is a RKHS
whose (semi-)reproducing kernel is ρiso = (L∗KL)−1{δ}. From the general
properties of RKHS [2,63], we know that H (as a set) can be specified as
H = span{ρiso(· − y)}y∈Rd + P, which tells us that the class of RBF esti-
mators of the form given by (53) is dense in H. This means that such esti-
mators can yield an approximation of any f ∈ H to an arbitrary degree of
precision. In particular, this applies to any f ∈ S(Rd), due to the inclusion
S(Rd) ⊂ X ′LR

(Rd), as guaranteed by Theorem 6. Now, the key to universal

approximation is that S(Rd) is dense in most of the classical function spaces
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[51], in particular, C0(Rd). We then readily deduce that (53), for M sufficiently
large and a suitable choice of the xm, has the ability to reproduce any con-
tinuous function f : Rd → R. This deduction, of course, is consistent with the
classical theory of kernel estimators: Our admissibility conditions for L̂rad in
Definition 2 (resp., in Definition 3) ensure that the function ρiso : Rd → R is
strictly positive-definite (resp., strictly conditionally positive-definite), which
is the standard criterion for universality [31,32,63].

The same kind of density argument can also be made for X ′ = M. The
relevant basis elements there are the atomic Radon-compatible Dirac measures
δRad,(tk,ξk)

∈ MRad with (tk, ξk) ∈ R × Sd−1. These get mapped into ek =

L†R{δRad,(tk,ξk)
} ∈ U ′, which are essentially ridges (up to some polynomial)

characterized by ek = ρrad(ξTk · −tk)− p0,k with p0,k = ProjP{ρrad(ξTk · −tk)}.
Thus, by setting w ≈

∑
k wkδRad,(tk,ξk)

, we can interpret the generative for-

mula f = L†R{w}+ p0 in Theorem 6 as a linear superposition of ridges plus a
global polynomial trend, which is compatible with the form of the estimator
in (55). We then invoke the property that S(Rd) ⊂ MLR

(Rd), which implies
that any continuous function can be approximated as closely as desired by
a member of MLR

(Rd). As it turns out, the latter is representable by a su-
perposition of ridges plus a polynomial of degree n0. We emphasize that the
presence of the polynomial term—the guarantor of stability for Theorem 8—is
essential to counterbalance the growth of the individual atoms at infinity. This
is an important aspect where our analysis and conclusions deviate from those
of [54].

4.4 Regularization Operators for Antisymmetric Activations

While the framework that has been discussed so far is very powerful, it has one
shortcoming: it yields canonical activation functions ρrad that are necessarily
symmetric. In some cases such as LR = KradR(−∆), these can be converted
into one-sided functions such as the ReLU by doctoring the polynomial term.
That said, the original scheme that is described by Theorem 5 does not allow
for sigmoids, which are frequently used for classification [8]. This is the reason
why we now introduce a variant that systematically produces anti-symmetric
activations, including sigmoids for n0 = 0.

The idea is to substitute the (symmetric) filtering operator Krad by its anti-
symmetric counterpart K̃rad, which includes an additional Hilbert transform.
Specifically, K̃rad is the hyper-spherical radial filter whose frequency response

is ̂̃Krad(ω) = −i sign(ω)cp|ω|−d−1 and whose adjoint is K̃∗rad = −K̃rad. Since

the action of the (radial) Hilbert transform H̃rad : φ(·, ξ) 7→ φ ~ 1/(πt) is
well-defined on S(R× Sd−1) with H̃∗rad = −H̃rad = H̃−1rad, we have the identity

R∗KradR = R∗KradH̃∗radH̃radR = R∗K̃∗radR̃ = Id with R̃
M
= H̃radR. Accordingly,

we can essentially replicate the whole mechanism of construction of spaces in
Section 3.3 by subtituting SRad by S̃Rad = R̃(S(R×Sd−1) = H̃rad(SRad), which
is a space of odd functions that are smooth (C∞) and included in Lp(R×Sd−1)



From Kernel Methods to Neural Networks: A Unifying Variational Formulation 27

for all p ≥ 1. While the members of S̃Rad do not necessarily decay rapidly, the
mapping R∗K̃∗rad : S̃Rad → S(Rd) is still guaranted to be an isomorphism
(see [43, Theorem 3.3.1, p. 83] where similar arguments are used). Under the
assumption that the hyper-spherical norm ‖·‖X is continuous on S̃Rad, we can
readily adapt the proof of [57, Theorem 8] to establish the following.

Proposition 3 (Odd Radon-compatible Banach spaces) Consider the

Banach space X̃Rad = (S̃Rad, ‖ · ‖X ) of odd hyper-spherical functions. Then,
the following holds.

1. The map R∗K̃∗rad : X̃Rad → Ỹ = R∗K̃∗rad
(
X̃Rad

)
is an isometric bijection,

with R̃R∗K̃∗rad = Id on X̃Rad.

