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ABSTRACT

Brightfield microscopy often suffers from limited depth of
field, which prevents thick specimens from being imaged en-
tirely in-focus. By optically sectioning the specimen, the in-
focus regions can be acquired over multiple images. Extended
depth of field methods aim at combining the information from
these images into a single in-focus image of the texture on
the specimen’s surface. The topography provided by these
methods is limited to a map of the selected in-focus image
for every pixel and is inherently discretized, which limits its
use for quantitative evaluation. In this paper, we propose a
joint texture and topography estimation, based on an image
formation model for a thick specimen incorporating the point
spread function. The problem is stated as a least-squares fit-
ting where the texture and the topography are updated alter-
nately. The method also acts as a deconvolution operation
when the in-focus image has some blur left, or when the true
in-focus position falls in-between two slices. The feasibility
of the method is demonstrated with simulated and experimen-
tal results.

1. INTRODUCTION

The limited depth of field of conventional brightfield micro-
scopes is an important shortcoming when the specimen’s pro-
file covers more than the system’s depth of field. For such
thick samples, which are often stained, the visible informa-
tion is restricted to the texture that appears on the surface.
Due to the limited depth of field, only parts of the sample
appear in focus and sharp, while other regions remain out-of-
focus and are blurred by the system’s point spread function
(PSF). A common solution is “optical sectioning”; i.e., a se-
ries of images is acquired by gradually changing the focus,
which moves the specimen through the focal plane. Extended
depth of field (EDF) algorithms facilitate the visualization and
analysis of the specimen’s texture by combining the in-focus
information from multiple images into a single image that is
entirely in-focus.
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From this point on, we refer to the visible information
on the specimen’s surface as the texture, and to the surface’s
profile as the topography. Most EDF techniques concentrate
on the recovery of the texture only. Nevertheless, accurate
information on the specimen’s topography could turn out as
valuable additional information for the microscopist; e.g., for
quantitative measurements such as surface area estimation of
particular regions identified from the texture, or for 3-D visu-
alization using “texture mapping”.

Many EDF methods have been proposed in the literature;
an overview can be found in [1, 2]. Almost every method
boils down to three essential steps: (1) application of a high-
pass filter slice-by-slice, (2) energy measurement in the local
neighborhood around a pixel (i, j) in every slice, (3) selec-
tion of the slice with maximum energy as the in-focus po-
sition for the position (i, j). A popular and computation-
ally efficient approach is the variance method, which com-
bines steps (1) and (2) by computing the variance in a local
neighborhood. Another interesting class of methods are based
on multi-resolution decompositions [3] such as the wavelet
transform [4, 5]. By applying the wavelet transform to ev-
ery slice, one automatically performs high-pass filtering at
different resolutions. This approach avoids the choice of a
fixed local neighborhood. The selection of the in-focus slice
is performed in the wavelet domain too; i.e., at every resolu-
tion level. In the end, these EDF methods mainly yield the
texture, while the topography is only a map of the selected
in-focus slice for every pixel. By construction, such a topog-
raphy contains unrealistic “staircase” effects.

In this paper, we propose a joint texture and topography
estimation, which is based on a physically-inspired image for-
mation model. Specifically, we express the signal as the con-
volution between the texture mapped onto a thin surface layer
that follows the topography, and the PSF of the system (cf.
Sect. 2). In Sect. 3, we present our reconstruction algorithm
that minimizes the quadratic error between the model and the
measurements by alternate optimization of the texture and the
topography. Compared to standard EDF techniques, the to-
pography is not limited to discretized values anymore since it
can change in a continuous way to maximally match the mea-
surements. Furthermore, the estimation of the texture also
acts as a deconvolution operation, in the case when a resid-
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ual blur remains at the in-focus position, or when the true
in-focus position falls in-between two slices. Compared to
classical deconvolution, the texture estimation is better con-
ditioned since the whole image stack contributes to its esti-
mation. In Sect. 4, we discuss several useful PSF models
and propose an empirical Gaussian PSF that can be useful
for many practical cases. Finally, the proposed algorithm is
demonstrated in Sect. 5 and experimental results are shown.

