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Abstract. In this paper, we provide an interpretation of polynomial spline interpolation as a continuous filtering process. We 
prove that the frequency responses of the cardinal spline filters converge to the ideal lowpass filter in all L f n o r m s  with 
1 ~<p < + ~ as the order of the spline tends to infinity. We provide estimates for the resolution errors and the interpolation 
errors of the various filters. We also derive an upper bound for the error associated with the reconstruction of bandlimited 
signals using polynomial splines. 

Zusammenfassung. In dieser Arbeit wird eine Interpretation der Polynom-Spline-Interpolation als kontinuierlicher Filterungs- 
prozeB vorgestellt. Es wird bewiesen, dab die Frequenzg~inge yon Cardinal-Spline-Filtern in allen L fNormen  mit 1 ~<p < oc 
gegen den idealen TiefpaB konvergieren, wenn die Ordnung der Splines gegen unendlich geht. Wir stellen Absch~itzungen fiir 
die Aufl6sungsfehler und Interpolationsfehler fiir verschiedene Filter vor. Es wird auBerdem eine obere Grenze fiir den Fehler 
im Zusammenhang mit der Rekonstruktion von bandbegrenzten Signalen mit Hilfe von Polynom-Splines hergeleitet. 

Resume. Dans cet article, nous proposons une interpretation de l ' interpolation B-spline en terme de filtres continus. Nous 
prouvons que les r6ponses fr6quentielles des filtres splines cardinaux convergent vers le filtre passe-bas id6al, et ceci dans toutes 
les normes Lp avec 1 ~<p < ~ ,  quand l 'ordre des splines tend vers rinfini. Nous donnons I'estimation des erreurs de r6solution 
et d' interpolation des differents filtres splines. Nous obtenons une limite superieure de l 'erreur associ6e & la reconstruction de 
signaux a bande limit6e par interpolation spline. 

Keywords. Shannon's  sampling theorem, cardinal spline filters, spline interpolation, bandlimited signal reconstruction, conver- 
gence rates. 

I. Introduction 

In signal processing, the classical interpolation 
method for bandlimited signals (which follows 
from the Whittaker-Kotel 'nikov-Shannon sam- 
pling theorem) is usually described as a convolu- 
tion with a sinc function which corresponds to 
filtering with an ideal lowpass filter [5]. An 
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alternative interpolation technique is the method 
of polynomial splines which is used in a variety of 
applications [9, 15, 17]. The purpose of this paper 
is to relate these concepts by (i) showing that the 
polynomial spline interpolation, for equally spaced 
data points, can also be interpreted as a shift invari- 
ant continuous filtering process, and (ii) studying 
the asymptotic properties of these filters. In the 
limit, the polynomial spline method tends to the 
classical sinc interpolation, a property that can be 
traced back to [14]. We will look at this issue from 
a new perspective by studying the rates at which 
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the spline interpolation filters converge to the ideal 
lowpass filter in the frequency domain. We will 
also investigate the rates at which the spline 
interpolation of the samples of a bandlimited signal 
converge to the signal when n tends to infinity. 

Polynomial spline interpolation problems can be 
effectively resolved by finding the coefficients of 
the B-spline basis functions. The determination of 
these coefficients for equally spaced data points is 
referred to as the cardinal spline interpolation 
problem [12, 13]. Hou and Andrews pioneered the 
use of cubic spline interpolation in signal process- 
ing applications. They showed that the reconstruc- 
tion part of the procedure is equivalent to applying 
a digital filter to the sequence of B-spline 
coefficients [4]. However, polynomial splines have 
not been very popular in the signal processing com- 
munity for two main reasons. First, the algorithm 
proposed by Hou and Andrews for the determina- 
tion of B-spline coefficients requires explicit and 
computationally expensive matrix operations. 
Second, there is a current incorrect belief that high 
order spline interpolation causes signal degrada- 
tion [7, 8, 11] ; this issue is further discussed in [16]. 
There are also a number of theoretical results in 
the mathematical literature that indicate that this 
cannot be the case. For instance, Schoenberg 
showed that the polynomial spline that interpolates 
a bandlimited function tends uniformly to the func- 
tion itself as the order of the spline goes to infinity 
[14]. Marsden et al. also proved that the corre- 
sponding approximation error tends to zero in all 
Lp-norms as the order of the spline goes to infinity 
[6]. De Boor et al. have established similar conver- 
gence results in higher dimensions [2, 3]; see also 
[101. 

