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Abstract— Model-based statistical analysis of fMRI data relies
on the general linear model and statistical hypothesis testing.
Due to the large number of intracranial voxels, it is important
to deal with the multiple comparisons problem. Many fMRI
analysis tools utilize Gaussian random field theory to obtain
a more sensitive thresholding; this typically involves Gaussian
smoothing as a preprocessing step.

Wavelet-based statistical parametric mapping (WSPM) is
an alternative method to obtain parametric maps from non-
smoothed data. It relies on adaptive thresholding of the para-
metric maps in the wavelet domain, followed by voxel-wise sta-
tistical testing. The procedure is conservative; it uses Bonferroni
correction for strong type I error control. Yet, its sensitivity is
close to SPM’s due to the excellent denoising properties of the
wavelet transform.

Here, we adapt the false discovery rate (FDR) principle to
the WSPM framework. Although explicit p-values cannot be
obtained, we show that it is possible to retrieve the FDR threshold
by a simple iterative scheme. We then validate the approach with
an event-related visual stimulation task. Our results show better
sensitivity with preservation of spatial resolution; i.e., activation
clusters align well with the gray matter structures in the visual
cortex. The spatial resolution of the activation maps is even high
enough to easily identify a voxel that is very likely to be caused
by the draining-vein effect.

Index Terms—functional magnetic resonance imaging, para-
metric hypothesis-driven statistical test, general linear model,
wavelet transform, Bonferroni correction, false discovery rate

I. INTRODUCTION

UNCTIONAL magnetic resonance imaging (fMRI) has

developed into a most versatile technique to map brain
activity, with many applications in both clinical and fundamen-
tal neurosciences. The backbone of a typical fMRI experiment
is the stimulation protocol, the design of which needs to be
adapted to the neurological question to answer. The subsequent
fMRI data analysis is hypothesis driven and directed towards
finding evidence in the spatio-temporal dataset for the presence
of a stimulus-related response [1]. Typical fMRI analysis tools
deploy general linear models to extract parametric maps that
are then subjected to statistical hypothesis testing. In order
to be sound statistically, the hypothesis testing procedure
has to be corrected for the fact one is performing multiple
comparisons. This issue is important due to the abundance of
voxels to be tested. In order to control the global (family-wise)
false positives rate, one can apply the so-called Bonferroni
correction. This procedure is foolproof statistically, but it is
often too conservative because it does not take into account
the spatial correlation that is present in these data.
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A popular alternative method for dealing with the multiple
comparisons problem is thresholding based on Gaussian ran-
dom field theory (GRFT) [2], [3], which is implemented in
many software tools; e.g., the Statistical Parametric Mapping
(SPM) approach [4], [5]. The key component of GRFT is the
preprocessing of the data by smoothing. It has the advantage
of improving sensitivity, albeit at the risk of losing spatial
resolution.

Data-driven methods that do not (or only partially) rely on
prior knowledge have been proposed as well. The most popular
ones are subspace methods, such as principal components
analysis [6] and independent component analysis [7]-[9]. Next
to revealing unmodeled trends, they can also be used to
denoise fMRI data by stripping components.

The wavelet transform [10] is a powerful tool that has also
found its way into biomedical signal and image processing,
including fMRI data analysis; several overviews are avail-
able [11]-[15]. Within the context of parametric mapping,
the multiresolution and energy compaction properties of the
wavelet transform are advantageously exploited to “statisti-
cally denoise” the activation maps by thresholding the wavelet
coefficients [16]-[18]. One of the difficulties associated with
such probabilistic shrinkage is how to map the statistics back
into the spatial domain in order to be able to declare a
particular voxel active. Some proposed solutions include the
application of an ad-hoc threshold (e.g., a percentage of the
maximal signal level or of the estimated noise level [16]) or
re-testing in the spatial domain without taking into account
the effect of the initial test in the wavelet domain [19]).

In our recent work [20], [21], we have proposed the wavelet-
based statistical parametric mapping (WSPM) framework that
combines adaptive denoising of the parametric maps in the
wavelet domain with statistical testing at the voxel-level. The
type I error rate is controlled by Bonferroni correction, which
guarantees high specificity. At the same time, we reported
comparable sensitivity and lesser spatial bias than SPM [21].

