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Quantitative structural analysis from electron micrographs of biological macromolecules inevitably requires the synthesis 
of data from many parts of the same micrograph and, ultimately, from multiple micrographs. Higher resolutions require the 
inclusion of progressively more data, and for the particles analyzed to be consistent to within ever more stringent limits. 
Disparities in magnification between micrographs or even within the field of one micrograph, arising from lens hysteresis or 
distortions, limit the resolution of such analyses. A quantitative assessment of this effect shows that its severity depends on 
the size of the particle under  study: for particles that are 100 nm in diameter,  for example, a 2% discrepancy in 
magnification restricts the resolution to ~ 5 nm. In this study, we derive and describe the properties of a family of 
algorithms designed for cross-calibrating the magnifications of particles from different micrographs, or from widely differing 
parts of the same micrograph. This approach is based on the assumption that all of the particles are of identical size: thus, it 
is applicable primarily to cryo-electron micrographs in which native dimensions are precisely preserved. As applied to 
icosahedral virus capsids, this procedure is accurate to within 0.1-0.2%, provided that at least five randomly oriented 
particles are included in the calculation. The algorithm is stable in the presence of noise levels typical of those encountered 
in practice, and is readily adaptable to non-isometric particles. It may also be used to discriminate subpopulations of subtly 
different sizes. 

1. Introduction 

The technique of three-dimensional recon- 
struction from sets of projection images of (intrin- 
sically alike) particles is becoming an increasingly 
effective and widely practiced method of struc- 
tural analysis [1,2]. Such procedures have particu- 
larly high potential in applications to cryo-elec- 
tron micrographs of particles suspended in thin 
films of vitreous ice, for which the preservation of 
native structure is optimal [3-5]. In consequence, 
the mutual compatibility of the data is high, and 
the prospects of extending the analysis to rela- 
tively high resolution are enhanced. Current re- 
constructions of icosahedral virus capsids typi- 
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cally incorporate data from 20-40 particles, and 
achieve resolutions of 3.0-4.0 nm (e.g., refs. [6- 
9]). If possible, all particles in a given reconstruc- 
tion are extracted from a single micrograph, and 
accordingly, were imaged under almost identical 
conditions. However, extension to substantially 
higher resolution will require combining larger 
numbers (e.g., several hundreds) of particles, 
which will make the combining of data from 
several different micrographs inevitable. 

Although disparities of magnification are by 
no means the only complication that arises when 
data from different micrographs are to be com- 
bined, they are a significant factor, particularly in 
studies that aspire to relatively high resolution. 
Owing primarily to lens hysteresis [10,11], the 
magnifications of micrographs recorded at nomi- 
nally the same setting may vary by a few percent. 
Moreover, lens distortions [10] may result in mag- 
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nification variations of the order of one percent 
over the field covered in a single micrograph. We 
have made a quantitative assessment of the reso- 
lution-limiting effects of magnification mis- 
matches on structural analyses (appendix A). 
These effects may be considered as damping the 
specimen's Fourier transform, to an extent that 
becomes progressively more severe at higher spa- 
tial frequencies, and is systematically worse for 
larger particles. However, if magnifications can 
be standardized to within 0.2%, resolutions of up 
to 0.4 nm are accessible for particles up to 100 
nm in diameter, before this effect becomes a 
significant problem. 

Thus, it is desirable that the sampling rates of 
all digital images to be combined in a given 
analysis be standardized to within a few tenths of 
a percent. In this paper, we present an empirical 
approach that is capable of determining the rela- 
tive scaling of "spherical" particles, such as icosa- 
hedral virus particles, to within this margin of 
error. Standardized sampling may then be im- 
posed by interpolation. Algorithms capable of 
performing this calibration are derived, several of 
their major properties are proved, and the 
specifics of their implementation are summa- 
rized. Their performance is then illustrated in 
model experiments involving computer-generated 
data, both in the absence and in the presence of 
noise. Next, we present a number  of applications 
to cryo-electron micrographs of icosahedral virus 
capsids. These include examples of particles 
viewed in differing orientations, particles imaged 
at differing values of defocus and particles from 
widely separated parts of the same micrograph. 
Finally, we discuss adaptations of this procedure 
to handle non-spherical particles, as well as pow- 
der diffraction patterns calculated from micro- 
graphs. 