It is only recently that the discrete version of the 
B-spline interpolation problem (e.g. zooming or 
signal magnification) has been recognized to be 
equivalent to a shift invariant filtering operation. 
Toraichi et al. derived the impulse response of the 
discrete quadratic spline interpolator [15]. They 
suggested a truncated approximation using a finite 
impulse response filter. More recently, Unser et al. 
considered the general case of discrete B-spline 
Signal Processing 
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interpolators of any order and provided simple 
mechanisms for the determination of their fre- 
quency and impulse responses. More important, 
they recognized the recursive structure of these 
operators and derived fast algorithms for the direct 
and indirect B-spline transforms [16]. They also 
found through numerical computation that the fre- 
quency response of the cardinal spline interpolator 
of order n approaches an ideal lowpass filter for 
increasing values of n. 

In this paper, we will build on these recent ideas 
and provide an interpretation of polynomial spline 
interpolation as a continuous filtering process. In 
Section 2, we derive the frequency responses of the 
cardinal spline interpolation filters and give a proof 
of their stability. We present the convergence 
results of the cardinal spline filters to the ideal low- 
pass filter in Section 3.1, and obtain error estimates 
for the resolution error and the interpolation error 
in Section 3.2. In Section 3.3, we get the rates at 
which the interpolants converge to their corre- 
sponding bandlimited signals as the order of the 
splines tends to infinity. A practical implication of 
these results is that high order spline interpolation 
can only improve signal reconstruction and that it 
is possible to determine an a priori value of the 
order of the spline for a given error tolerance. 

2. B-spline interpolation 

2.1. The discrete direct B-spline filters 

The continuous B-spline representation of order 
n of a discrete signal g(k) is obtained by finding 
the function g"(x) of the form 

/= +ct2 

g"(x) = ~ y[i]fl"(x-i) ,  (2.1) 

such that 

g"(k)=g(k) VkEY_. (2.2) 

The function /3" is the centered B-spline of order 
n; it can be generated iteratively by repeated convo- 
lution of a B-spline of order 0: 

/3"(x) = [30 */3"-l(x), (2.3) 
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where ri°(x) is the characteristic function in the recursive equations 
interval [ -  '2, 1 2), i.e., 

1, x e [ - ~ ,  ~), (2.4) 
ri°(x)= O, elsewhere. 

Both f ( x )  and ri"(x) are piecewise polynomial 
functions of degree n of class C" J(-  0% o¢). The 
polynomial segments are defined between all knot 
points and are joined together so that the interpol- 
ating function and its derivatives are continuous 
up to order n - 1 .  A general procedure providing 
fast algorithms for finding the expansion 
coefficients y[i] in (2.1) has been presented in [16]. 
The principle relies on the use of the discrete direct 
B-spline filter of order n which provides an efficient 
mean to solve the system of equations (2.1) (2.2). 
The transfer function (z-transform) of this opera- 
tor is given by 

S " ( z ) = ( B ~ ( z ) )  -~ = b"(k)z -k . (2.5) 
k /21 

We note that the filter coefficients can be derived 
iteratively for successive values of n through the 
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bn(k) := ri"(k) 

= n - ' ( k +  ½(n+ 1))c"- l(k) 

I I +n ( 2 ( n + l ) - k ) c "  J(k-1) ,  (2.6) 

1 
c"(k):=ri"(k + 2) 

- 1  =n (k + ~ 2(n+ 2) )b" - l ( k  + 1) 

+n 1 ( ½ n - k ) b " - l ( k +  1), (2.7) 

where, in (2.6) and (2.7), k~7/. 
We have previously discussed the issue of effi- 

cient implementation of these filters and studied 
the operators up to n=5  [16]. For higher order 
splines, however, the question remains whether 
these filters are stable or not and this point will be 
treated in Section 2.3. Using (2.6) and (2.7), we 
have computed the discrete B-spline bn(k), n = 

1 . . . . .  7. For reference, we give in Table 1 the 
transfer functions S n(z) of the corresponding direct 
B-spline filters together with their poles, which can 
be seen to be all negative and not to lie on the unit 
circle. 

T a b l e  1 

T r a n s f e r  f u n c t i o n s  a n d  p o l e s  o f  d i r e c t  B - s p l i n e  f i l ters  f o r  n = 0 t o  7 

n S"(z )  P o l e s  

0 1 

1 1 
8 

2 
z + 6 + z  

6 
3 

z + 4 + z  t 

3 8 4  
4 

f + 7 6 z + 2 3 0 + 7 6 z  ~+z 2 

120 
5 

z 2 + 2 6 z + 6 6 + 2 6 z  q + z  2 

4 6 0 8 0  
6 

7 

z 3 + 7 2 2 z  2 + 1 0 5 4 3 z  + 2 3 5 4 8  + 1 0 5 4 3 z  i + 7 2 2 z  2 + z 3 

5 0 4 0  

z 3 +  1 2 0 z 2 +  1 1 9 1 z + 2 4 1 6 +  l 1 9 1 z  l +  120z  2 + z - S  

{zl = - 3  +24'~, z2=zi II 

{z, = - 2  + v ' ~ ,  z 2 = z ;  '} 

{zl = - 0 . 3 6 1 3 4 1 ,  z2 = - 0 . 0 1 3 7 2 5 4 ,  z3 = z t  I , Z4=Z21 

{zt = - 0 . 4 3 0 5 7 5 ,  z2 = - 0 . 0 4 3 0 9 6 3 ,  z3 = zi i ,  z4 = z21 } 

{zl = - 0 . 4 8 8 2 9 5 ,  z2 = - 0 . 0 8 1 6 7 9 3 ,  z3 = - 0 . 0 0 1 4 1 4 1 5 ,  

