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ABSTRACT

We use B-spline functions to define a family of sequence-
n . . . .
spaces S included in the finite energy and discrete space

L. We derive invariant filters that operate on finite energy

signals to output their least square approximations in S;.
We obtain results on the convergence of the various filters to
the ideal discrete lowpass filter providing the link with
Shannon's sampling theorem. As an application, we derive

pyramidal representations of signals that can be implemented

with fast algorithms and compare these representations with
the Gaussian/Laplacian pyramid which is widely used in
signal processing and computer vision. - .

INTRODUCTION

Typical application of B-spline functions in signal
processing have been in magnification or minification [1],
image coding and reconstruction [2]. Most of the early work
dealt with exact interpolation problems where the interpolant
agrees precisely with the signal samples. Less attention has
been devoted to non-exact interpolation techniques which are
relevant to noisy signals and the problem of under-sampling
for minimum error data compression. An exception to this is
the work by R. Hummel who constructs a general theory
about sampling, reconstruction, and optimal filtering that is

based on least square approximation [3]. More recently, .

Mallat [4], used polynomial spline functions to construct
some examples of muln—resoluuon pyrarmds usmg a wavelet
rcprcscntatlon . ‘

BEST APPROXIMATION IN THE SPACES S,

We define discrete spaces Sy, included in the space of

square summable discrete sequences Ip:

8 i={v: v(k)=_26(i)b;(k-mi),Vk'ez,celg, eV

=-00

where b;(k) := B%(k/m) and where B7(x) is the B-spline
function of order n [5]. The signal v(k) is a sampled
polynomial spline of order n with a knot spacing of m.
Thus, n represent a smoothness constraint while m is a scale

index representing the coarseness of the signals in S;.
Moreover, the spaces S:‘ are closed sub-spaces of 12=Sg '
and have the property that for n odd, if m2=k m1 (m1,m2.k
positive integer) then S,:IZS Snr:z. This property, however,
does not hold for n even.

The least square approximation ofa signal s(k) in 'S,r,‘l is
obtained by ﬁltering as described in the following theorem.

Theorem 1. The least square approxxmanon in S fa

signal sely is given by: o
v=his[ ¥ ]m ' : @
¥,= [Apsslim | SON

where h is a discrete spline interpolator with an expansion
factor m (i.e. ¥ = [§1ym) [6] and where h is the optimal
pre-filter needed before the discrete cardinal-spline
mtcrpolator h . Their expressxons are ngcn by ’

hi:=brx[(bp) l]fm BRI @
f2 ;’=[([b,‘:;*b;‘n]¢m)-1]Tm*[b‘l‘]f,;_;b;‘,; G

In effect the approx1manon is obtained using a pre—
filtering followed by an under-sampling and then an \
interpolation as illustrated in Fig. 1. The proof of the
theorem is given at the end of this paper.

" CONVERGENCE PROPERTIES

o o]
The convcrgcncc properties of the pre-filter hn and the

interpolator h which are stated in the following theorems
and corollancs prov1dc the link betwecn the discrete version
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of the classical Whittaker-Kotel'nikov-Shannon sampling
. " n
theorem [7] and the least square approximation in S“,"

on
Theorem 2. The Fourder transforms of the pre-filter hy,
converge pointwise a.e. to an ideal discrete lowpass filter as
n tends to infinity ¢

1 1fl<1/2m

lim ﬁ::l(ﬁ= Rect,(H=31/2 1 f1=1/2m ©)

. n—ee

0 1/2m<ifl<1

¢]

Moreover, H:, converge to Recty(f) in Ly(~1/2, +1/2) asn
goes to infinity .

Theorem 3.  For n odd, the Fourier transforms of the -

. n . . . .
interpolators H, (f) converge pointwise a.e. to an ideal
discrete lowpass filter with gain m as n tends to infinity :

lim H:l ) = mRecty(®

n—3e0

Moreover, H,, converge to m Recty, (£) in Ly(~1/2, +1/2)

as n goes to infinity .

o
Corollary 1. The impulse responses h:, converge in I to the
discrete sinc filter as n tends to infinity.

Corollary 2. For n odd, the interpolator h:, con'\'zerges inly

to the ideal sinc interpolator with gain m, as n tends to -

infinity.

Figure 2 illustrates the convergence of the Fourier

o
transforms of hy, and hp, to the ideal discrete low-pass
filters. o

MULTI-SCALE REPRESENTATIONS K

A multiresolution-pyramid representation consists of -
several versions of the signal at different resolution levelsin
which the low resolution levels are described by fewer

samples than the high resolution counterparts [4, 8]. They
are commonly obtained by iteratively applying a filter and a
down-sampler to produce the pyramid layers. As an
application of our results, we derive the spline pyramid that
minimizes the loss of information occuring when a discrete
signal is approximated by a coarse resolution one. Using
equs. 1-5, we obtain the representations of a signal s(k) with

a factor of compression between two consecutive levels -

equalto2 (m=2}):

272

<

r oy
Tge1) = ij*y(jﬂ)

Y = [ﬁ;""i(j)]iz : (7

~ Soon
Xy = 021%Fg)

O

n n . o
where K,j and 0,j are convolution operators and are given
by: :

koj =(ti+1) 1y . ®)

0 = (b?)‘l*(bb'l* [b;j*b;jﬂ] 12 )

and where ty, is given by (14). A drawback to this multi-

resolution representation is that the filters k;j and ogj of the
first and third equation in (7) depend on the resolution level
(j). On the other hand, the second equation of (7) is
independent of the resolution level and is precisely the one
that defines the first pyramid level for the representation of
the signal 'i(j). This observation suggests the alternative
step-wise optimal multi-resolution representation:

[ [} - -
Sy = [N2%5G) )12 _
(10)
$(0) = 8§
The question of how the step-wise optimal algorithm (10)
compares with the optimal algorithm (7) is partially
answered by the following theorem.