2. The map R̃∗ : X̃ ′Rad → Ỹ ′ = R̃∗
(
X̃ ′Rad

)
is an isometric bijection, with

K̃radRR̃∗ = Id on X̃ ′Rad.

The underlying definition of the “oddified” backprojection operator R̃∗ :
X̃ ′Rad → Ỹ ′ for g ∈ X̃ ′Rad is

〈R̃∗{g}, ϕ〉 = 〈g, R̃{ϕ}〉Rad = 〈H̃∗rad{g},R{ϕ}〉Rad (66)

for all ϕ ∈ Ỹ or, equivalently, ϕ ∈ S(Rd) since S(Rd) is dense in Y by construc-
tion. Likewise, by using the property that the Hilbert transform is a homeo-
morphism from SLiz,even onto SLiz,odd [47] with the underlying Lizorkin spaces

being included in SRad and S̃Rad ⊂ Lp,odd, respectively, we can adapt the proof

of Lemma 2 to show that L̃q,Rad = Lq,odd for q ∈ (1,∞), C̃0,Rad = C0,odd for

p =∞, and M̃Rad = (C̃0,Rad)′ =Modd.
The bottom line is that the whole argumentation, including the critical

Fourier-based proofs of Section 5, applies in this modified setting as well. Ac-
cordingly, all theorems that mention the regularization operator LR = KradRL
and the radial profile ρrad = F−1{1/L̂rad} are also valid for the odd setting
where these quantifies are substituted by

L̃R
M
= K̃radRL = K̃radLradR, (67)

ρ̃rad(t)
M
= F−1

{
i sign(ω)

L̂rad(ω)

}
(t), (68)

where (68) directly follows from (66) and Theorem 4. The conditions for ad-
missibility in Definitions 2 and 3, which are all Fourier-based, remain the same,
while the adjusted activation ρ̃rad (the 1D Hilbert transform of ρrad) is real-

valued and anti-symmetric because the original Fourier profile L̂rad : R → R
is symmetric.

We note that our admissibility condition with γ0 = 1 for odd variant (n0 =
0) is compatible with the condition used by Barron to prove the universality
of neural networks with sigmoidal activations [5]. It is also worth mentioning
that the substitution of LR by L̃R has no incidence on the form of the RBF in
(53) because of the unitary nature of the Hilbert transform.
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ρrad(t) ρ̃rad(t) L̂rad or ̂̃Lrad n0 (null space)

Exponential

e−|t| N/A 1 + |ω|2 −1 (trivial)

Classical sigmoids

N/A
tanh(

t
2
)

2
= 1

2
+ 1

1+e−t
sinh(πω)

π
0 (bias)

N/A
arctan(t)

π
ωe|ω| 0

Ridge splines (of degree n ∈ N)

1
2
|t| (or ReLU) t log |t| |ω|2 1 (affine)

∝ t2n log |t| sign(t)|t|2n
(2n)!

|ω|2n+1 2n ≥ 2 (even)

1
2
|t|2n+1

(2n+1)!
∝ t2n+1 log |t| |ω|2n+2 2n+ 1 ≥ 1 (odd)

Fractional splines (degree α ∈ R+\N)

|t|α sin(απ
2

)

πΓ (α)

sign(t)|t|α cos(απ
2

)

πΓ (α)
|ω|α+1 dαe

Table 1 Examples of admissible symmetric and anti-symmetric activation functions with
their corresponding regularization operator. The anti-symmetric activation is given by (68)
and requires the use of the modified filter K̃rad in the statement of Theorem 5.

4.5 Specific Configurations

The proposed framework encompasses a wide variety of kernels and activa-
tion functions, with minimal restrictions. For instance, one can start with any
strictly positive-definite function ρrad,0 whose Fourier transform is strictly pos-
itive, and construct some higher-order variants by (fractional) integration. The

variants are such that ρrad,γ0(t) = F−1{ ρ̂rad,0(ω)|ω|γ0 }(t) with suitable γ0 > 0 and

are guaranteed to meet the requirements in Definition 3. The simplest scenario
is to set ρrad,0 = δ, which maps into a Laplacian-type regularization.

In Table 1, we provide examples of admissible operators together with their
corresponding symmetric and anti-symmetric activations. It is noteworthy that
the two most popular sigmoids (tanh and arctan) are part of the framework.
We can determine the explicit frequency response of their regularization filter
and show that it is first-order-admissible with a null space that consists of the
polynomials of degree n0 = 0 (the constants). The symmetric spline activations
of odd degree m−1 and the anti-symmetric ones of even degree are also known:
they coincide with the ridge splines of Parhi and Novak, which are tied to the
Radon-domain operator Lrad = ∂m

∂tm [37]. With the present formulation, we
can seamlessly extend this family to fractional orders, in direct analogy with

[59], by setting L = (−∆)
α+1
2 .
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5 Supporting Mathematical Results

To answer the fundamental issue of the existence of a solution in Theorem 5,
we need to 1) prove that the “predual” space XL(Rd) is a proper Banach space
(Theorem 9); and 2) establish the weak* continuity of the sampling functionals
δ(· − xk). As we shall see, both aspects largely rest upon the functional char-

acterization of the Schwartz kernel of the pseudoinverse operator L∗†R provided
in Theorem 7.