Z 4 ~ Z / I  , Z 5 ~ 2  I , -76 ~ 2 3  I } 

{zl = - 0 . 5 3 5 2 8 ,  z2 = - 0 . 1 2 2 5 5 5 ,  z3 = - 0 . 0 0 9 1 4 4 8 6 9 ,  

- 7 4 = ~ / I  , Z 5 = Z 2  I , Z6 = ,.~31 } 
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2.2. Interpolation as a jiltering operation 

In this section, we present an interpretation of 
polynomial spline interpolation as a continuous 
filtering operation of the initial sampled signal 
values. First, we note that (2.1) can be written as 
a convolution : 

gw = (P” * Ys )(x)5 (2.8) 
where we use the notation r6 to represent the tem- 
pered distribution consisting of the train of 
weighted dirac delta impulses given by 

r6 (x) = +f r(k)6(x - k). (2.9) 
k=-n 

Since the B-splines are derived from the initial 
sampled values g&(x) through a shift-invariant 
filtering operation (the direct B-spline filter), we 
have that 

Ys (x) = (G * gg )(x), (2.10) 

where & (x) is the continuous representation of the 
impulse response of the discrete filter defined by 
(2.5). It is then straightforward to express the inter- 
polation function in terms of initial sample values : 

g”(x)=(P”*s”fi*gs)(x)=(17”*gs)(x), (2.11) 

where q”(x) = (p” * s;)(x) is the continuous 
impulse response of the cardinal spline filter of 
order n which we call the cardinal spline of order 
n. In the approximation theory literature, this func- 
tion is also commonly referred to as the fundamen- 
tal spline. This process is illustrated by Fig. 1. 

f(k) Direct y(k) Indirect ‘icx, 
* B-spline filter -----+ B-spline filter----) 

Fig. 1. Continuous filtering interpretation of a B-spline inter- 
polation of order n. 

Sgnal Processing 

From (2.3), we find that the Fourier transform 
of the B-spline of order n is given by 

B”(f >= 
n+l 

. 

(2.12) 

The frequency response of s:(x) is obtained from 
(2.5) by simply replacing z by ejzrrf: 

s 

+CC 
Sn(ejW) = sz (x) e-j211fX dx 

-% 

[n/21 
= p”(O)+ 1 2/Y(k) cos(27rf) (2.13) 

k=l 

It follows immediately that the frequency response 
of the nth order B-spline interpolator is 

s 

+cC 

H”(f )= n”(x) e-jznfX dx 
--r) 

jsin(7tf )y+’ 

\ nf J = 
[n/21 . (2.14) 

P”(0) + c 2PYk) coG%f > 
k=l 

Alternatively, we may also consider that s:(x) is 
the inverse of the indirect B-spline filter whose 
impulse response b”(k) is obtained by sampling the 
continuous B-spline function /Y(x). In the Fourier 
domain, sampling corresponds to the sum of a peri- 
odic repetition of the spectrum of the continuous 
function, which yields 

s 

+m +Cc 
B;(f )= C /l”(k)G(x - k) e-j2rrfx dx 

_~ k=-z.z 

= (2.15) 

Therefore, we have also that 

sin(7rf) 

( 1 

n+ ’ 

H”(f )= 
nf 

:;$I (sin(U,i))~+” 
(2.16) 

which is equivalent to (2.14). For illustration pur- 
poses, Fig. 2 displays B3(x), B3(f), q’(x) and 
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(a) 

1. 

0.8 

, 0.~ 

-2. 2. ~. -~. 

(b) 

1 
i 
2 

e,o", 

-~"'-'" - ' ~  "~',-, - 0 . 2  

o~°~" 

-0.4 

Fig. 2. Signals associated with the cubic spline interpolator. (a) Cubic B-spline, (b) Fourier transform of the cubic B-spline, (c) 
cardinal cubic spline, (d) Fourier transform of the cardinal cubic spline. The responses in dotted lines correspond to the ideal 

interpolator for bandlimited signals. 