2. Mathematical theory and algorithms 

Before addressing the problem of finding the 
relative magnifications of particles in one or sev- 
eral micrographs, we first derive an algorithm for 
one-dimensional curves. To solve the matching 
problem for the particles in micrographs, we will 

apply this algorithm to their radial autocorrela- 
tion functions. In this section, we state the math- 
ematical problem and derive a solution. The 
proofs are deferred to appendix B. 

2.1. Statement of the problem 

Problem A: Find the scalar stretch factor s 
between the two functions f and g, given that: 

g ( t )= f ( s t ) ,  V t ~  [0, r ] .  (1) 

Problem B: Find the scalar stretch factor s and 
the amplification factor M between the two func- 
tions f and g, given that: 

g( t )=Mf(s t ) ,  V t ~  [0, T] .  (2) 

In practice, f and g are not aligned, and they are 
corrupted by noise. Thus, we state two related 
problems that are more realistic. 

Problem A': Find the scalar stretch factor s 
between the two functions f and g, given that: 

g(t) =f(st  - c) + r / ( t ) ,  Vt ~ [0, T] ,  (3) 

where r/(t) denotes a random noise component  
and c is an unknown constant. 

Problem B': Find the scalar stretch factor s 
and the amplification factor M between the two 
functions f and g, given that: 

g ( t ) = M f ( s t - c ) + 7 1 ( t  ), V t ~ [ 0 ,  T] .  (4) 

Our aim is to derive accurate, robust, and fast 
algorithms to solve problems A' and B'. 

2.2. The ac'eraging kernels 

Without loss of generality, we consider only 
positive functions. We start with problems A and 
B, and assume that T =  ~. Since our aim is to 
find algorithms that are not sensitive to noise, we 
will consider averaging schemes. If we average 
eq. (1) using a kernel K(t), and perform a change 
of variable, we obtain: 

c ¢  3 c  

fo K(t) g(t)  dt= f~) K(t) f (s t)  dt 

= K ( t / s )  f ( t )  dr. (5) 
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If the kernel is separable in the sense that 

K ( t / s )  =H(t) L ( 1 / s ) ,  V t , s>O,  (6) 

then we can use eq. (5) to find the stretch factor s 
as follows: 

s = N - '  K( t )  g( t )  dt H( t )  f ( t )  dt , 

(7) 

where N l(s) is the functional inverse of  N(s) 
which is defined to be: 

N ( s )  = L ( 1 / s ) / s .  (8) 

This motivates us to find separable kernels, i.e., 
kernels satisfying eq. (6). We can character ize all 
such functions, a fact that  we state in the follow- 
ing theorem:  
Theorem 1. If  K(x)  ~ Cl(0, ~), K ( x ) >  0, and 
satisfies the separability condition: 

K(xy )  = H ( x )  L ( y ) ,  Vx,y  > 0, 

for some functions H(x)  and L(x),  then 

K ( x )  = ax ~, 

where a > 0 and a are arbitrary constants. 
We note that  with this type of  kernel, eq. (5) 

takes the form of a Mellin t ransform [24] evalu- 
ated at a fixed value a. 

2.3. Algorithm for problem A 

Eq. (10) is highly nonl inear  because the integral 
in the numera tor  is nonl inear  in s, and also 
because of  the power ( a  + 1)-  1. An  analytic solu- 
tion cannot  be derived, but we can use an itera- 
tive scheme to solve for s. For  this purpose,  we 
define the function R, (x )  by: 

R~(x)= (fo"t~ f(t) dt/ioit<< g(t) at) l/(<'+i) 
( i i )  

To find s, we start with an initial estimate (x 0) of  
the value of  s and compute  a new value x I = 
R ( x o ) .  By iteration, we converge to the value of  
s, a result stated in the following theorem: 
Theorem 2. The  equation, 

x,,+, = R , ( x , ) ,  (12) 

has a steady state £ = s. Moreover,  if the condi- 
tion: 

5 

f t "+'  f'(t)  dt<0,  (13) 
~0 

where f ' ( t )  is the derivative of  f ( t ) ,  then £ = s is 
asymptotically stable. 