5.1 Kernel and Stability of Generalized Inverse Operators

Let ν : f 7→ 〈ν, f〉 be a linear functional that is acting on some Banach space
X ′. We recall that ν is weak*-continuous if and only if ν ∈ X , where X is
the predual of X ′ [44]. The condition that X ′ is reflexive (i.e., X ′′ = X ) is
equivalent to the continuity of ν on X , which is the standard condition for
analysis. However, when X ′ is not reflexive (e.g., X ′ = M = (C0)′), the
constraint of weak* continuity is stronger than continuity, contrary to what
could be suggested by the qualifier “weak.” In that case, the predual space
X ⊆ X ′′, which is continuously embedded in X ′′, turns out to be smaller
than X ′′. Therefore, in order to establish the weak* continuity of the Dirac
functionals δ(· − x0) for the scenarios in Theorem 5, we need to show that

δ(· −x0) ∈ XLR
, which can be reduced to proving that L∗†R {δ(· −x0)} ∈ XRad.

Theorem 7 (Properties of the impulse response of L∗†R = RL−1∗P ) Let

L be an isotropic operator such that L̂(ω) = L̂rad(‖ω‖) where L̂rad : R→ R is

a continuous function and ρrad(t) = F−1{1/L̂rad}(t). We consider two cases:

1. Trivial null space: If L satisfies the admissibility conditions in Definition
2, then L∗†R = RL−1∗ and

νx0
(t, ξ) = RL−1∗{δ(· − x0)}(t, ξ) = ρrad(t− ξTx0) (69)

with x0 ∈ Rd and (t, ξ) ∈ R× Sd−1. Moreover, νx0 ∈ XRad for X = C0 as
well as X = Lq with q ∈ [1,∞].

2. Nontrivial null space: If L satisfies the admissibility conditions in Definition
3 with a polynomial null space of degree n0, then

νx0(t, ξ) = L∗†R {δ(· − x0)}(t, ξ)

= ρrad(t− ξTx0)−
n0∑
n=0

(−ξTx0)n

n!

(
κrad ∗ ∂nρrad

)
(t) (70)

with νx0
∈ XRad for the same spaces as in Item 1, but with q ∈ [2,∞].

Moreover,

sup
(x0,ξ)∈Rd×Sd−1

(1 + |ξTx0|)−n0‖νx0
(·, ξ)‖Lq(R) <∞ (71)

for any q ∈ [2,∞].
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Proof To show that νx0 ∈ XRad, it is sufficient to prove that νx0 ∈ X (Rd ×
Sd−1) since νx0 is in the range of the Radon transform by construction.

When the null space of L is trivial, L has a stable convolution inverse so
that it suffices to show that νx0

∈ Lq(R× Sd−1)∩C0(R× Sd−1). To that end,
we formally identify the isotropic distribution ρiso = L−1∗{δ} = L−1{δ} =

F−1{1/L̂rad(‖ω‖)} and apply Proposition 1, which yields

νx0
(t, ξ) = R{ρiso(· − x0)}(t, ξ) = ρrad(t− ξTx0).

Due to our assumptions, this function is such that ‖νx0
(·, ξ)‖L1

= ‖ρrad‖L1
<

∞ for any fixed ξ ∈ Sd−1. Moreover, since 1/L̂rad ∈ L1(R), ρrad is bounded,
continuous, and vanishing at infinity (by the Riemann-Lebesgue lemma), which
gives ρrad(· − ξTx0) ∈ C0(R) for any x0 ∈ Rd and ξ ∈ Sd−1. Since ρrad ∈
L∞(R) ∩ L1(R), we readily deduce that ρrad(· − ξTx0) ∈ Lq(R) for all inter-

mediate q ≥ 1, which then also yields ρrad(t− ξTx0) ∈ Lq(R× Sd−1) because
the surface of the unit sphere Sd−1 is bounded. Finally, since ρrad : R → R is
continuous and vanishing at infinity, νx0

(t, ξ) is jointly continuous in (t, ξ) and
vanishing at t→ ±∞ for all ξ ∈ Sd−1, which implies that νx0

∈ C0(R×Sd−1).
For the more difficult case of a nontrivial null space, we invoke the Fourier-

slice theorem to evaluate the 1D Fourier transform of νx0(·, ξ) with ξ fixed
as

ν̂x0
(ω, ξ) =

F{δ(· − x0)−
∑
|k|≤n0

〈mk, δ(· − x0)〉 m∗k}(ωξ)

L̂rad(ω)