H 3 ( f )  which are the main functions that arise in 
the context of cubic spline interpolation. It can be 
seen that the cardinal spline r/3(x) resembles a sinc 
function. The asymptotic behavior of the filters 
H ' ( f )  will be examined systematically in Sections 
3.1 and 3.2. 

2.3. Stability of  direct spline filters 

The stability of the discrete direct B-spline filters 
given by (2.5) can be deduced from the general 
existence theorem of Schoenberg [ 12, Theorem 1]. 
We have chosen here to present a simple and direct 
proof of this result that is solely based on their 
transfer function. These filters are symmetrical and 
their stability follows directly from the following 
proposition. 

PROPOSITION 1. The z-transform of the discrete 
direct B-spline filters has no pole on the unit circle. 

PROOF. We only need to prove that B] ' ( f )4 :0 ,  
Vf~[0, ½]. The expression for B T ( f )  in (2.15) can 
be simplified to yield 

i~+o~ (s in(xf ) ]  n+~ 
BT(f )  = ~ ( -1)  ~"+')~ 

, . . . . .  \ ~ /  " 

(2.17) 

For n odd the terms of the series (2.17) are all 
positive, and hence B T ( f )  is strictly positive. 

For n even we rewrite (2.17) as 

(s in0tf ) ]  "+' +(sinTf_ ))"+' 
B ' l ( f ) = \ ~ f  / 

x 2 ( -1) '  
i=t (f+-i) "+' ( i - f )  "+f " 

(2.18) 

For f~[0,  ½] the series in the second term of the 
right-hand side of (2.18) is alternating. The abso- 
lute value of its terms are monotonically decreasing 
to zero and its first term is positive, hence the series 

Vol. 28, No. 2, August 1992 



132 

is strictly positive. This together with the fact that 
sin(rtf) is non-negative and s in0tf ) /nf is  positive 
for fE[0,½] imply that B T ( f )  is strictly 
positive. [] 
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polynomial spline interpolation 
(Section 3.3). 

2.4. Extensions in higher dimensions 

Although all our results are presented for the 
one-dimensional case, they are directly applicable 
to higher dimensions through the use of tensor pro- 
duct polynomial splines [9]. The corresponding 
basis functions are simply obtained from the pro- 
duct of one-dimensional functions of the individual 
index variables. For image processing applications, 
this means that the corresponding interpolation 
algorithms are separable and can be implemented 
by successive one-dimensional processing along the 
rows and columns. 

There are also extensions using non-tensor pro- 
duct splines [1], but the computations and math- 
ematical derivations tend to be more involved. De 
Boor et al. give a comprehensive treatment of bi- 
variate cardinal spline interpolation on a three- 
direction mesh [2]. In particular, they prove that 
the two-dimensional box-spline analogue of the 
function B T ( f )  in (2.18) is strictly positive, from 
which they conclude that the corresponding inter- 
polation problem is well posed. These authors also 
provide convergence results for 2D box-splines that 
are analogous to some of our results for the univar- 
iate case described in Theorems 1 and 3, below. In 
1D, the situation is comparatively simpler and we 
will obtain a much wider variety of norm estimates, 
and hence stronger convergence results. 

of their samples 

3.1. Convergence to the ideal filter 

As a preliminary, we start by the following three 
Lemmas. 

L E M M A  1. The functions H n ( f )  converge point- 
wise to 1 Vfe(O, ½). Moreover, H " ( f )  converge to 
1 in Lp(O, ½) as n goes to infinity Ype[1, ~) .  

L E M M A  2. For n odd, the functions H " ( f )  con- 
verge pointwise to 0 Vfe(½, ~ ) .  Moreover, H " ( f )  
converges to 0 in Lp( ½, ~ ) as n goes to infinity 
Vp~[1, ~). 

L E M M A  3. For n even, the functions H " ( f )  con- 
verge pointwise to 0 Vfe (½, ~ ) .  Moreover, H " ( f )  
converge to 0 in Lp( ½, ~ )  as n goes to infinity 
Vpe[1, ~). 

As a corollary of these three Lemmas, we imme- 
diately get the following theorem. 

T H E O R E M  1. The Fourier transforms o f  the cardi- 
nal spline interpolators H " ( f )  converge pointwise 
to an ideal lowpass filter as n tends to infinity: 

t l, Ifl < ~, 

lim H " ( f ) = R e c t ( f ) =  -, [f[=½, 

" ~  L0, Ifl >½- 

Moreover, H " ( f )  converges to Rec t ( f )  in 
Lp(-oo,  + ~ )  as n goes to infinity Vp~[1, oo). 