Condit ion (13) is a decay condit ion stating that 
the function f must  (on average) be decaying. If  
f is, in fact, decreasing, then f ' ( t )  is negative, 
and condit ion (13) is always satisfied. 

For  problem A, we have that g( t )= f ( s t ) .  As 
before,  we assume that all of  our  functions are 
positive, and without  loss of  generality, we as- 
sume that  the scaling factor  s is such that 0 < s < 
1. If  we choose a kernel K(t)  = at% then solution 
(7) takes the simple form: 

/j: s = t: f ( t )  dt t ~ g ( t )  dt) . (9) 

In practice, however, the interval [0, T] on which 
our  functions are defined, is finite. In this case, 
eq. (7) becomes  an implicit nonl inear  equat ion to 
be solved for s. Taking T = 1, we obtain: 

~t" it: (t) dt (10) s = f ( t )  dt g 
\ q) 

2.4. Algorithm for problem B 

For problem B, we have that g( t )=  Mr(st) in 
the interval [0,1]. Again,  we assume that all of  our  
functions are positive and, without  loss of  gener- 
ality, that  the scaling factor s is such that 0 < s < 
1. We proceed  as above to obtain a system of two 
nonl inear  algebraic equat ions having (s, M )  as 
solution: 

m=sCi+l(Solt  g(t) dt/S(i t f(t) dt), 

1 / ( : +  1) 

(14) 
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where /3 < c~ are chosen to be positive, but are 
otherwise arbitrary. To solve eq. (141, we first 
define the function Qt~(y) by: 

Using eqs. (111 and (15), we now define a conver- 
gent iterative scheme which yields the solution 
(s, M). This process is described in the next 
theorem. 
Theorem 3. The system of difference equations: 

I = v l / ( , + l ) R ~ ( x n  ) Xn + I ~ n  

(Y"+'  = x# +,Qt~(x,,), (16) 

has a steady state (£, f )  = (s, M). 
Moreover, if /3 is chosen so that /3 < a and the 
conditions: 

5' S 

f t~+' f ' ( t)  dt <O, f t~+' f ' ( t)  dt <O, 
~0 ~ 0 

(17/ 

hold, then the resulting solution (s, M)  is asymp- 
totically stable. 

It is important to note that, because of conti- 
nuity, the two conditions in eq. (17) can be re- 
duced to the first condition alone, provided that 
we choose /3 sufficiently close to c~. 

2.5. Algorithm for problems A' and B' 

The decay conditions (13) and (17) are not 
necessarily satisfied by real signals. Moreover, in 
practice, the data are noisy and the functions f 
and g need not be in exact registration. Accord- 
ingly, we cannot apply the algorithms (12) or (16) 
directly. Instead, we apply the algorithms to the 
autocorrelation functions Af(t)  and A~(t) of f 
and g, respectively. The autocorrelation function 
of a signal h(t) is by definition: 

m,(tt = f h(t d,. (18) 

Usually, autocorrelation functions of real data 
are essentially decaying, and satisfy the conver- 
gence conditions of the algorithms. This is be- 

cause the autocorrelation function of a signal has 
a maximum at the origin, and because data points 
tend to be more correlated to their closest neigh- 
bors than to their distant ones. If g(t)= Mr(st), 
then the relation between 
given by: 

Af(t) and A~,(t) is 

m 2 

A~(t) = Af(s t ) .  (19) 
S 

For the case of zero-mean white noise that is 
independent of the data, as in problems A' and 
B', the relation between A#(t) and Ag(t) is: 

M 2 
A~( t )  = A~(s t l  + E2a(t), (20) 

S 

where 6(t)  is the Dirac distribution and E 2, the 
noise energy. 

Since the algorithms use kernels of the form 
k(t) = t ~ with /~ a positive number, the Dirac 
delta function in eq. (20) has no effect on the 
result because it is multiplied by k ( 0 ) =  0. Thus, 
the algorithms are insensitive to independent 
white noise. Moreover, we note that eq. (20) does 
not depend on the constant c in eqs. (3) and (4). 