=
e−iωξ

Tx0 −
∑
|k|≤n0

xk0
k! m̂

∗
k(ωξ)

L̂rad(ω)

=
e−iωξ

Tx0 −
∑
|k|≤n0

xk0
k! (−iωξ)kκ̂rad(ω)

L̂rad(ω)

=
e−iωξ

Tx0 −
∑n0

n=0
(−ξTx0)

n

n! (iω)nκ̂rad(ω)

L̂rad(ω)
, (72)

where the simplification of the summation over k results from the multino-
mial expansion (−iωξTx0)n = (y1 + · · · + yd)

n =
∑
|k|=n

n!
k!y

k with y =(
− iωξix0,i

)d
i=1

. The delicate point here is that (72) is potentially singular
because it has a pole of multiplicity γ0 at ω =0. Fortunately, the condition
γ0 ≤ n0 + 1 ensures that there is a proper pole-zero cancellation: By recalling
that κ̂rad(ω) = 1 for ω ∈ Ω0 = [−R0, R0] with R0 = 1

2 and setting t0 = ξTx0,
we identify the numerator as the remainder of the Maclaurin series of e−iωt0 ,
which is bounded by∣∣∣∣∣e−iωt0 −

N∑
n=0

(−it0)n

n!
ωn

∣∣∣∣∣ ≤ sup
ω∈R

∣∣(−it0)N+1e−iωt0
∣∣ |ω|N+1

(N + 1)!

≤ |t0|
N+1

(N + 1)!
|ω|N+1. (73)
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Fig. 1 Functions ω 7→ |rN (ω)| for N = 1, . . . , 10. The dilated plot on the right includes the
upper bound specified by (77) as an overlay.

This then yields the estimate

|ν̂x0(ω, ξ)| ≤ |ξ
Tx0|n0+1

C0(n0 + 1)!
|ω|ε as ω → 0

with ε = n0 + 1− γ0 =

{
0, γ0 ∈ N
1− (γ0 − bγ0c) ∈ (0, 1), otherwise.

(74)

Since the denominator L̂rad in (72) is continuous and non-vanishing away from
the origin, ν̂x0

(·, ξ) is bounded on Ω0, and, by extension, on any compact

subset of R. Moreover, since |e−iωξTx0 | = 1 and κ̂rad is rapidly decreasing,
there exists a constant C such that |ν̂x0(ω, ξ)| ≤ C|ω|−γ1 for |ω| > R1. This
leads to several conclusions. First, if γ1 > 1, then ν̂x0(·, ξ) ∈ L1(R) so that
νx0
∈ C0,Rad(R × Sd−1) by the same argument as in the nonsingular case.

Second, if γ1 > α + 1
2 , then νx0

(·, ξ) ∈ Wα
2 (R), where Wα

2 (R) = {f :
∫
R(1 +

|ω|2)α|f̂(ω)|2dω < ∞} is the Sobolev space of functions with finite-energy
derivatives up to order α. Therefore, νx0

∈ Lq,Rad(R× Sd−1) for all q ∈ [2,∞]
provided that γ1 > 1. The explicit Radon-domain formula (70) with κrad(t) =
F−1{κ̂rad(ω)}(t) is obtained by taking the 1D inverse transform of (72).

To refine our characterization of ν̂x0 , we introduce the function

rN (ω) =
e−iω −

∑N
n=0

(−iω)n
n!

(iω)N

N !

(75)

whose modulus is plotted in Figure 1. Some of the remarkable properties of
rN are

rN (ω) =
−iω

N + 1
as ω → 0 (76)

∀ω ∈ R : |rN (ω)| ≤ min(|ω|/2, 1.27) (77)

lim
ω→∞

|rN (ω)| = 1, (78)
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with the global bound (77) being overlaid on the graph to demonstrate its
sharpness. This function will allows us to control the behavior of

ν̂x0(ω, ξ) =
e−it0ω −

∑
n≤n0

(−it0ω)n
n! κrad(ω)

L̂rad(ω)

=
κ̂rad(ω)rn0

(t0ω) (−it0ω)n0

n0!
+
(
1− κ̂rad(ω)

)
e−it0ω

L̂rad(ω)

by splitting the frequency domain in three regions. First, for ω ∈ Ω0 = [0, R0],
where κ̂rad(ω) = 1, we find that

|ν̂x0
(ω, ξ)| =

∣∣∣∣∣rn0
(t0ω) (−it0ω)n0

n0!