3. Convergence properties 

The purpose of this section is to first show that 
the continuous cardinal spline filters H " ( f )  
approach the ideal filter as n goes to infinity. We 
then provide explicit estimates and convergence 
rates for the resolution error, approximation error 
(Section 3.2). Finally, we determine the rates at 
which bandlimited signals are recovered from the 
Signal Processing 

It should be noted that the convergences in the 
Lp-norms are stronger than the pointwise conver- 
gence. The reason is that the Lp convergence result 
can be interpreted in both the time and frequency 
domains. For example, L2 convergence in the fre- 
quency domain implies L2 convergence of the cor- 
responding time functions in the time domain 
(Parseval's identity). In fact, the result of Theorem 
1 implies that the cardinal spline interpolators /7" 
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converge to the ideal sinc interpolator in Lq-norms 
for all q in [2, +oo). 

With the help of (3.5) and (3.6), we use a convexity 
argument to estimate the value of U n ( f )  by 

PROOF O F L E M M A  1. Using (2.17), (2.16) can 
be simplified to yield 

(0, f integer and f #  0, 
/ 

/1, / = 0 ,  
J / i - - + ~  / \ n 1\ - -1  

k elsewhere. 

(3.1) 

We rewrite the series in (3.1) as 

D " ( f )  = 1 + U " ( f ) .  (3.2) 

where 

( ( i / f + l ) - " - t + ( i / f - 1 ) ,  1), 
i=l 

n odd, 
U " ( f )  = =+~ 

( - 1 ) ' ( ( i / f +  1 ) - " - ' - ( i / f -  1)-"- ' ) ,  
i 1 

n even. (3.3) 

For n even and f~(0,  ½), the series in (3.3) is 
alternating, the absolute values of its terms are 
monotonically decreasing to zero, and its first term 
is positive. Hence the series takes a strictly positive 
value. For n odd and f e (0 ,  1), the series is also 
positive since all of its terms are positive. Using 
these two facts, we can estimate I H O ( f ) -  II by 

0<  U n ( f ) 4 ( 1 / f +  1)-" 1 

+ ( 1 / f - 1 ) - n - ' + I + + I  . (3.7) 

For fa (0 ,  )2), all the terms of the right-hand side 
of (3.7) converge to zero as n goes to infinity which 
proves the pointwise convergence. To prove the 
second part of the lemma we only need to look at 
the Lp-norms of the terms on the right-hand side 
of (3.7). We raise the first term to the power p and 
integrate to get 

f0 fo ( l / f +  1)(~+1)pdf<. 3-(~+ I)P d f  

4<.3 (np+P)(2)-I. (3.8) 

Similar estimates for the other terms yield 

f0 f0 (1 / f -1 ) -~ '+ l )pd f<  " (2f)(n+ ')p d f  

<~2 J(np+p+ 1) -1, 

(3.9) 

(3.10) IO 
1/2 3---p2-~p + ]7 

II+t ~ df~< - - - ,  
nP(p + 1) 

ol/2li-V, df<<.Z-,(np+p+l) 1. (3.11) 

From the above estimates, we immediately deduce 
the second part of  the lemma. [] 

[U"(f)]  
] n ' ( f ) - l ]  <~U'( f ) .  (3.4) 

11 + U ' ( f ) l  

For f e (0 ,  ½) and l ~ n ,  we consider the two 
integrals: 

I + =  ( l + x / f ) - "  ' d x = f - ( 1 / f + l ) - " ,  (3.5) 
/1 

I - =  ( x / f -  1)-"-1 d x = - f ( 1 / f  - 1)-". (3.6) 
] 1/ 

PROOF OF L E M M A  2. For n odd and for 
f~ (~ ,  1), all the terms of the series (3.3) are posi- 
tive, hence we can estimate I H " ( f  )1 from above by 

1 1 )_ ,_ ,~<(2(1- f ) ) "+ '  
Ig"(f l l~< 1 + ( l / f -  2 

(3.12) 

Since f~(½, 1), the right-hand side of  (3.12) goes 
to zero as n tends to infinity. Thus ]Hn(f) l  tends 
pointwise to zero. 
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For 1 < k < f <  k + 1 and n odd, we can estimate 
IH"(f)[  from above by 

IH"( f )l 

~ < M a x ( ( k + - l ~ " + '  ( k + l - f )  "+')  

\ ( f )  , (f),,+l 

1 
~< (2f),,+~. (3.13) 

Since f >  1, H"(f)  tends pointwise to zero as n 
tends to infinity. 

To estimate the Lp-norm of H"(f), we use the 
inequalities (3.12) and (3.13) to get 

fl c iH,(f)[p df 
/2 

f (1/f- 1) dr+ (2f) df 
1/2  ~ 1 

~< 2-(p+ l) (np +p + 1) -1 + 2 -("+ l)P(np +p - 1) -~. 