False discovery rate (FDR) is another appealing solution
to the multiple comparisons problem [22], [23]. The basic
principle is to control the expected proportion of false pos-
itives; i.e., to become more permissive on the number of false
positives when more voxels are declared active. This method
has enjoyed a large success in a variety of areas, including
neuroimaging [24]. In principle, it can be combined with any
of the aforementioned methodologies. Most notably, Raz [25],
[26] deployed the FDR principle for the coefficient-wise
testing in the wavelet domain. Srikanth et al. [27] estimated
the FDR based on statistical resampling [28]; their method
aims at a spatial-domain threshold after wavelet denoising.

As we shall see in this paper, we can also apply the
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FDR principle to the WSPM framework, but it requires some
specific adaptation. For instance, we need to take into account
the fact that statistical testing in WSPM is based on a bound
for the null hypothesis rejection probability, meaning that
we do not have direct access to the voxels’ p-values. The
main difficulty is that WSPM relies on the interplay of two
thresholds (in the wavelet and spatial domains, respectively),
the optimal values of which depend on the desired significance
level. We show that these obstacles can be overcome and that
it is theoretically possible to control FDR; in practice, this can
be implemented by a simple (and fast) iterative scheme. Our
experiments demonstrate that the FDR procedure enhances the
sensitivity of WSPM, while retaining its intrinisic high-spatial
resolution.

The paper is organized as follows. In Sect. II, we briefly
review the discrete wavelet transform. Next, in Sect. III,
we highlight the main elements of wavelet-based methods:
the general linear model, coefficient-wise thresholding in
the wavelet domain, and the spatio-wavelet framework. In
Sect. IV, we briefly revisit the FDR principle and we adapt
this strategy to WSPM. Finally, we demonstrate the feasibility
of our approach in Sect. V for experimental data of an event-
related visual stimulation task.

II. THE DISCRETE WAVELET TRANSFORM

The discrete wavelet transform (DWT) is a powerful tool for
multi-resolution signal analysis [10], [29]. The transform of a
signal v(z) is a basis decomposition into a sum of shifted and
dyadically-scaled versions of the (bandpass) wavelet functions
1 and the scaling function ¢. Mathematically, we write

v(x) =

Jw —
27 ey, [Klp2 vz — k)

k
+ Z 22261
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for a decomposition of .J, levels. The residual after J,
decomposition levels is represented by the integer shift of
the (lowpass) scaling function ¢(2~7»x — k). The lowpass
coefficients and detail (or wavelet) coefficients are given by

cnlll = (vO.27Fe@ T —R), W
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respectively. The analysis functions ¢ and ¢ are the du-
als of ¢ and 1; they satisfy the biorthogonality property
<L/J(2j - —k1,0(27 - —k3) ) = Ok, _k,. In practice, the coeffi-
cients are calculated using a fast iterated filterbank algorithm.
In multiple dimensions, the transform can be applied in
a separable way, leading to 2V¢ — 1 different tensor-product
wavelets in N4 dimensions. We use the shorthand notation

x) = Y vo Kt (x), 3)
k

where v,,[k] can be both lowpass or wavelet coefficients at
all different scales and orientations, and where 1y denote the
corresponding basis functions, irrespective of their type.

P(2x — k),

III. WAVELET-BASED FMRI DATA ANALYSIS

We review the various elements for wavelet-based
hypothesis-driven analysis of fMRI data. First, we describe the
general linear model (GLM) and voxel-wise statistical testing.
Next, we summarize the essential properties of the wavelet-
based analysis methods.

A. The General Linear Model

An fMRI dataset v[n;t] consists of a sequence of slices
or volumes, where n € Z3 and t = 1,..., N, are the 3-
D spatial and temporal indices, respectively. For each voxel,
we also introduce a time-series vector of length N: v[n] =
[v[n; 1]...v[n; N]]T. In the parametric approach, the temporal
behavior of a voxel is described by a GLM that is fitted to the
data [4]. Specifically, one describes the model as

v[n] = Xy[n] + e[n], for each n, 4)

where X is the N x L design matrix that contains the L
regressors, y is the L x 1 parameter vector, and e[n] is the
(random) error.

Given the observed data v[n], the classical least-squares
estimate of the parameters of the GLM is given by y[n] =
(XTX)~!XTv[n]. This estimate is optimal provided that the
error component is independently and identically Gaussian dis-
tributed. The corresponding residual is €[n] = v[n] — Xy[n].
Next, the information of interest is extracted from y[n] by a
contrast vector c. At this stage, we obtain two scalar values
for each voxel:

un] = c'yn], (5)
[ JTemlc" (XTX) " e. (6)

Under the null hypothesis (only noise), the contrast variable
u[n] and its estimated variance s%[n]/J, follow a Gaussian
and a x? distribution (with J = N; — rank(X) degrees of
freedom), respectively [1], [30].

