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wtrere bfi1g := Fn(k/m) and where Bn(x) is the B-spline
function of order n [5]. The signal v(k) is a sampled
polynomial spline of order n with a knot spacing of m.
Thus, n represent a smoothness constraint while m is,a scale

index representing the coarseness of the signals in S[.
Moreover, the spaces Sl are closed sub-spaces of 12=S[
and have the properry that for n odd, if rZ=k ml (m1,m2,k

positive integer) then Sj1= Sjr. Ttfs property, however,
does not hold for n even.

The least square approximation of a signal s(k) in Sl is
obtained by filtering as described in the following theorem.

Theorem 1. The least squarc approximation in S| of a
signal se 12 is given by:

s=h**[ s,]1^ Q)

r-= [fi[*s]1- (3)

where h| is a drscrete spline intelpolator with an expansion

factor m (i.c. 3-= tflJ-) t6l and where frfi it tft" optimal

pre-filter needed before the discrete cardinal-spline

interporator hl. Their expressions are given by:

h]:= bL*[(b]-tlr. (4)

fi l =[(ul.ul]1,-)'rl p* [bi]p* b[
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ABSTRACT

We use B-spline functions to define a family of sequence-
spaces S| included in the finite energy and discrete space
12. We derive invariant filters that operate on finite energy
signals to output their least square approximarions in S|.
We obtain results on the convergence of the various filten to
the ideal discrete lowpass filter providing the link wirh
Shannon's sampling theorem. As an application, we derive
pyramidal representations of signals that can be implemented
with fast algorithms and compare these representations with
the Gaussianrlaplacian pyramid which is widely used in
signal processing aad computer vision. . .

INTRODUCTION

Typical application of B-spline functions in signal
processing have been in magnification or minification [],
image coding and reconsrucrion [2]. Most of the early work
dealt with exact interpolation problems where the interpolant
agrees precisely with the signal samples. I*ss attention has
been devoted to non-exact interpolation techniques which are
relevant to noisy signals and tfri problem of under-sampling
for minimum error data compression. An exception to this is
the work by R. Hummel whO constructs a general theory
about sampling, reconstnrction, and optimal filtering that is
based on least square approximation [3]. More recontly,
Mallat [4], used polynomial spline functions to construct
some examples of multi-resolution pyramids using a wavelet
reprcsentation," : : . '. 

',

BEST APPROXIMATION IN THE SPACES S:

We define dlscrete spaces S| iucluded in rhe space of '
square sunrnable discrete sequences 12:

In effect, the approximation is obtained using a pre-
filtring foito*eO 

-Uy 
an under-sampling and then an

interpoiation as illustrated in Fig. 1, The proof of the

theorem is given at the end of this paper.

CONVERGENCE PROPERTIES

Thc convcrgence properucs ofthc pro-filter fil ana tne

interpolator hi which are stated in the following theorems
and iorollaries provide the link between the discrete versionI
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of rhe classical Whittaker-Kotel'nikov'shannon sampling

theorem Fl and the least square approximation in Sfi'

Theorem 2. T\eFourier transforms of the pre-filter fi]
converge pointwise a.e. to an ideal discrete lo$Pass filter as

n tcnds to infinity :

lim filtO = Rect^(fl =

1'lf l<ll?m
1t2 ttl=rl2m
O 1l2m < lf I < 1

3'6*11 = k|*9titl

16*r; = tf,l*lglr,
i.6i = ofi*r61

1y = [fii*!61]s,

(7)

Moreover, fi] "ont"rg" 
to Rectr(f; in tr2 ?112, +lf2) as n

goes to infinity.

Theorem 3. For n odd, thc Fourier Eansforms of the

interpolators Hltg conn".ge pointwise a.e. to an idoal
discreto lowpass filter with gain m as n tends to infinity :

S H;(0= mRectm(g

to*ou." H[ converge to m Rector(f) inl+(-\t2, +ll2)
as n goes to infiniry .

Corollary 1. Thg impulse responses fi|.onrrrg. in12to the
discrete sinc filter aj n tends to infinity.

Corollary 2. For n odd, the intelpolator h| converges in 12

to the ideal sinc interpolator with gain m, as n tends to
infinity.

Figwe 2 illustrates the convergerrce of the Fourier
t -rior*, ot fi] and h] to the ideal dissete low-pass
filters.

MULTI-SCALE REPRESENTATIONS

A multiresolution-pyramid representation consists of
several vcrsions of the signal at different resolution lcvels in
which the low resolution levels are described by fewer
samples than the high resolution counte{pafis [4, 8]. They
are commonly obtained by iteratively applying a filtcr and a
down-sampler to produce the pyramid layers. As an
application of our results, we derive the spline pyramid that
minimizes the loss of information occuring when a discrete
signal is approximated by a coarse resolution one. Using
equs. 1-5, we obtain the representations of a signal s(k) with
a factor of compression between trro consecutive levels
equal to 2 ( m=2 ):

(o)=s

where kf; antl oi; are convolution operators and are given
by:

k]; ltli*ry-l* $ (8)

o$ = qb)-r*1u)-t* [ui.ui;,,]iri (e)

ancl where { is given by (1a). A drawback to this multi-
resolution rep,resentation is that the filters k| and o| of tho
first and third equation in (7) depend on the resolution level
0). On the other hand, rhe second equation of (7) is
independent of the resolution level and is precisely the onc
that defines the first pyramid level for the representation of
the signal i61. This observation suggosts the alternative
stepwisc optimal multi-resolution reProsentation:

{:;
(r0i

The quesrion of how the step-wise optimal algorithm (10)
compares with tho optimal algorithm (7) is partially
answered by ttre following theorern-

Theorem 4. The Fourier transforms of tho mters kl, and o|
converge pointwise a.e. to a discrete pass-aU filter as n tends
toinfmity:

s" ol,O = t a'e. te(-1t2, tiz)

Moreover, Kfi and Ofl ten<l to I in 4eU2, +112) as n
goes to infinity.