L̂rad(ω)

∣∣∣∣∣ ≤ |t0|n0 min (|ω|, 2)
2 |ω|

n0

n0!

|L̂rad(ω)|
. (79)

For the transition region ω ∈ Ω01 = [R0, R̃1] with R̃1 = max(2R0, R1), where
0 ≤ κ̂rad(ω) ≤ 1, we bound the numerator by its maximum, which yields

|ν̂x0(ω, ξ)| ≤
2 |t0R̃1|n0

n0!
+ 1

|L̂rad(ω)|
. (80)

Finally, for ω ∈ Ω1 = [R̃1,∞], where κ̂rad(ω) = 0, we get the expected tail
behavior

|ν̂x0(ω, ξ)| ≤ 1

|L̂rad(ω)|
≤ 1

C1|ω|γ1
. (81)

Based on those bounds with t0 = 1, we define the auxiliary function

u(ω) =


min (|ω|, 2)

2
|ω|n0

n0!

|L̂rad(ω)|
, |ω| < R0

2
R̃
n0
1
n0! +1

|L̂rad(ω)|
, R0 ≤ |ω| ≤ R̃1

1

|L̂rad(ω)|
, R̃1 < |ω|

(82)

which, by construction, is such that ‖u‖Lp <∞ for any p ≥ 1. We can now use
(79), (80), and (81) to bound the norm of ν̂x0(·, ξ) by distinguishing between
two cases. For t0 ≤ 1, we have ‖ν̂x0

(·, ξ)‖Lp ≤ ‖u‖Lp , while, for t0 ≥ 1, we get
‖ν̂x0

(·, ξ)‖Lp ≤ |t0|n0‖u‖Lp . By combining these two inequalities, we obtain
the universal norm estimate

‖ν̂x0
(·, ξ)‖Lp(R) ≤ (1 + |ξTx0|)n0‖u‖Lp < +∞, (83)

which holds for all (x0, ξ) ∈ Rd × Sd−1 and p ≥ 1. Finally, we invoke the
boundedness of the (inverse) Fourier transform F−1 : Lp(R) → Lq(R) for
p ∈ [1, 2] to obtain the generic bound

sup
(x0,ξ)∈Rd×Sd−1

(1 + |ξTx0|)−n0‖νx0(·, ξ)‖Lq(R) <∞, (84)

which is the desired result. ut
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As complement to the proof of Theorem 7, we make the following remarks.

1. The function ω 7→ ν̂x0(ω, ξ) in (72) is ε-Hölder continuous around the

origin for γ0 /∈ 2N and as smooth as L̂ when γ0 = 2n. For instance, the case
where L = (−∆)n is a non-fractional iterate of the Laplacian corresponds to

L̂rad(ω) = ω2n and ν̂x0(·, ξ) ∈ C∞(R), which then translates into t 7→ νx0(t, ξ)
being rapidly decreasing, but with a limited order of differentiability controlled
by γ0 = γ1 = 2n.

2. The proof can be readily adapted to characterize the partial derivatives
of νx0

by replacing δ(·−x0) by ∂nδ(·−x0) with |n| < n0. These distributions
are such that 〈∂nδ(·−x0),mk〉 = (−1)|n|∂nmk(x0) = (−1)|n|mk−n(x0), with
the convention that mk−n = 0 if km < nm for any m ∈ {1, . . . , d}.

3. The leading term in (70) is ρrad(t − τ0) with τ0 = ξTx0, which, in the
non-trivial scenario, typically grows as O(|t|γ0−1). Our analysis shows that
the second correction term in (70), which is unbounded at infinity as well,
essentially neutralizes this growth. It is tempting to call this a miraculous
cancellation.

The bottom line is that, for any (x0, ξ0) ∈ Rd × Sd−1, the function t 7→
νx0

(t, ξ0) is continuous, bounded with a maximum that is proportional to
|ξT0x0|n0 (see (84) with p =∞), and vanishing at infinity. This is a remarkable

property that also guarantees the boundedness of L∗†R : L1,n0(Rd) → XRad,
which is not obvious a priori. The enabling ingredient there is (71), which en-
sures that the corresponding bounding constant in Theorem 8 is finite. Indeed,
since ‖x‖ ≥ |ξTx| with equality if and only if ξ and x are colinear, we have
that

‖L∗†R ‖ ≤ sup
x∈Rd, ξ∈Sd−1

(1 + ‖x‖)−n0‖νx(·, ξ)‖X (R)

≤ sup
x∈Rd, ξ∈Sd−1

(1 + |ξTx|)−n0‖νx(·, ξ)‖X (R) <∞.

Theorem 8 (Stability of Cartesian-to-Radon-domain mappings) Let
hx(t, ξ) = T{δ(· − x)}(t, ξ)} denote the generalized impulse response of the
operator T : L1,α(Rd)→ XRad(R× Sd−1) and let

Cp,α = sup
x∈Rd, ξ∈Sd−1

(1 + ‖x‖)−α‖hx(·, ξ)‖Lp(R). (85)

1. X = C0: If C∞,α < ∞, then T : L1,α(Rd) → C0,Rad is bounded with
‖T‖ ≤ C∞,α.

2. X = Lp with p ∈ (1,∞): If Cp,α < ∞, then T : L1,α(Rd) → Lp,Rad is

bounded with ‖T‖ ≤ 2πd/2

Γ (d/2)Cp,α.