2. IMAGE FORMATION MODEL FOR THICK
SPECIMENS

We propose to model the sample o(x, y, z) as a 3-D surface,
described by its topography p(x, y), onto which the texture
f(x, y) is mapped. Mathematically, we write

o(x, y, z) = f(x, y)δ(z − p(x, y)), (1)

where the Dirac distribution represents the thin surface.
The image formation and acquisition process is modeled

as the convolution between the object and the microscope’s
3-D PSF, h(x, y, z), followed by sampling to obtain the stack
of images:

s̃(i, j, k) =
∑

u,v∈S2

f(u, v)h(i − u, j − v, k − p(u, v)), (2)

where S2 is the 2-D support of the texture.

3. EXTENDED DEPTH OF FIELD

We propose a least-squares approach to jointly estimate the
topography and the texture; i.e., we want to minimize the er-
ror function

ε(f, p) =
∑

i,j,k∈S3

(
s(i, j, k) − s̃(i, j, k)︸ ︷︷ ︸

e(i,j,k)

)2

, (3)

where S3 is the 3-D support of the measured image stack s.
For this purpose, we apply a two-step optimization method
that alternately updates the texture and the topography, as il-
lustrated in Fig. 1. We denote the texture and the topography
at the τ -th iteration as f (τ) and p(τ), respectively.

3.1. Texture estimation

Given the initial or previous estimation of the topography, we
estimate the texture by minimizing the error function (3) with
respect to f :

f (τ+1) = arg min
f

ε(f, p(τ)). (4)

This minimization is achieved by performing a steepest de-
scent on ε with respect to the texture f(m, n). The par-
tial derivatives ∂ε/∂f(m, n), easily obtained by applying the

Texture
estimation

Topography
estimation

Fig. 1. Schematic representation of an iteration from the two-
step optimization method.

chain rule, are given by

∂ε

∂f(m, n)

= −2
∑

i,j,k∈S3

e(i, j, k)h(i − m, j − n, k − p(τ)(m, n))

= −2
(
e ∗ hT

)
(m, n, p(τ)(m, n)),

where ·T stands for the spatial transpose; i.e., hT (i, j, k) =
h(−i,−j,−k).

The gradient descent update step then consists of

fupdate(m, n) = f(m, n) − α
∂ε

∂f(m, n)
, (5)

where the factor α > 0 controls the strength of the update; its
optimal value is obtained by performing a line search. Start-
ing from f (τ), several subiterations (5) are performed to fi-
nally obtain a new estimate of the texture f (τ+1).

3.2. Topography estimation

Next, the topography can be updated using the latest texture
estimate f (τ+1). Similarly, we minimize the error function
with respect to the topography:

p(τ+1) = arg min
p

ε(f (τ+1), p). (6)

The partial derivatives ∂ε/∂p(m, n) can be also be obtained
using the chain rule as

∂ε

∂p(m, n)

= 2f(m, n)
∑

i,j,k∈S3

e(i, j, k)hz(i − m, j − n, k − p(m, n))

= 2f(m, n)
(
e ∗ hT

z

)
(m, n, p(m, n)),

where hz corresponds to the partial derivative of the PSF with
respect to z. Notice that the signal model s̃(i, j, k) inside the
error term e(i, j, k) depends on the texture f (τ+1).

Then, the gradient descent update step for the topography
is

pupdate(m, n) = p(m, n) − α
∂ε

∂p(m, n)
. (7)

The subiterations are started from p(τ) and result in p(τ+1).
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Fig. 2. Simulated acquisitions can be generated using the im-
age formation model, i.e., by convolving a texture mapped
surface with a 3-D PSF.

3.3. Some remarks

The algorithm requires an initial estimation of the topography.
In our experiments, a simple initialization of the topography
at a constant level worked well in all cases.

It should be noted that a limited number of subiterations
for the steepest descent optimization are satisfactory. Indeed,
the main importance is to improve the estimation of the tex-
ture (respectively, topography) after which the topography
(respectively, texture) needs an update again anyway.