Now, hypothesis testing is performed to determine whether
or not the contrast of interest for the voxel n is significant;
that is, if the mean value is zero or above:

Ho : Efun]] =0, (7
Hi Elu[n]] > 0.

s’n] =

Under the null hypothesis, the test statistic, derived from u[n]
and s2[n],
u[n]
s2[n]/J

follows a normalized Student ¢ distribution with J degrees of
freedom. We control the type I error (false positive rate) at
a = Prob[t > 7], which leads to the null hypothesis rejection
(and thus detection of activation) when t[n] > 7.

In fMRI data analysis, hypothesis testing is applied to a
large number of voxels, which increases the global type I
error. An easy, but very conservative, solution is Bonferroni
correction: the significance level of an individual test is
maintained at ap = «/V, where « is now the desired global
type I error, and V is the number of tests (typically, the number
of intracranial voxels). This correction guarantees strong type

t[n] = , ®)
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I error control, but it often reduces sensitivity as it does not
take into account the spatial correlation between voxels, which
is potentially present in fMRI data [31].

B. Wavelet Processing by Coefficient-Wise Testing

Following the lead of Ruttimann er al [16], [32], the
complete hypothesis testing framework can be conveniently
transposed into the spatial wavelet domain'. Since then,
the method has been refined and extended by many other
researchers [17], [33]-[35]. In the present setting, we apply
the linear model (4) to the time-course of every coefficient
(after applying the spatial wavelet transform to each volume
v[n; t]). The coefficient-wise GLM then reads

vy k] = Xy, K] + eu[k], for each k, )

where the vector v,,[k] is formed out of the wavelet coeffi-
cients v,,[k;t]. The estimation process is essentially the same
as before: regression weights and residual are obtained as
Vuwlk] = (XTX)"'XTv, [k] and €,[k] = v, [k] — Xy, (K],
respectively. The contrast of interest is then extracted as

u(k] = c'yulk], (10)
s2[k] = er[kle,klc"(XTX) e (1)

The hypotheses of (7) are modified into
Ho : FEluylk]] =0, (12)

Hi : Eluylk]] #0.

The test is two-sided because the contribution of a wavelet
coefficient to the reconstruction of a given voxel can be either
positive or negative. The coefficient-wise statistical testing
then evaluates the ¢-value of each wavelet coefficient:

= el

wlK] = .

Swlk]/ Nai
The test procedure checks whether [t,[k]| > 7, with @ =
Probl[|t| > 7]. The wavelet coefficients w,,[k] that survived

the test can then be reconstructed as

13)

i) =) | H(|tuwk]| = 7) uu[k] gu(m),  (14)
« i
where H(t) is the Heaviside step function defined as
0, when t <0,
H(t) = { 1, otherwise. (5)

The number of coefficients that is tested in the wavelet
domain is at least equal to the number of tests in the spatial
domain. Again, Bonferroni correction can be applied by setting
the false positive rate (for an individual test) to «/V, where V'
corresponds to the number of intracranial voxels. (The latter
is approximately equal to the number of intracranial wavelet
coefficients.) Due to the decorrelating properties of the wavelet
transform, Bonferroni correction should be closer to optimal.

IThe wavelet transform is performed along the spatial dimensions.

C. WSPM Approach: Wavelet Processing Followed by Spatial
Testing

The specificity of WSPM? is to combine wavelet domain
adaptive denoising with voxel-wise statistical testing in an
integrated fashion [20], [21]. The spatio-wavelet framework
uses Bonferroni correction for multiple hypothesis testing, thus
ensuring strong type I error control. We give a brief overview
of the different steps of this method.

Here too, wavelet coefficients w,,[k] are hard thresholded
based on the comparison |t,[k]| > 7,. As opposed to
coefficient-wise testing, the threshold 7, is not obtained as the
result of a statistical test, but kept as a general parameter of the
algorithm. After reconstruction of @[n] from the thresholded
coefficients, we perform a hypothesis test in the spatial domain
to determine whether the voxel n is activated and thus has a
non-zero mean:

Mo : Eli[n]] =0,
My, - E[dn]] > 0.