(3.14) 

From inequality (3.14) the second part of  the 
lemma follows. [] 

Using the alternating and decaying properties of 
the series U~(f), we can estimate it from below by 

IU~(f)l)(1/f-  1) " ' - ( 2 / f -  1) - n - l  

>~(1/f-l) "-' (1 (1 - f ) " + ' ]  
t .+') 

(3.19) 

Using this inequality in (3.18) we get 

IHn(f)l<~3(1/f-1)"+l vf~(½, 1). (3.20) 

Inequality (3.20) immediately yields the pointwise 
convergence of H"(f) for f~(½, 1). 

For an integer k with 1 <k<f<k+ 1, we esti- 
mate IHn(f) l  from above by 

1 
IH"(f) l  ~< , , (3.21) 

IU2(f)lla-ll 

where a is given by 

I1 + UT(f)l  
a - (3.22) 

IUg(f)l  

PROOF OF LEMMA 3. For n even, we rewrite 
U"(f) in (3.2)  as the sum of two series as follows: 

U " ( f )  = UT(f)+ U'~(f), (3.15) 

where U7 and U~ are given by 
i = + o o  

gT(f)= • (-1)'(i/f+ 1)-"- ' ,  (3.16) 
#=1 

i +oo  

U ~ ( f ) =  • (-1)'+'(i/f-I) -"-'. (3.17) 
i - - 1  

We note that 1 + UT(f) is an alternating series 
with the absolute value of its terms monotonically 
decreasing to zero, hence it is positive and bounded 
above by 1 Vf>0. Moreover forf~(½, 1) the alter- 
nating series U'~(f) is also positive. Using these 
two facts we can estimate IHn(f) l  forf~(½, 1) by 

1 
IH"(f )l<~lg,~( f )l (3.18) 

Signal Processing 

As before, l + U ] ' ( f )  is positive and bounded 
above by 1 Vf > 0. The series U g ( f )  can be decom- 
posed into the sum of two series as follows" 

i = k  

U~(f) = Z (-1)i+'(i/f - 1)-"- '  
i = 1  

i = o o  

+ ~" ( - - 1 ) i + l ( i / f  - 1) " - ' .  (3.23) 
i = k + l  

For f~(1,  2), we can estimate U~(f) using the 
decomposition (3.23) by 

IU~(/)l  

~>(1 - l / f )  - " - '  + ( 2 / f -  1) - n - I  - -  ( 3 / f - -  1) - n - 1  

Sn+l ( s,n+,) r+, 
- -  -~ 1)n+ l >~(2_f).+~ 1 (3_f)~+~ ( f -  

• 3  ¢ ' n +  1 (3.24) ~ j  • 
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For an integer k with 2 < k < f <  k + 1, we estimate 
U~(f) using the decomposition (3.23) to get 

[ U ~ ( f ) l > ~ ( l _ f )  n , _ ( l _ ~ / k _ l t  ,, 1 

n 1 - - n -  I 

+ - 1  ( k + 2 _  
f \ f  

>~(f~k)-+ 1 1 ( f + l _ k ) , + l -  

_f)n+,)  fn+l (k+ 1 _ ~ y /  

, 1 (k+2 

~>f"+ ~ (3.25) 

Using (3.21) and the last two inequalities we can 
estimate IH"(f) [  by 

3 
IH~(f)l<--.(f),+l, 

for 1 < k < f < k +  1 and k integer. (3.26) 

Inequality (3.26) implies the pointwise convergence 
of H"( f )  for f >  1. To complete the proof of this 
lemma, we use (3.20) and (3.26) to get 

f /': iH~( f )~' df  
'2 

j/ <<.3 (1/f-1)~+')Pdf+3 (f)-~"+llPdf 
/2 

6 
~<--. (3.27) 

np 

[] 

3.2. Rates of convergence to the ideal 
lowpass filter 

The rates of convergence of the cardinal spline 
filter to the ideal lowpass filter can be used to pro- 
vide a quantitative manner to determine the appro- 
priate spline order needed to match a maximal 
error tolerance. In a manner similar to that of Pratt 
[8, pp. 118-119], we define two types of errors due 
to this non-ideal interpolation: The resolution 

error A R and the interpolation error A u which are 
given by 

AR(n, p ) I l H n ( f )  P = - I IPL/ 12.1/2), (3.28) 

An(n,p)= I IH"(f)  p l[ Lp(~/ (  1.2,1 2))"  (3.29) 

If the cardinal spline filters are used to reconstruct 
a bandlimited signal from its Nyquist samples, then 
A R measures the attenuation effect on the signal 
frequencies (the bandpass region of the filter). The 
interpolation error A n measures the high frequency 
modes that are added to the signal. In this section, 
we will provide estimates in the case for which n is 
odd. Similar estimates can be obtained for the case 
n even. 