2.6. Implementation for micrographs 

The implementation of the procedure that de- 
termines the scaling factor s and the contrast 
factor M relating two micrographs (or two dis- 
tinct locations within a single micrograph) F and 
G proceeds as follows: 

(i) Choose sets of particles from F and G, and 
use them to calculate azimuthally averaged 1D 
autocorrelation functions A s and A~. Store A# 
and A~, in vectors of dimension D. 

(ii) Choose values for a and /3 with a </3 
(e.g., a = 1 and /3 = 0.1). Compute  the four inte- 
grals that appear  in R~(x) and Q#(x) in eqs. (11) 
and (15) on the discrete grid points x = mi with 
i =  1, ' - - ,  D where m = ( D )  i (D = dimension 
of the vectors Af and Ag). This is done by a 
quadrature formula such as the trapezoidal ap- 
proximation or Simpson's rule for integration. 
Store the results in 1D arrays W],~, W 2 ~ ,  WI/3, 

W2~. 
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(iii) Start with an initial guess (e.g., (x 0, Y0) = 
(1.0, 1.0)) and find a value i 0 such that Mi o < x o 
<_ M( i  o + 1). 

(iv) For each 1D array W1,, W2~, Wlt~, W2 m 
use the componen t s  i o and  i 0 + 1 to obtain,  by 
l inear  in terpola t ion,  the values of the integrals 

appear ing in R ~ ( x  o) and Qt~(Xo). 
(v) Compute  x~ and yl from x 0 and Y0 using 

the difference eqs. (16). 
(vi) Repea t  the last three steps (i.e., (i i i)-(v)) 

using x~ and y~ as the new estimate.  

log (error) 
.. ~ i'0 i'5 2'0 2'5 3'0 3'5 Iteration 

- -  " ' ' • . . . . . .  

--z ° . .  
. .  

' ' , .  

Fig. 2. Error in the scaling factor s versus the number of 
iterations of the algorithm. 

3. Results 

3.1. Model experiments with computer-generated 
data 

(i) Convergence properties o f  the algorithm• To 
evaluate  our  algorithms, several tests were first 
performed with compute r -genera ted  data. In the 
exper iment  i l lustrated in fig. 1, the two one-di-  
mens iona l  curves (the cont inuous  line and the 
dashed line) represen t  the same function,  but  
differ in sampling rate by the factor (s = 0.98), 
and in ampl i tude  by the factor ( M =  1.2). This 
test funct ion is smoothly varying and monoton i -  
cally decreasing,  and thus satisfies condi t ion (17). 
In these respects, it resembles  the one-d imen-  
sional autocorre la t ion  funct ions  that we use in 
practice with spherical particles (see below). 

Start ing from the ra ther  bad initial guess of (s = 
0.5; M = 5.0) - see fig. 1 - the algori thm con- 
verges below the pre-set  threshold of 0.1% toler- 
able error  after 37 iterations.  The  rate of conver- 
gence, plotted in fig. 2, is such that the residual  
error decays in a quasi-exponent ia l  manner .  

Fig. 3 displays a funct ion that is not strictly 

decreasing, al though it does show an overall ten-  
dency to decline over the range covered, and for 
( a  = 1;/3 = 0.1), condi t ion (17) is satisfied. The  

correct scaling factors (s = 0.97; M = 1.2) were 
found to within 0.1% in 21 iterations,  starting 

from (s 0 = 0.9; M o = 0.99), cf. fig. 3. 
These exper iments  indicate that, as expected 

on theoret ical  grounds  (section 2), the algorithm 
converges stably, and quite rapidly, despite the 
fact that poor initial guesses were used. In prac- 

tice, the initial est imates for both s o, assessed 

ols 1 i15 } 
Fig. 1. Test function (continuous line) f (x )=5( l+x2)-< 
Modified function g(x) = Mf(sx), s = 0.98, M = 1.2 (dashed 
line). Initial guess s o = 0.5, M 0 = 0.5 (dotted line). Function 
found after 37 iterations (a = 1,/3 = 0.1) for which the errors 
in s and M are below the pre-set threshold of 0.1% (crosses). 