(16)
a7

The main result of the integrated framework [20] is that the
statistical test amounts to checking whether or not @[n] >
7sA[n], where 75 is the threshold in the spatial domain and
A[n] is the reconstruction of the values s,[k]/v.J by a
modified inverse DWT algorithm:

A=Y 51“}“]‘] (n)]

The probability of a false detection under the null hypothesis
can be bound as

Prob [a[n] > 15A[n]] < Y (1w, 7s) = ap,

(18)

19)

where Y(7y, 7s) = mingso F[(1 4+ a(&r, — 75))+] is a data-
independent function of the parameters 7, and 7,5, with
(z)+ = max(0,z). Here, &, follows a truncated normalized
Gaussian distribution and ¢ a y-distribution with J degrees
of freedom, see [20]. The bound can be chosen equal to
ap, the desired significance level after Bonferroni correction.
However, there is an infinite number of combinations (7, 7s)
that yields the same probability bound ap. In [20], we
proposed the solution that minimizes the worst-case error
between the unprocessed (u[n]) and detected parameter map,
to be equivalent to minimizing the sum 7, + 75, subject to
Y(7w,7s) = ap. For Ny > 50, as is typically the case for
fMRI, the threshold can be determined as

Tw = \/—W,l(—27ra23), Ts = 1/Tw,

where W_1 is the —1-branch of the Lambert W-function; it is
the inverse of the function f(W) = W exp(W).

The WSPM toolbox also includes a couple of further
extensions [21], such as spatial bias reduction and combining
multiple transforms for improved shift-invariance. For simplic-
ity, we consider the original framework as summarized here.
However, the results of this paper can readily be adapted to
these extensions as well.

(20)

2This approach has been implemented as a toolbox for
SPM2/SPM5, called “WSPM: Wavelet-Based SPM”, and is available
at http://bigwww.epfl.ch/wspm.
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IV. FALSE DISCOVERY RATE FOR WSPM
A. The Principle of FDR

Although controlling the family-wise type I error rate has
an easy interpretation (i.e., we have a chance « of finding
any false positive in the whole volume), it is often considered
as being too conservative. FDR is a popular alternative that
controls the proportion of false positives to total positives [22].
One attractive feature is that is maintains the same type I
error rate as Bonferroni correction when there is no more than
one detection; hence the so-called “weak type I error control”
property. Mathematically, FDR is defined as the expectation

Dp

FDR = E[ o) } ,

where Dy is the number of false positives and where D is

the total number of positives. For D = 0, the FDR is defined

as 0. Keeping the FDR at a desired fraction o corresponds to

allowing on average for D false positives. In practice, the
FDR can be controlled by the observed proportion

21

D E[Dp|D =i (@)
B|2r|p | = ERAD =1 9V g
D i i
where p(9, i = 1,...,V, are the sorted p-values, and D = i
the total positives. Therefore, keeping FDR< « requires
@0 <& 23
P sy (23)

This insight leads to the so-called “step-up procedure” for
controlling the FDR:

1) The elements to be tested are sorted according to in-

creasing p-values.

2) The index i is determined by the largest p-value p(*) for

which p() < ia/V.

3) The FDR threshold 7' can be determined by p(¥ =

Prob[t > T].

The standard FDR approach assumes test statistics that are
positively dependent [23]; this is satisfied when noise is Gaus-
sian and nonnegatively correlated—a reasonable assumption
for fMRI datasets [24]. In the other case, one can add a factor
(szl 1/k)~1 to the righthand side of (23) to compensate for
the dependency between voxels [23].

The FDR principle has already been applied to the
coefficient-wise hypothesis testing scenario of Sect. III-B
by [18], [25], [26], but not yet to WSPM, which requires some
special adaptation.

B. FDR for WSPM

The WSPM framework is based on a bound for the null
hypothesis rejection probability, and consequently it does not
give direct access to the p-values of the voxels. In addition, the
two thresholds—r,, and 7,—are distinct and they even vary
in inverse proportion. However, the significance level « of the
thresholding procedure @[n]/A[n] > 7, is clearly an upper
bound for the true p-value of a detected voxel. Therefore, we
define the “critical p,-value” as the bound when the voxel just
survived the procedure, that is, p, = Y(7y,,7s) for which we
have @[n]/An] = 7.