Theorem 4. The Fourier transforms of the filters k,r:\ and 0:;
converge pointwise a.e. to a discrete pass-all filter as n tends
to infinity :

lim Kah=1 aefe(-1/2,12)
tl‘i_n)}; Ot ®=1 ae. fe(-112, 172)

Moreover, K}, and Op, tend to 1 in Ly(~1/2, +1/2) as n

goes to infinity,

AN EXPERIMENT

As an experiment, we use the "Women" image (Fig. 3) to

compare the step-wise optimal spline pyramid (10) (SOSP)

with the Laplacian pyramid (LP) of Burt and Adelson’
developed for compact image coding [8]. Fig. 3 shows the

difference-image pyramid for the SOSP representations and
the LP with the same intensity scaling to facilitate the
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comparison. Each level in the.differcnce-image pyramid

consists of the difference between the image at a given level
and its interpolated version at the next level. For this
experiment we have chosen the values n=3 and j=1,2,3.
Table 1 gives the signal to noise ratios SNR [9] associated
with the full resolution approximation h;j*[’ﬁ'(i)]ﬂj together
with the standard deviation or root mean square error
(RMS), the entropy and the range of the difference-image.
The SNRs for the representation obtained by the SOSP
algorithm are better than the ones obtained by the Laplacian
pyramid. As a matter of fact, the SNRs for the step-wise
optimal representations at a given level (i) are comparable to
the ones at level (i-1) for the LP representation. This
improvement can be advantageously applied to progncsswe
" image transrmssxon and compact unage codlng '

PROOF OF THEOREM 1

Since S:l is a closed subspace of the Hilbert space 12, the

least square approximation ¥ is given by the orthogonal

projection of s onto S:,. Hence, the error § - s is orthogonal
. t0Sh. In particular, because of the definition (1), the error

is orthogonal to bl () and all of its shifted versions w1th
shift factors that are mtcgcr multiples of m:

(('{ -9, bm(k-lm)>2—0 VieZ (D

where ( )2 denotes the usual 1, inner product and where -

Tk)= Z?(x)bm(k—ml) isin S

im-c0
Usmg the lmcanty propcrty of the inner product and the
fact that ¥ isin Sm, we rewnte (11) to get: -

(s.bn0cim)); =

=-OO #

Equation (12) can be expressed as thc convolun'on equation:

[s+b, ]Lm(l)— (ff*[bm*b ] lm)(l) e @
The operator tm(l) | eI | :
ta:= [bm"‘bm]Lm(l) S . 5 ; g (14)

has finitely many non-zero valucs and deﬁnes a bounded
linear operator from I, into itself. It can be shown that

( tm)'l(l) exists and decays exponcntlally fast as lll—o0 [10].

Thus, (tm) 1) is absolutely summable and hence defines a
bounded linear operator from 1, into itself. Therefore, the

operator t:,(l) has the bounded inverse (t::,)'1 that we use
together with (13) to obtain the approximation 7
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23(1) (bm(k-lm)bm(klm))z,VIEZ R (12:)v

¥ =bos[e]tm -

= b [ty sy lum [t

= b [ [Tt Trmsbpss]ym [ m s)

" where in the last equality of (15), we have used the
functional equality:

as[b]ym= [[alpmsblym . . . . 0 (16)

-Using the functional equality (16), the fact that
albsclm=aslblpmslclm (D)

and the idendty (bx;*(b’;)‘l)(k) = §y(k) (where the existence

of (b;')’1 follows from [10]), we manipulate (15) so as to

exhibit a term that is a pure interpolator glveu by (4), we
obtam

= b;* [[[(t:l)'l]'rm*[b?]fm*b:l*s]lm*(_b;)'l]Tm
= b:l*[(b;‘)'l]Tm* [[[(t:‘)'llm* [b?]fm*b;:*s] ‘Lm] tm

=hn*[ [ﬁn*s]lm]‘rm' . ' (18)

where h is glven by (5)
Similarly to Hummel [3], we can mtcrpret h to be the

optimal pre-filter needed before the interpolator hm
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Flg "1: Schematic rcpresentatlon of the opcrauon for the least
square approxunanon in S
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(B) Interpolators

(A) prefilters
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Fig. 2: Fourier transforms of some least square spline filters.
(A) Prefilters FHy(® - - -, Ha® (~-) and H®)
(Continuous ﬁnc). (B) interpolators H;(t) ---), H;(f) (-===-)
and H(f) (Continuous line).

Fig. 3 : Error images between two consecutive levels of the ©

SOSP pyramid and of the Laplacian pyramids for the
"Women" image O. (A1-A3): error/difference images of the
Laplacian pyramid. (B1-B3): error/difference images of the
SOSP pyramid. :

Pyramidlevel |  Range RMS Entropy SNR (dB)
- LP-1 (-80, 85) 11.75 5.0 23.70
LP-2 (-69, 64) 12.27 539 19.44
LP-3 - (-60, 52) 14.98 - 5.85 16.48
SOSP-1 (-57, 78) 6.66 435 28.63
SOSP-2 (79, 76) 12.24 532 23.00
SOSP-3 | (.73, 109) 16.21 5.90 19.50

Table 1 : Comparison of performance measured at
successive pyramid levels for the "Women" image.
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