The same holds true for the adjoint T∗ : X ′Rad → L∞,−α(Rd) with ‖T∗‖ = ‖T‖.
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Proof The function
(
(t, ξ),x

)
7→ hx(t, ξ) is the Schwartz kernel of the operator

T, so that

|g(t, ξ)| =
∣∣T{f}(t, ξ)

∣∣ =
∣∣ ∫

Rd
hx(t, ξ) f(x)dx

∣∣
≤ sup
x∈Rd, ξ∈Sd−1

(
(1 + ‖x‖)−α‖hx(·, ξ)‖L∞

) ∫
Rd

(1 + ‖x‖)α|f(x)|dx.

Consequently,

‖g‖L∞ = sup
(t,ξ)∈R×Sd−1

|g(t, ξ)| = C∞,α‖f‖L1,α
,

which is the desired bound for X = C0.
To handle the reflexive case X = Lp, we consider the adjoint operator

T∗ whose Schwartz kernel
(
x, (t, ξ)

)
7→ hx(t, ξ) is obtained by transposi-

tion. We now show that T∗ : Lq(R × Sd−1) → L∞,−α(Rd) with q = p
p−1

is bounded which, by duality, implies that the same holds true for (T∗)∗ =
T : L1,α(Rd) c.−−→ Lp(R × Sd−1) since L1,α(Rd) is isometrically embedded in

its bidual
(
L1,α(Rd)

)′′
=
(
L∞,−α(Rd)

)′
. The action of the adjoint operator is

described as

f(x) = T∗{g}(x) =

∫
R

∫
Sd−1

hx(t, ξ) g(t, ξ)dξdt

which, with the help of Hölder’s inequality, yields the bound∣∣(1 + ‖x‖)−αf(x)
∣∣ ≤ (1 + ‖x‖)−α‖hx‖Lp(R×Sd−1) ‖g‖Lq(R×Sd−1)

≤ sup
x∈Rd, ξ∈Sd−1

(
(1 + ‖x‖)−αSd ‖hx(·, ξ)‖Lp(R)

)
‖g‖Lq(R×Sd−1)

≤ Sd Cp,α ‖g‖Lq(R×Sd−1),

where Sd = 2πd/2

Γ (d/2) is the surface of the unit hypersphere Sd−1. This proves the

desired result with ‖T‖ = ‖T∗‖ ≤ SdCp,α. ut

5.2 Characterization of the Predual Space XLR

The application of the general representer in [58] requires that the native space
X ′LR

= (XLR
)′ be identifiable as the topological dual of some primary Banach

space XLR
. The specification of the proper predual space is achieved con-

structively through a completion process that ensures that XLR
is a complete

normed space (Banach property).

Theorem 9 (Construction of the predual Banach space XLR
) Let L

be an isotropic LSI operator with radial frequency profile L̂rad that is spline-
admissible with a polynomial null space P of degree n0. Then, L∗†R = RL−1∗(Id−
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ProjP′) : L1,n0(Rd) c.−−→ XRad is bounded, and admits the unique extension

L∗†R : XLR(Rd) c.−−→ XRad with the properties

∀v ∈ XRad : L∗†R L∗R{v} = v (86)

∀p∗0 ∈ P ′ : L∗†R {p
∗
0} = 0 (87)

∀f ∈ XLR
(Rd) : L∗RL∗†R {f} = (Id− ProjP′){f} = ProjU{f}, (88)

where L∗R = L∗R∗Krad and XLR
(Rd) = L∗R(XRad) ⊕ P ′ is equipped with the

norm ‖f‖XLR

M
= max(‖L∗†R {f}‖X , ‖ProjP′{f}‖P′). The space XLR is complete

and isomorphic to XRad×P ′ with f = L∗R{v}+p∗0 7→ (v, p∗0) = (L∗†R {f},ProjP′{f}).

Moreover, S(Rd) d.

↪−→ L1,n0(Rd) d.

↪−→ XLR(Rd) d.

↪−→ S ′(Rd) with the embedding be-
ing continuous and dense.

Theorem 9 obviously also applies to scenarios where the null space is triv-
ial by setting P ′ = {0} and only retaining (86), in which case XLR

(Rd) =

L∗R(XRad) and S(Rd) d.

↪−→ L1(Rd) d.

↪−→ XLR
(Rd) d.

↪−→ S ′(Rd).

Proof Since R∗Krad

(
SRad

)
= S(Rd), the image of SRad under L∗R is a vector

space denoted by SL∗R(Rd) = L∗R
(
SRad) = L∗

(
S(Rd)

)
. The spline-admissibility

of L implies that L∗ is injective on S(Rd) which, in turn, translates into the
injectivity of L∗R on SRad. The latter statement is equivalent to the existence of
a linear operator L∗−1R

∣∣
SL∗

R

= L∗−1R (for short) such that, for any u = L∗R{φ} ∈

SL∗R(Rd) with φ ∈ SRad, it holds that

L∗−1R {u} = L∗−1R L∗R{φ} = φ.