The FDR procedure can now be based on the critical p,-
values. First, we sort the voxels according to increasing pff),
with associated thresholds (75}'), Ts(i)). Controlling the FDR at
« requires to find the largest index ¢ for which the following
equation holds

P = T(r) 0y < i (24)

v
Note that the FDR is bounded by considering the critical p.-
values, even if the order of the voxels for increasing (unknown)
p-values, p(*), would be different from pgf). Indeed, pSf) also
bounds p®: _
p® <p® 1=1,.. . (25)
Retrieving the critical thresholds (7'15,1 ), Ts(i)) for every voxel
would be a tedious task. However, there is a monotonous
relationship between critical p.-values and number of voxels
that survived testing; i.e., when the significance « increases,
the number of detected voxels increases as well.
This observation allows us to deploy the following iterative

procedure to find the FDR threshold:

1) The thresholding procedure is applied using the thresh-
olds (7, 7s) according to the significance level o with-
out Bonferroni correction. This would correspond to the
most permissive case of FDR thresholding where every
voxel would be detected, i = V.

2) The number of detections 7 is determined to establish
the type I error rate ice/V that is equivalent to FDR at
«. The updated thresholds (7, 7s) are obtained and the
thresholding procedure is re-applied.

3) Step 2 is repeated until convergence.

V. EXPERIMENTAL RESULTS
A. Synthetic Data

We generated a synthetic fMRI dataset that allowed us to
study the behavior of the methods for varying signal-to-noise
ratio (SNR) and feature size. To that aim, we generated the
2-D zoneplate image according to the formula

% <1+cos (\/;N(xf—kx%))) ,

where 21,29 = —%,—%,...7% — 1. Next, the image is

thresholded at 0.75 to create fine structures. Finally, the
contrast’s intensity is multiplied in the top-down direction by
a linear ramp. The final contrast image is shown in Fig. 1 (a),
for N = 128. We generated 60 images with Gaussian noise
of mean 8 and standard deviation 1 and added the contrast
image modulated by the block paradigm of Fig. 1 (b); i.e.,
3 consecutive on and off blocks of 10 scans. This way, we
obtained a synthetic 2-D dataset with varying SNR (top to
bottom) and feature size (excentricity).

Data processing was performed using SPM2 software’.
Smoothing was performed for 3 pixel units FWHM for GRFT-
based analysis. The exact generative model of the block
paradigm was entered into the GLM. For WSPM, the 2-D
separable linear orthogonal B-spline wavelet transform [36]

3 Available at: http://www.fil.ion.ucl.ac.uk/spm/
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Fig. 1. (a) Contrast image and (b) design matrix that are used for generating
the synthetic dataset.

with two decomposition levels was applied. With WSPM,
statistical maps are reported as 7,,+@[n]/A[n] for those voxels
that survived testing [21]. As a reference point, we also applied
the voxel-wise GLM approach to non-smoothed data.

In Fig. 2 (a), we show the results for SPM at 5% FWE,
overlaid on the original contrast image in grayscale. The fine
features towards the border of the image are not well resolved
due to the effect of smoothing. Similarly, when applying SPM
at 5% FDR, in Fig. 2 (d), the sensitivity increases but only
the large rings at the center are well separated. The results
for WSPM are shown in Fig. 2 (b) and (e) for 5% Bonferroni
and 5% FDR, respectively. While the lower threshold 7, for
WSPM-FDR increases the number of wavelet coefficients to
be included in the reconstruction, close comparison of (b) and
(e) reveals that this effect does not only lead to more detected
voxels, but also to more refined patterns. Finally, the results
for the voxel-wise GLM approach, in Fig. 2 (c) and (f), show
the beneficial effect of FDR. However, the continuity on the
rings is much less conserved because spatial correlation is not
exploited.

B. Measured Data

We conducted a single-subject fMRI study (healthy vol-
unteer, right-handed male, 31y) at the Geneva University
Hospital on the Siemens Magnetom TrioTim 3T scanner. The
anatomical data was acquired by an MPRAGE T1 scan (coro-
nal orientation, TR 2.5s, TI 1.1s, 224 slices, Imm thickness,
in-plane resolution: 0.9mm x 0.9mm). The functional data was
acquired by EPI T2* scans (axial orientation, TR/TE=1s/30ms,
435 scans, 16 slices, Smm thickness, in-plane resolution:
1.9mm x 1.9mm). Visual stimulation was applied in an event-
related paradigm: different images were short-flashed during
500ms with fixed inter-stimulus time (17.5s); during rest a
small cross-hair was shown in the middle of the field-of-view
to retain the subject’s attention.

Again, data processing was performed using SPM2, in-
cluding realignment and 6mm FWHM smoothing (for GRFT-
based analysis). The GLM contained temporal and dispersion
derivatives to cope with subject-dependent variations of the
hemodynamic response function. Temporal correlation was
taken into account by SPM’s autoregressive model. In this
study, we only focus on the combined contrast that extracted

the regressor related to any image stimulation; in total, there
were 24 visual stimuli.