AN EXPERIMENT

As an erperiment, we use the "Women" image (Fig. 3) to
compare the step-wise optimal spline pyramid (10) (SOSP)
with thc Laplacian pyramid (LP) of Burt and Adelson
developed for compact irnage coding [8]. Fig. 3 shows tbe
difference-image pyramid for the SOSP representations and
the LP with the same intensity scaling to facilitate the

(6)
n-)4

_D

$1 K| 19 = t a.e.feern,i;rt2])
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c(k):

comparison. Each level in the difference-image pyramid
consists of the difference between the image at a given level
and its interpolated version at the next level. For this
experiment we have chosen the values n=3 and j=1,2,3.
Table 1 gives the signal to noise ratios SNR t9] associated
with tho fuU resolution approximation hii*tfli1l1zj togerher
with the standard deviation.or root mean square error
(RMS), tho entropy and thc ralge of the difference-imago.
The SNRs for the representation obtained by the SOSP
algorithm are bener than the ones obtained by the Laplacian
pyramid. As a matter of fact, the SNRs for the step-wise
optimal representatrons at a given level (i) are comparablo lo
the ones at level (i-1) for the LP representation. This
improvement can be advantageously applied to progrcssive
image ransmission and compact image coding.

PROOF OF THEOREM I
Since S| is a closed subspace ofthc Hilben space 12, the

least square approximation f is given by the orthogonal
projection of s onto S|. Hence, the error 3 - s is orthogonal

to S]. n panicular, because of the definition (l), the error
is orthogonal to b|1t1 and all of its shifted versions with
shift factors that are integer multiples of m:

(tt - s)(k) , ulg-r'r,l)2= o,vrezL (11)

where (.,.)2 denotes the usual 12 inner product and where
+6sr
Ze<iFltt-'oi) is inSl.
i=+ :

Using the lineariry prgperty of the inner product and the

fact that 3 is in S], werewnte (11) to gen '

(r,ult-ml)2= ' :

Equation (12) can bc cxpressed as the convolution equation:

ls*bllr-0)=1c1tuj,.nltr*)0) , ,. ' (13)
jj

The operator f,0):
'lr

tfig;:=tOfi*ulh-Ctl i.: l, '_,. ' ' (14)

has finitely many non-zero values and defines a bounded
linear operator from 12 into itself. It can be shown that

(tl)-l(l) exiss and dccaysixponentiallyfast ut 111-'1- [10J.

fnus, (tl)-10) is absolutely summable and hence defines a
bounded linear operator from 12 into itself. Therefore, ths

operatoi *0) Ur thc bounded inverse (tlll tnat wc usc

togetherwith (13) to obtain the appioximation 9:

c - bl*[c]r* , .' ;

= nfl* [ttlrt*Js*u]ls-] p

= nfi*[tt<tlt-t1p,*b[*s]i*]1* , (15)

wherc in the last equality of (15), we have used the
functional equaliry:

.l
ax[b]1m=[[a]p*b]trm ,,. . , (16)

Using the functional equality (16), the fact that

a*[b*c]1^= a*[b]1n*[c]p (17)

and the identity (Ul-<Ot-t)ftl = 6o(k) (where tho existence

of 1bl)-r foilows from [10]), we manipulate (15) so as to
exhibit a term that is a pure interpolator gtveu by (4), we
obtain:

r = ufl * [tt<tl;'rlpx[bi]p*bn*sl1-*(b]'r ] p
= u|,*11u)-t;p* [t rrt)r1p*[bi]1-*b]*sl s*] p

= hl.*[ [fi]*sl1-lp
Ob

where h- is given by (5).

Similarly to Hummel [3], we can interpret fi] to ue ttre
optimal pre-filter needed before the interpolator hl .

s(lc)
-(k)

{k) r(k)

fig. t: Sctrematic representation of the opention for the least

square approximadon in SL. l
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Fig. 2: Fourier transforms of some least square spline filters.
(A) prefilters rilttf C - -), ril(O 1---1 aaa dl19
(C.ontinuous line). @) intcrpolators ffjcO C - -1, HIO C--l
ana Hj(0 (Continuous line).

Fig, 3 : Error images between two consecutivc levels of the :,

SOSP pyramid and of the Laplacian pyramids for the
"'Women" image O. (A1-A3): enbr/Oiffereice images of the
Laplacian pyramid, (B 1-83): error/difference imales of the
SOSP pyramid.

(A) prefilters @) Interpolators

Pgmidl*el Rmge RMS Eflnopy sNR (dB)

LP-1 (€0.85) 1r.?5 5.r0 23.70
LP.2 (49- 64\ 12.21 5.39 19.44
LP-3 (-60.52) 14.98 5.85 16.48

sosP-l (-57.781 5.66 4.35 28.63
SOSP.2 G79.76) 72.24 5.32 23.00
sosP-3 (-73. 109) 16.21 5.90 19.50
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