# " ,  
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0 .5  , ;  , ,  
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Fig. 3. Test function (continuous line) f (x)= [3(0.1+ 
x) -1 sin(x)l. Modified function g(x)= Mf(sx), s = 0.97, M = 
1.2 (dashed line). Initial guess s o = 0.9, M 0 = 0.99 (dotted 
line). Function found after 21 iterations (a = 1,/3 = 0.1) for 
which the errors in s and M are below the pre-set threshold 

of 0.1% (crosses). 
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from measurements of particle diameter made by 
manually applying a cursor to monitor-displayed 
particles, and M 0, effected by imposing some 
standard prescription for image normalization 
(e.g., refs. [12,13]) are unlikely to be in error by 
more than a few percent. Accordingly, in prac- 
tice, convergence is likely to occur faster than 
these model experiments suggest. 

(ii) Robustness in the presence of noise. To test 
how noise might affect the stability of the algo- 
rithm, an experiment was carried out using a 
triangular signal contaminated with noise. The 
results showed that the algorithm was completely 
stable up to signal-to-noise ratios of the order of 
one. In practice, it is applied to heavily averaged 
signals, in which the noise initially present in the 
micrograph has been largely suppressed, first by 
forming the two-dimensional autocorrelation 
function, then by azimuthal averaging and finally 
by averaging over a number of particles. Accord- 
ingly this experiment indicates that the perfor- 
mance of the algorithm should be oblivious to the 
low levels of residual noise (see also (iii) below). 

3.2. The algorithms in practice: applications to 
cryo-electron micrographs 

(iii) Micrographs of herpes simplex ~,irus cap- 
sids. We have performed a number of experi- 
ments with such electron micrographs [9]. From 
single-particle images, (e.g., fig. 4a), the autocor- 

Table I 
The relative magnifications of two sets of HSV capsid images 
from the same cryo-electron micrograph were adjusted to 
bear the ratio 0.9794 by interpolation; the algorithm was then 
used to estimate this factor in the presence of increasing 
amounts of added random Gaussian noise (i.e., noise in 
addition to that already present in the micrograph); this 
experiment was performed with c~ - 1 and /3 = 0.3 

SNR S Error (%) 
(added noise) calculated 

infinity 0.9791 0.03 
7 : 5 0.9801 0.07 
1:1 0.9802 0.08 
2 : 3 0.9751 t).44 
1 : 2 0.9728 (l.67 

relation function was calculated (fig. 4b), and 
then azimuthally averaged (fig. 4c). The uncorre- 
lated noise gives a spike at the origin which 
makes a negligible contribution to the integrals in 
eq. (14) since it is suppressed by factor t ~. Ini- 
tially, 9 HSV capsids, representing a random dis- 
tribution of orientations, were selected for analy- 
sis. Their ACFs were averaged, and then com- 
pared to the average ACF of the same nine 
images after resampling them with a relative scal- 
ing factor of 0.9794. Table 1 summarizes the 
results given by the algorithm both without any 
added noise, and with Gaussian white noise added 
to the rescaled images. With no added noise, the 
algorithm estimated the calibration factor to 

G 

[ I | ] 

20 40 60 80 nm 
Fig. 4. (a) Electron micrograph of a herpes simplex virus nucleo capsid. (b) The autocorrelation function of the image. (c) The 

radial autocorrelation function. 
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within 0.03% error. The error increased to 0.67% 
when the total dynamic power of the added noise 
was twice that of the original images (SNR = 1 : 2). 

(iv) Significance of  parameters a and [3. Eqs. 
(11) and (15) define a whole family of algorithms, 
in which c~ and [3 enter as free parameters.  
Accordingly, they may be assigned values that are 
likely to optimize the performance of the algo- 
rithm. We examined how the solution of the same 
experiment described in (iii) above (but without 
added noise) responded to changes in the values 
of these parameters.  The results (table 2) suggest 
that smaller values of c~ and [3 give more accu- 
rate results, and that a ratio of c~ : [3 >> 1 is to be 
preferred. To choose higher values of c~ would 
assign disproportionate weight to the autocorrela- 
tion function values at outer radii, whereas when 
low values of c~ are used, comparable significance 
is assigned to the whole radial range. 