The wavelet transform can be applied in multiple dimen-
sions. However, while fMRI data consist of a series of 3-D
volumes, we applied the transform in 2-D slice-by-slice due
to the rather large slice thickness. We used the orthogonal
B-spline wavelet transform of degree 1, with a single decom-
position level. The same GLM and temporal modeling as SPM
are deployed by WSPM to extract regressor weights.

We analyzed the behavior of WSPM as a function of the sig-
nificance level. In Fig. 3 (a), we plot the number of detections
for various significance levels, together with the associated
threshold values 7,, and 7. The vertical lines indicate the
5% significance with and without Bonferroni correction. We
note that the number of detections decreases monotonously
as the significance goes up. The wavelet threshold 7,,, which
is applied to wavelet-domain ¢-values, is most influenced by
varying signifance, while the spatial threshold 7, decreases
only slowly. A more interesting way to interpret these results
is in the form of the p-p plot of Fig. 3 (b). We convert the
number of detections ¢ into the equivalent type I error ia/V
for FDR, and plot these versus the significance level of the
test that should be (very close) to the critical p.-value. The
FDR threshold can now be determined by intersecting this
plot with the identity. We also indicate the trajectory of the
iterative procedure that we proposed: the initial significance
level is chosen a without Bonferroni correction. Using the
observed number of activations, we can adapt the significance
level for the type I error rate equivalent to FDR «. As can
be observed, the procedure quickly converges (typically 2—4
iterations) to the FDR threshold.

Next, we investigated the statistical parameter maps using
SPM; the results are shown in Fig. 4 and are overlaid on
the anatomical reference slices (left hemisphere on the left
according to neurological convention). The effect of smoothing
is clearly apparent from the blobbiness of the activation
clusters. The smoothing kernel was set at 6mm FWHM, which
is the minimally recommended amount to ensure the validity
of the GRFT threshold [2]. Switching to FDR thresholding
using SPM clearly improves the sensitivity in the visual cortex,
but also brings along many detections in more anterior regions
that are less likely to be stimulus-related.

In Fig. 5, we show the results for WSPM. In Fig. 5 (a),
although we use strong type I error control (Bonferroni
correction), the sensitivity is comparable to SPM: almost any
cluster detected by SPM can be found also in the WSPM map,
but with finer spatial detail. The proposed FDR thresholding
significantly improves the sensitivity. Most activation clusters
do not simply grow isotropically as in Fig. 4 (b); instead
they tend to extend along the gray matter structures in the
visual cortex up to the anterior part of the calcarine sulcus.
Also note the fine-detailed cluster near the lateral ventricle and
occipital posterior horn (+5mm, indicated by the white arrow
in Fig. 5 (b)), which is smoothed over the tissue borders in
the SPM maps. Another interesting activation cluster is the
fusiform gyrus (—20mm, indicated by the green arrows in
Fig. 5 (b)), which plays an important role in object catego-
rization [37]. As a point of comparison, we also show the
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(d) (e) ()

Fig. 2. Results for the synthetic dataset. (a) 5% FWE for SPM, (b) 5% Bonferroni for WSPM, (c) 5% Bonferroni for GLM. (d)-(f) 5% FDR for (d) SPM,
(e) WSPM, (f) GLM.
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number of detections
threshold values
ordered p,-value
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significance level (individual test) ia/vV
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Fig. 3. (a) Number of detections and threshold values as function of the significance level « of the individual hypothesis test. The number of detections
monotonously decreases as the confidence gets larger. The vertical lines indicate the 5% significance level without correction for multiple comparisons (——)
and with Bonferroni correction (- - -), respectively. (b) The p-p plot: the critical p-values as function of the relative number of detections. The dashed line
indicates the FDR. The horizontal lines correspond to uncorrected and Bonferroni corrected significance levels. The trajectory of the iterative algorithm to
find the FDR threshold is also shown.
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Fig. 4. Results using SPM. (a) 5% FWE. (b) 5% FDR.

Results using WSPM. (a) 5% Bonferroni correction. (b) 5% FDR.