After each full iteration, the average update of the topog-
raphy seemed to be an appropriate stopping criterion for the
algorithm.

Interestingly, the current method can also be interpreted
within the context of maximum-likelihood; in particular, the
expectation-maximization (EM) algorithm. The expression of
the likelihood can be obtained after adding a noise component
to the signal model of (2). For additive white Gaussian noise,
maximizing the likelihood is then identical to the minimiza-
tion of (3). For the solution by the EM algorithm, the texture
represents the quantity to be estimated while the topography
corresponds to the hidden state. In the E-step, the texture is
updated given the current hidden state. In the M-step, the hid-
den state is updated for the new texture.

The concept can also be made more sophisticated by
adding prior constraints on the topography and/or the texture,
and considering an augmented regularized least squares (or
MAP) criterion.

4. THEORETICAL PSF MODELS

The algorithm presented above is independent of the type of
PSF model used. If required, it is therefore possible to use
a highly accurate theoretical model that takes into account
spatial non-stationarities and aberrations, such as the scalar
model proposed by Gibson and Lanni [6]. Since models such
as this one are usually formulated for a single wavelength,
they must be integrated over the spectrum of the light source
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Fig. 3. Result of the estimation on a simulated data set.
(a) The topography used to generate a stack of images.
(b) The topography recovered by our two-step optimization
method. Discontinuities in the topography are well handled
by the algorithm.

used. In modern brighfield microscopes, the light source is
well balanced over the visible spectrum, which means that the
PSF needs to be uniformly integrated over the interval of visi-
ble wavelengths. The result of this integration is essentially a
smoothing effect; in fact the xy-sections of a white-light PSF
closely resemble Gaussians. Since a Gaussian PSF model is
computationally much more efficient than its more complex
counterparts (at each iteration of the topography estimation,
the PSF needs to be recomputed for every point), it is there-
fore advantageous to fit a Gaussian model to the real PSF’s
parameters and to use the former for computations. A good
approximation can be obtained with a model of the following
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form:

h(x, y, z) =
1

2π(c + |z|)2 exp
(
− (x2 + y2)

2(c + |z|)2
)

, (8)

where c is a small constant. The simulations in the remaining
sections of the paper were performed using this model.

Here it is important to mention that brightfield micro-
scopes use Köhler illumination, which is designed to uni-
formly illuminate the sample, independently of the position
of the focus. In order to take this into account, the PSF needs
to be normalized such that the energy within each xy-section
is identical.
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Fig. 4. Result of the joint texture and topography estimation
on a biological specimen. (a) An optical section in which the
focused and blurred regions are clearly visible. (b) The fused
EDF image. (c) The estimated topography of the specimen.

5. RESULTS

To validate our algorithm, we generated simulated acquisi-
tions using the object and image formation model; i.e. by
applying the non-stationary convolution of (2) (see Fig. 2).
This provided us with a ground truth for both the texture and
the topography in order to assess the quality of the estimation.

An example is given in Fig. 3; a set of 6 optical sections was
generated and used to estimate the topography, which was ini-
tially set to a constant value of 3. The result after convergence
closely matches the ground truth, and the discontinuity is re-
markably well preserved.

Finally, we tested our approach on a set of acquisitions
of a biological specimen (see Fig. 4). We estimated the tex-
ture and topography from 15 optical sections of a segment
of mouse intestine. The results clearly reveal the heap-like
structure of the sample. The random behavior at the border
of the topography is explained by the absence of any in-focus
information for that region in our acquisitions.

6. CONCLUSION

We have presented a new approach for extended depth of
field, where both the texture and the topography of the spec-
imen are estimated. By applying this joint optimization to a
stack of optical sections of a specimen, we have shown that
the topography can be accurately recovered, without the dis-
cretization artifacts present in existing methods. We demon-
strated the validity of the approach on simulated data sets
that were generated with a known topography, and obtained
promising results on a set of experimental acquisitions.
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