(v) Icosahedral particles in different orienta- 
tions. Icosahedral virus capsids vary considerably 
in the extent to which they depart  from spheric- 
ity. For example, rotavirus [8] and reovirus [14] 
are almost perfectly spherical, whereas aden- 
ovirus [15] and iridovirus [16] have relatively flat, 
planar, facets. In this respect, herpesvirus capsids 
are intermediate between these extremes [9,17, 
18]. Although differences in the projection that 
arise from viewing geometry tend to be smoothed 
out when the two-dimensional autocorrelation 
function is calculated (fig. 4b), one might expect 

Table 2 
The same experiment as that described in the legend to table 
1 was performed, except that the values assigned to parame- 
ters o~ and /3 were varied; the signal-to-noise ratio was chosen 
to be one; the results are rather stable for values such that 
1 <c~ < 1.4 and 0.3 </3 <0.8 

/3 S cal- error (%) 
culated 

1 0.3 0.9802 0.08 
l 0.4 0.9802 0.08 
1 1).5 (/.9803 0.09 
1 0.6 0.9804 0.10 
1 0.8 0.9805 0.11 
1.2 0.3 0.9803 0.09 
1.4 0.3 0.9804 0.10 
2 1 0.9809 0.15 
3 l 0.9811 0.17 

Table 3 
This table summarizes the results of experiments performed 
to examine how the calibration factor given by the algorithm 
varies from particle to particle in consequence of differing 
viewing geometries of the HSV capsid; it also shows how such 
fluctuations are suppressed by including increasing numbers 
of randomly oriented particles in the calculation 

Number Average Min. Max. Number 
of particles error (%) error (%) error(?/,) of trials 

1 0.63 0.11 1.6 10 
2 0.31 0.03 0.76 5 
3 0.21 0.03 0.51 5 
4 0.11 0.04 0.18 5 
5 0.09 0.01 0.16 5 

the scaling result to be somewhat sensitive to 
particle orientation, and that such dependence 
would be more pronounced for more angular 
polyhedral capsids. To probe this effect, we com- 
pared a number  of herpesvirus capsid projections 
in different orientations, which had previously 
been determined. These images were taken from 
the same region of the same micrograph, and we 
assume that the particles are identical in size. 
The algorithm's output indicates that anomalous 
variations in scaling can result from differing 
particle orientations (table 3). With herpesvirus 
capsids, these fluctuations are typically at the 
0.6% level, but exceptionally, may range as high 
as 1.6%. We also tested how the algorithm's 
performance might be stabilized by averaging over 
a number  of randomly chosen particles. The re- 
sults (table 3) indicate that stable results of the 
desired precision may be expected when at least 
five randomly oriented particles are averaged in 
each case. 

(vi) Micrographs recorded at different defocus 
t~'alues. Phase contrast effects in cryo-micrographs 
[4,5] generate interference ("Fresnel")  fringes at 
the particles' edges, the depth, width, and num- 
ber of which vary as a function of defocus. In 
principle, therefore, one might expect significant 
differences in defocus between micrographs to 
register as apparent  differences in magnification, 
i.e., anomalous size differences between identical 
particles. To investigate this effect, we compared 
a set of ten particles, as represented in three 
micrographs recorded sequentially in a focal se- 
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ries, in which the first zero  of  the  con t ras t  t rans-  
fer funct ion occur red  at  (1.6 r im) - ] ,  (2.4 n m ) - l ,  
and  (4.2 nm)-1 ,  respect ively.  Since the  same par-  
ticles a re  compared ,  the i r  sizes and o r ien ta t ions  
are  ident ica l  in each micrograph .  However ,  small  
but  s ignif icant  d i f fe rences  in a p p a r e n t  size a re  
d e t e c t e d  by the a lgor i thm ( table  4). W e  conc lude  
that ,  when match ing  mic rograph  magni f ica t ions  
in pract ice ,  care  should  be  taken  to work  e i ther  
with images  tha t  were  r e c o r d e d  at qui te  s imilar  
defocus sett ings,  or  with mic rographs  which have 
been  adequa te ly  " r e s t o r e d "  to compensa t e  for 
phase  cont ras t  effects.  Of  course,  da ta  t aken  f rom 
mic rographs  with subs tant ia l ly  d i f ferent  defocus  
values  have more  basic  inconsis tencies  than  a 
slight a p p a r e n t  mismatch  of  magnif ica t ion.  