Fig. 6. Results using GLM with non-smoothed data. (a) 5% Bonferroni correction. (b) 5% FDR.
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result for GLM with non-smoothed data in Fig. 6. The result
after Bonferroni correction in Fig. 6 (a) show the reduction
in sensitivity. It is interesting to observe that applying FDR
thresholding improves sensitivity to a comparable level as
WSPM with Bonferroni correction (see Figs. 6 (b) and 5 (a)).
We now focus on the strong peak in slice —10mm, which
seems to fall in between the hemispheres when observing the
anatomical reference (see Fig. 7). While the peak spreads out
in the SPM map, WSPM preserves a fairly isolated voxel.
Moreover, we also tested the data for the significance of
“negative dispersion”, which answers the question “does the
voxel’s timecourse corresponds to a (temporally) more dis-
persed response?” The SPM and WSPM maps for this contrast
are shown in Fig. 7 (c¢) and (d), respectively. The WSPM
map shows a small isolated cluster, which might suggest
that signal from an underlying draining vein dominates the
voxel’s timecourse—a known and important artefact in fMRI
acquisitions [38]. In Table I, we list the contrast and t-values
for the main and dispersion contrasts of three adjacent voxels.
At the same time, we also plot the underlying time-courses in
Fig. 8. For WSPM, which relies on the unsmoothed data, the
BOLD response of voxel 1 is very strong (almost 10% with
respect to baseline) and dispersed, but remains well isolated.
Notice that voxel 3 even shows a (non-significant) negative
response. For SPM, smoothing contaminates the neighboring
voxels 2 and 3 and lowers the response’s strength of voxel 1.
These elements reinforce our suspicion that the voxel captures
the response from a draining vein. This effect would be
difficult to observe from the smoothed maps and data.

VI. CONCLUSION

Since wavelet-based statistical parametric mapping is per-
formed on non-smoothed data, it usually produces parametric
maps that contain fine spatial resolution. In its original form,
WSPM is based on strong type I error control using Bonferroni
correction. Here, we introduced the FDR principle for WSPM.
Although the p-values cannot be obtained directly, we showed
that the FDR threshold can still be retrieved by a simple
iterative scheme. We observed that the sensitivity of FDR-
thresholded WSPM maps increases significantly. At the same
time, the obtained maps allow to resolve thin spatial patterns.
In our experimental results, the in-plane spatial resolution was
still relatively low (1.9mmx 1.9mm). Consequently, we used
only a single decomposition level. Increasing the number of
decomposition levels did not improve on the results.

High-spatial-resolution parametric mapping in fMRI is es-
pecially relevant for single-subject studies; e.g., for retinotopic
mapping or object categorization in the visual cortex and
associative regions [37]. Moreover, the advent of high-field
MRI scanners and dedicated surface coils also increases the
availability of high-resolution data. An important collateral
effect of SPM smoothing is the decrease of inter-subject
variability, which improves the results on the group level. By
contrast, WSPM is more sensitive to individual differences.
Therefore, group-level WSPM analysis should pay particular
attention to normalization; e.g., using landmark-based regis-
tration for the cortical areas under investigation.

The proposed FDR thresholding procedure is included in
the latest available version of the WSPM toolbox.

ACKNOWLEDGEMENTS

The authors like to thank Dr. Frangois Lazeyras and
Dr. Stéphane Simon for the fMRI acquisition. This work was
supported by the Swiss National Science Foundation (MU)
under Grant 200020-109415 and by the Center for Biomedical
Imaging (DVDV) of the Geneva-Lausanne Universities and the
EPFL, as well as the foundations Leenaards and Louis-Jeantet.

REFERENCES

[1] P. Jezzard, P. M. Matthews, and S. M. Smith, Functional MRI an
introduction to methods, Oxford University Press, 2001.

[2] K. Worsley, S. Marrett, P. Neelin, and A. Evans, “Searching scale space
for activation in PET images,” Human Brain Mapping, vol. 4, no. 1,
pp. 74-90, 1996.

[3] J. Poline, K. Worsley, A. Evans, and K. Friston, “Combining spatial
extent and peak intensity to test for activations in functional imaging,”
Neurolmage, vol. 5, no. 2, pp. 83—96, 1997.

[4] K. J. Friston, A. P. Holmes, K. J. Worsley, J. P. Poline, C. D. Frith, and
R. S. J. Frackowiak, “Statistical parametric maps in functional imaging:
A general linear approach,” Human Brain Mapping, vol. 2, pp. 189-210,
1995.

[5] R. Frackowiak, K. Friston, C. Frith, R. Dolan, and J. Mazziotta, Human
Brain Function, Academic Press, 1997.

[6] K. J. Friston, C. D. Frith, P. F. Liddle, and R. S. J. Frackowiak,
“Functional connectivity: the principal component analysis of large (pet)
datasets,” J. Cereb. Blood Flow Metab., vol. 13, pp. 5-14, 1993.