We start by defining the following functions: 

Al(n,p)=3 ~nP+P)(2) i 

A2(n,p) =2-(P+l)(np+p+ 1) 1, 

3-nP2-1p + 11 
A3(n,p)= 

nP(p+ l) 

A4(n,p)=2 2pn-P(np+p+ 1)- t+p2 Pn p 

× (np+p+l)-l(np+p+2) ~, 

(3.30) 

A5(n,p)=2-(nP+P)(np+p - 1) l, 

AR(n, p) = 2((A 1)'/p + (A2) ''p 

+ (A3) '/p + (A4)'/Py ' 

=O((2Ppn)-l), 

An(n, p) = 2(A5(n, p) + A2(n,p) ) 

=O((2Ppn) '). 

We collect the convergence rates for the two type 
of errors in the following theorem. 

THEOREM 2. The resolution error A R and the 
interpolation error An can be estimated by 

A R(n, p) <~ AR(n, p), (3.31) 

A H(n, p) <~ An(n, p). (3.32) 

The dominant term in both AR and An is A2(n,p); 
the other terms are negligible for sufficiently large 
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values of n. Thus, the interpolation and resolution 
errors are of the order of (2Ppn) i as n tends to 
infinity. Using the results of Theorem 2, a simple 
computation shows that, for the spline of order 5 
and for p = 2, the resolution error is no more than 
2.6% while the interpolation error is no more than 
2%. Given that errors of this magnitude are usually 
acceptable, the use of the cardinal spline filter of 
order five should be sufficient for most 
applications. 

From (3.31) and (3.32), it is easy to see that the 
two types of errors tend to zero as n goes to infinity 
which means that a bandlimited signal can ulti- 
mately be reconstructed from its samples by cardi- 
nal spline interpolation. This result is in 
contradiction with the one presented in [8, pp. 116- 
120]. The reason for this discrepancy can be easily 
explained as follows. 

To represent a discrete signal g(k), Pratt in [8] 
uses the B-spline function of order n to get a con- 
tinuous signal given by 

~"(x) = ~ g[i]fln(x-i). 
i----c~ 

It is easy to see from the above equation that ~n(k) 
will not be equal to g(k) unless n = 0 or n = 1. In 
order to satisfy (2.1), the B-spline function fin in 
the equation above should be replaced by the cardi- 
nal spline )7 n (see (2.11)). 

If this is not done, a continuous signal and the 
continuous representation of its sampled values 
will ultimately lose their resemblance for 
sufficiently large values of n. This explains why the 
author in [8] correctly finds, in his approach, that 
the resolution error grows as n gets large. Obvi- 
ously, this effect will not appear if (2.11) is used 
instead. 

To get error bounds for the cardinal spline of 
order n in the time domain, we only need to use 
the boundedness property of the Fourier operator 
(Titchmarsh's inequality) to obtain 

II r/"(x) - sinc(x)II L+~) 

~< (AR(n, (1 -- q)/q) + AN(n, (1 -- q)/q))(l -q)/q, 

(3.33) 

where the above estimate is valid as long as 
2~<q~<~. 

PROOF OF THEOREM 2. We start from (3.4) to 
get for n odd: 

I H " ( f ) -  11 = 
I U n ( f ) l  

I1 + U"( f ) l  

<-~(1/f+l)-"-l+I++tl+t2, (3.34) 

where I + is as before, and tl and t2 are given by 

( l f f -  I) .-1 
t l =  

1 + ( l / f - 1 )  " 1, 

I -  
t2 = 

1 + ( l / f -  1) -"-1" 

(3.35) 

We estimate tl by 

f n +  l 
t l = ( 1  f~g~i+f. <"(2f)"+1 

_ + 1  2 ' 
(3.36) 

which yields the bound 

fo 1/2 (tl) p df~<2 (P+l)(np+p+ 1) 1. (3.37) 

A similar estimate for t2 gives 

t2= 
f "+ ' (1  - f )  

n((1-f)"+'+f "+') 

1 
~< (2f)"+ (l - f ) ,  

2n 
(3.38) 

from which, using integration by parts, we get the 
estimate 

fo /2 (t2) p df<.A4(n, p). (3.39) 

From (3.8), (3.10), (3.37) and (3.39) we obtain the 
first inequality of the theorem. The second bound 
is directly obtained from (3.14). [] 

3.3. Convergence properties for 
bandlimited signals 

In this section, we use the convergence results 
of the previous section to estimate the rate at which 
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the spline interpolation of the samples of a band- 
limited signal converges to the signal when n tends 
to infinity. In all the following we assume n to be 
odd, although similar results can be derived for n 
even. 