Hence, if φ 7→ ‖φ‖X is a norm on SRad, then the same holds true for u 7→
‖u‖U

M
= ‖L∗−1R {u}‖X on SL∗R(Rd). This means that the normed spaces (SRad, ‖·

‖X ) and (SL∗R(Rd), ‖·‖U ) are (isometrically) isomorphic. Moreover, since SL∗R(Rd) ⊂
L1,n0

(Rd) (Condition 4 in Definition 3) and SRad
d.

↪−→ XRad, the inverse oper-

ator L∗−1R

∣∣
SL∗

R

coincides on SL∗R with L∗†R : L1,n0(Rd) c.−−→ XRad whose impulse

response is characterized in Theorem 7. The well-posedness and boundedness
of L∗†R on L1,n0

(Rd) for n0 = dγ0 − 1e follows from Theorem 8 and (71) in
Theorem 7, which provides the required stability condition. The other fun-
damental ingredient is 〈mk, u〉 = 〈mk,L∗R{φ}〉 = 〈LR{mk}, φ〉Rad = 0 for all
u ∈ SL∗(Rd) and |k| ≤ n0, which implies that ProjP′{u} = 0. Consequently,
we have that

L∗†R {u} = L∗−1R (Id− ProjP′){u} = L∗−1R {u} = L∗−1R L∗R{φ} = φ,

which confirms the equivalence of L∗†R and L∗−1R

∣∣
SL∗

R

.

So far, we have shown that the operator L∗†R :
(
SL∗R , ‖ · ‖U

)
→ XRad is an

isometry. As next step, we invoke the bounded linear transformation (BLT)
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theorem [44, Theorem I.7, p 9] to uniquely extend the operator to the com-

pleted space U =
(
SL∗R , ‖ · ‖U

)
which, by construction, is the Banach space

equipped with the norm ‖ · ‖U . This extension argument also applies the other

way around: Since (SL∗(Rd), ‖ · ‖U )
iso.

↪−→ U , the operator L∗R : (SRad, ‖·‖X )→ U
has a unique (isometric) extension L∗R : XRad → U with XRad being the closure

XRad = (SRad, ‖ · ‖X ). This proves that the spaces XRad and U are isometri-

cally isomorphic with U = L∗R
(
XRad

)
and XRad = L∗†R

(
U
)
. In addition, we

have that U ⊥ P, which means that ProjP′{u} = 0 for all u ∈ U . Since U
and P ′ are both Banach spaces, the direct-sum space XLR

= U ⊕P ′, equipped
with the composite norm ‖f‖XLR

= max(‖ProjU{f}‖U , ‖ProjP′{f}‖P′), is
complete (Banach property) and isomorphic to XRad × P ′. The final element

is to recognize that ‖ProjU{f}‖U = ‖L∗†R ProjU{f}‖X = ‖L∗†R {f}‖X , where
ProjU = (Id − ProjP′). This direct-sum decomposition has an equivalent de-
scription in terms of operators, which is the form given in the statement of
Theorem 9. Specifically, the isomorphism between U and X is expressed by
(86) and (88) for f ∈ U . This is complemented by the null-space property (87),
which ensures that the components of f that are in P ′ are annihilated by L∗R.

Embeddings: The denseness of S in XLR
follows from the observation that

S(Rd) = (Id − ProjP′)
(
S(Rd)

)
⊕ P ′. Since, by construction, one has that

(Id − ProjP′)(S)
d.

↪−→ U and (Id − ProjP′)(L1,n0
)

d.

↪−→ U , one also has that

S(Rd) d.

↪−→ L1,n0
(Rd) d.

↪−→ XLR
(Rd).

As for the relation XLR
= U ⊕ P ′ d.

↪−→ S ′(Rd), we already have that P ′ ↪−→
S(Rd) ↪−→ S ′(Rd), by construction. To show that U ↪−→ S ′(Rd), we invoke the
intertwining relation and express U = L∗R∗Krad(XRad) as U = R∗Qrad(XRad),

where Qrad = LradKrad : XRad → S ′(R × Sd−1). Our hypotheses on L̂rad

ensure that Qrad{φ} is well-defined for every φ ∈ X , with the operator being
continuous in the weak topology of S ′(R× Sd−1). (As the latter is a complete
nuclear space, the weak (sequential) convergence also ensures continuity in
the strong topology [55].) Since R∗ : S ′(R × Sd−1)

c.−−→ S ′(Rd), as implied by
(27), the composed operator R∗Qrad : XRad → S ′(Rd) is continuous as well,
which proves that U and XLR

are both continuously embedded in S ′(Rd).
The latter embedding is also dense by transitivity since S(Rd) ⊂ XLR

and

S(Rd) d.