[7]1 M. McKeown, S. Makeig, G. Brown, T. Jung, S. Kindermann, A. Bell,
and T. Sejnowski, “Analysis of fMRI data by blind separation into
independent spatial components,” Human Brain Mapping, vol. 6, pp.
160188, 1998.

[8] C. Beckmann and S. Smith, “Probabilistic independent component
analysis for functional magnetic resonance imaging,” IEEE Transactions
on Medical Imaging, vol. 23, no. 2, pp. 137-152, Feb. 2004.

[9] T. Adali and V. D. Calhoun, “Complex ICA of brain imaging data,”

IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 136-139, sep

2007.

S. Mallat, “A theory for multiresolution signal decomposition: The

wavelet decomposition,” [EEE Trans. Pattern Anal. Mach. Intell., vol.

11, pp. 674-693, 1989.

M. Unser and A. Aldroubi, “A review of wavelets in biomedical

applications,” Proceedings of the IEEE, vol. 84, pp. 626—638, 1996.

A. Laine, “Wavelets in temporal and spatial processing of biomedical

images,” Annual Review in Biomedical Engineering, vol. 2, pp. 511-550,

2000.

E. Bullmore, J. Fadili, M. Breakspear, R. Salvador, J. Suckling, and

M. Brammer, “Wavelets and statistical analysis of functional magnetic

resonance images of the human brain,” Statistical methods in medical

research, vol. 12, no. 5, pp. 375-399, 2003.

E. Bullmore, J. Fadili, V. Maxim, L. Sendur, B. Whitcher, J. Suckling,

M. Brammer, and M. Breakspear, “Wavelets and functional magnetic

resonance imaging of the human brain,” Neurolmage, vol. 23, pp. S234—

$249, 2004.

D. Van De Ville, T. Blu, and M. Unser, “Surfing the brain: An overview

of wavelet-based techniques for fMRI data analysis,” IEEE Engineering

in Medicine and Biology Magazine, vol. 25, no. 2, pp. 65-78, 2006.

U. Ruttimann, M. Unser, R. Rawlings, D. Rio, N. Ramsey, V. Mattay,

D. Hommer, J. Frank, and D. Weinberger, “Statistical analysis of

functional MRI data in the wavelet domain,” [IEEE Transactions on

Medical Imaging, vol. 17, no. 2, pp. 142-154, 1998.

F. E. Turkheimer, M. Brett, J. A. D. Aston, A. P. Leff, P. A. Sargent,

R. J. Wise, P. M. Grasby, and V. J. Cunningham, “Statistical modelling

of positron emission tomography images in wavelet space,” Journal of

Cerebral Blood Flow and Metabolism, vol. 20, pp. 1610-1618, 2000.

M. J. Fadili and E. T. Bullmore, “A comparative evaluation of wavelet-

based methods for multiple hypothesis testing of brain activation maps,”

Neurolmage, vol. 23, no. 3, pp. 1112-1128, 2004.

Z. Fu, Y. Hui, and Z.-P. Liang, “Joint spatiotemporal statistical analysis

of functional MRI data,” in Proceedings ICIP, 1998, pp. 709-713.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]



SPECIAL ISSUE J-STSP — REVISED MANUSCRIPT (FAHBM.103)

Fig. 7.

(b)

(d) WSPM (5% FDR).

TABLE I
ZOOM-UP OF THE CONTRAST AND ¢-VALUES OF THE NEIGHBORHOOD NEAR THE PEAK VOXEL AT SLICE —10MM. VOXELS THAT DO NOT SURVIVE

(d)

Results for the posterior part of slice —10mm. Main effect: (a) SPM (5% FDR); (b) WSPM (5% FDR). Negative dispersion: (c) SPM (5% FDR);

STATISTICAL TESTING ARE INDICATED BETWEEN PARENTHESES.

SPM WSPM 12
1 2 3 1 2 3 I
main effect  contrast 21.6 198 16.1 56.0 18.7 -5.09 Lm
t-value 13.0 124 102 || 731 510 (-3.74)
dispersion contrast || 21.5 19.3 145 320 147 -0.13
t-value 586 545 4.16 588 543 (-5.04)
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Fig. 8. Time-courses of the voxels listed in Table I, extracted from (a) the smoothed data as used by SPM; (b) the unsmoothed data as used by WSPM. The
time-courses are plotted relative to the baseline, which is extracted as the signal’s average. From top to bottom: voxels 1, 2, 3.
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