We start by defining the following functions: 

El (n, p, r, s) = 2(AH(n, pr)/2)  b'~ + (AR(n, pr)) I/~ 

(3) p~,,+ 1)+ 1 
4 q- 2(3) -~p-p. (3.40) 

( n p + p - 1 )  

T H E O R E M  3. Let g(x) be a function and G ( f  ) be 
its Fourier transform. Assume that the support o f  G 
is in [-½, ~]. Let G , ( f  ) be the Fourier transform 
o f  the cardinal spline interpolation of  the Nyquist 
samples of  g. We have the following error bounds: 

11G(f)-  G,,(f)  1[~) 

~< El(n, p, s / s -  1, s) II " P G(J )II~, Vs>l.  
(3.41) 

This theorem gives an upper bound on the inter- 
polation error for bandlimited functions. Using 
(3.30) and (3.40), it is easily seen that the dominant 
term in E1 is of the order of (2P'psn) -~1-1/s~. Taking 
the limit as n tends to infinity, E~ converges to zero. 
This implies that the Lp-norm of the interpolation 
error between a bandlimited function and its spline 
approximation vanishes as the value of n increases 
with a rate proportional to (2P'~psn) -I~-~'s~ 
Using a conjugacy argument, we can deduce from 
Theorem 3 the convergence results of Schoenberg 
and Marsden et al. [6, 14]. Specifically, these 
authors showed that in the limit (n ~+oo) ,  the 
approximation error measured in the time domain 
tends to zero. 

PROOF OF T H E O R E M  3. To establish our 
claim, we will split the argument into three parts 
making estimates on four different regions of the 
real line: 

and 

(3, oo) ~ (-oo,  -3). 

First, we look at the difference between the 
Fourier transforms of the function and its inter- 
polation in the interval [-½, ~], we use (3.31) and 
the H61der inequality to get 

[ [ G ( f ) - G . ( f  p )11~,~, 2.,J2t 

= ] l G ( f ) - g ' ( f ) G 6 ( f ) l l P ~ . ~  ,/2.,j2) 

; G ~< [ ] H " ( f ) -  l[]Lpr~-l/2.1,2~[[ (f)[[P.,~ 

<~(AR(n, pr))l/r][G(f) P [rLp,, (3.42) 

where l / r +  1/s= 1 and where G~ is the Fourier 
transform ofga and is characterized by the periodic 
repetition of G. 

For the interval (3, oo) u ( -  oc, -3) we use (3.13) 
and the H61der inequality to obtain 

f/ 2 IH'( f )Ge( f )Fdf  
2 

~<2 × 2-'~'+~llG(f)llq~, y~ (3 /2+ i )  -e('+l) 
i - I  

1 ) + 1  

~<(3) pc,,+ IIG(f)ll%, 
( n p + p - 1 )  

<(3)-~ '+ ~+' IIG(f)rl~,~. (3.43) 
( n p + p - 1 )  

Again, using (3.13) and the H61der inequality, 
for the interval 3 5 3 (5, 5] w [-~, -3) we have 

I 
5 ,2  

2 IH ' ( f )G6( f ) [Pdf<~2(3)  "P-PllG(N)[IP 
3 2  / 

<~2(3)-"P-PlIG(f)IP . 

(3.44) 

For the intervals (~ 3] u [ - 3 ,  , , -2 ) ,  we use (3.32) 
and the H61der inequality to get 

i31 2 Ig'(f)Ga(f)lPdf 

~<2llG(f)lfps kJ I H n ( f ) ~  or as) 
1/2  

~< 2 [I G ( f  ) liP (A n(n, pr)/2)  1 '~ 

<~2llG(f)HP (An(n, pr) /2)  l'r, (3.45) 
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where r and s are related by conjugacy ( l / r +  
1/s= 1). 

The theorem then follows by collecting the terms 
in the inequalities (3.42)-(3.45). [] 

4. Conclusion 

In this paper, we interpreted B-spline interpola- 
tion as a continuous filtering process and demon- 
strated the stability of the discrete direct B-spline 
filters of all orders. We proved that the resolution 
error and the interpolation error of the cardinal 
spline filters converge to zero as the order of the 
spline tends to infinity and provided their rates of 
convergence. It is possible to use these rates to 
choose the spline order needed to maintain a given 
maximal error tolerance. For instance, we have 
shown that a spline of order five produces a resolu- 
tion error that is no larger than 2.6% in energy and 
an interpolation error no larger than 2%; errors 
that are usually acceptable for practical application 
in image processing. Finally, we obtained the rates 
at which bandlimited signals can be recovered from 
their samples as the order of the spline tends to 
infinity. 

We believe that the present results provide a 
theoretical as well as a practical ground for signal 
processing using cardinal spline interpolation. 
These results together with the availability of fast 
B-spline interpolation algorithms should give a 
good and practical alternative to currently 
accepted interpolation techniques in image and 
signal processing. 
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