↪−→ S ′(Rd) [51,19].
ut

A Appendix: Duality Maps

The generalization of the Cauchy-Schwarz inequality for any dual pair (X ,X ′) of Banach
spaces is the so-called duality inequality

∀(f, x) ∈ X ′ ×X : 〈f, x〉X ′×X ≤ ‖f‖X ′‖x‖X , (89)

which is tightly linked to the definition of the dual norm given by

‖f‖X ′
M
= sup
x∈X :‖x‖X≤1

〈f, x〉X ′×X . (90)
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Definition 8 (Strict convexity) A Banach space X is said to be strictly convex if, for all
x1, x2 ∈ X such that ‖x1‖X = ‖x2‖X = 1 and x1 6= x2, one has that ‖θx1 +(1−θ)x2‖X < 1
for all θ ∈ (0, 1).

It is obvious from (90) that (89) is sharp. Moreover, when X is reflexive and strictly
convex, there is a single element x∗ ∈ X ′ (the Banach conjugate of x) such that ‖x∗‖X ′ =
‖x‖X (isometry) and 〈x∗, x〉X ′×X = ‖x∗‖X ′‖x‖X (sharp duality bound) [15]. This leads to
the definition of the corresponding duality map JX : X → X ′ as

JX {x} = x∗. (91)

Since the dual of X ′ is strictly convex as well, we have that J−1
X = JX ′ : X ′ → X with

JX ′{x∗} = x, where (x∗)∗ = x ∈ X ′′ = X is the unique Banach conjugate of x∗ ∈ X ′.
A relevant example of reflexive and strictly convex Banach space is X = Lq(R× Sd−1)

for q ∈ (1,∞). Its topological dual is X ′ = Lp(R × Sd−1) with p = q/(q − 1) being the
conjugate exponent of q. For that particular pair, (89) reduces to the Hölder inequality
for hyper-spherical functions. From [15, Chapter 4], the corresponding duality map Jq :
Lq(R× Sd−1)→ Lp(R× Sd−1) is

Jq{ν}(z) = ν∗(z) =
|ν(z)|q−1

‖ν‖q−2
Lq

sign
(
ν(z)

)
, (92)

which establishes a one-to-one isometric mapping between the spaces Lq and Lp = (Lq)′

with the property that J−1
q = Jp.

Proposition 4 (Banach isometries) Let (X ,X ′) be a dual pair of reflexive and strictly
convex Banach spaces with corresponding duality map JX : X → X ′. We consider two
generic types of linear isometries.

1) One-to-one map: Let T : X → Y = T(X ) be an injective operator whose inverse is
denoted by T−1 with T−1T = Id on X . Then, Y = T(X ) = {y = T{x} : x ∈ X} equipped

with the norm ‖y‖Y
M
= ‖T−1{y}‖X is a Banach space. Its continuous dual is the Banach

space Y ′ = T−1∗(X ′) with ‖y′‖Y′ = ‖T∗{y′}‖X ′ , while the corresponding duality map is
JY = (T∗)−1 ◦ JX ◦ T−1 : Y → Y ′.

2) Projection: Let P : X → U
iso.
↪−−→ X be a continuous projection operator on X with

‖P‖ = 1. Then,
(
P(X ),P∗(X ′)

)
=
(
U ,U ′

)
is a dual pair of Banach subspaces with corre-

sponding duality map JU = P∗ ◦ JX ◦ P : U → U ′.

Proof We first recall that the dual of a reflexive and strictly convex Banach space is reflexive
(by definition) and strictly convex as well.
1) Injective operator: For the first property, we refer to [58, Proposition 1]. The key ob-
servation is that the operators T : X → Y and T−1 : Y → X , as well as their adjoints,
are isometries with (T∗)−1 = T−1∗. The argument then primarily rests upon the duality
inequality

〈y′, y〉Y′×Y = 〈y′,TT−1{y}〉Y′×Y = 〈T∗{y′},T−1{y}〉X ′×X
≤ ‖T∗{y′}‖X ′ ‖T−1{y}‖X , (93)

which is sharp if and only if x = T−1{y} and x′ = T∗{y′} (resp., y′ and y) are Banach
conjugates, so that x′ = JX {x}.
2) Projection operator: The first part is obtained by using a standard argument with (pro-

jected) Cauchy sequences. For the second part, let u ∈ U
iso.
↪−−→ X with Banach conjugate

u∗ ∈ X ′. Then,

‖u∗‖X ′‖u‖X = 〈u∗, u〉X ′×X = 〈u∗,P2u〉X ′×X = 〈P∗u∗,Pu〉U′×U
≤ ‖P∗‖‖u∗‖U′‖P‖‖u‖U , (94)

from which we deduce that 〈P∗u∗,Pu〉U′×U = ‖u∗‖U′‖u‖U′ . We conclude that u = Pu and
u∗ = P∗u∗ = P∗ ◦ JX {Pu} are (unique) Banach conjugates of each other. ut
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