(vii) Variations in magni f icat ion across a gicen 
field. W e  have used  our  a lgor i thms to invest igate  
the  extent  to which var ia t ions  in magnif ica t ion  
may occur  across the  field of  view covered  in a 
single micrograph .  Such var ia t ions  arise pr imar i ly  
f rom lens d is tor t ions  [10] and,  at  a prac t ica l  level, 
d e p e n d  on how close the  C2 lens is to crossover.  
In this exper iment ,  the  average  one -d imens iona l  
au tocor re l a t ion  funct ion was ca lcu la ted  from 
clusters  of  five par t ic les  each,  taken  f rom the 
cen te r  and  f rom each corner  of  a single micro-  
g raph  r eco rded  at a magni f ica t ion  of  36 000. The  
resul ts  a re  shown in fig. 5. They  reveal  sys temat ic  
var ia t ions  in magnif ica t ion  in excess of  1% be-  
tween oppos i te  corners  of  the micrograph .  This 
conclusion was conf i rmed  with a s imilar  analysis 
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Fig. 5. This diagram represents the outcome of an experiment in which the scaling algorithm was used to probe for magnification 
variations between different parts of the same image. This cryo-electron micrograph was recorded at a magnification of 36000 ×, so 
that the area covered is 2.3 by 2.8 gm. Clusters of HSV capsids in the four corners (each site is marked with a cross) were 
compared with a cluster in the center. With five particles per cluster, the uncertainty in each measurement should be < 0.1% 

(table 2). 
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of a second micrograph,  which revealed dispari- 
ties in magnif icat ion that  were somewhat  smaller  
but  of the same order  (data not  shown). Such 
excursions are tolerable for analyses of relatively 
small particles, but  become significant for analy- 
ses of particles in the 100 nm range,  in which 
resolut ions of < 3  nm are hoped for (see ap- 
pendix A). 

Thus,  detectable  size variat ions can occur 
within a given micrograph as a consequence  of 
lens distort ions (real variat ions) or focal gradients  
(anomalous  variations).  The  presence  of focal 
gradients  may be detected by compar ing  the opti- 
cal diffractograms from each corner  of the micro- 
graph. 

(viii) Improved three-dimensional reconstruc- 
tions from combined data from different micro- 
graphs mutually scaled by this algorithm. In one 
herpesvirus capsid reconst ruct ion [B.L. Trus,  F.P. 
Booy, W.W. Newcomb, J.C. Brown and A.C. 
Steven - unpubl i shed  results], the particles pre- 
sent in the micrograph analyzed were found not 
to be randomly  or iented,  and so these data did 
not give a uni form sampling of the icosahedral  
asymmetric uni t  (cf. [6]). The  resul t ing recon- 
s truct ion (not  shown) was very noisy compared  
with a reconst ruct ion per formed with a full cover- 

Table 4 
Differences in defocus lead to anomalous differences in ap- 
parent magnification; this table summarizes the calibration 
factors given for the same set of ten particles imaged in a 
focal series in which the three exposures (I, II, l id corre- 
sponding to the first zero of the contrast transfer function 
being at (1.6 nm) 1, (2.4 nm) 1, and (4.2 nm) l, respectively 

Micrographs S cal- 

Reference To be scaled culated 

I1 1 0.9932 0.68 
III I 1.0018 0.18 
III II 1.0087 0.87 

error (%) 

Note that the apparent size does not change monotonically 
with defocus value. However, the scaling factors measured in 
this experiment combine consistently, viz. s I ~ Ill = S I  ~ 1I X 
S,W ~ m" The particles' structure is likely to change somewhat 
in response to increased electron dose over the focal series. 
However, the fact that the consistency condition is met indi- 
cates that this effect on apparent magnification is slight com- 
pared to that of defocus-induced changes in phase contrast, at 
least over the limited dose range covered. 

Fig. 6. (a) Reconstruction where the scaling factors are found 
manually. (b) Reconstruction where the scaling factors are 

found by the algorithm. 

ing of the th ree-d imens iona l  Four ier  transform. 
We a t tempted  to improve this reconstruct ion by 
including other, appropriately or iented,  particles 
from another  micrograph with a similar defocus 
value. At this stage in the analysis, the two micro- 
graph magnif icat ions were scaled on the basis of 
manua l  measurement s  of the diameters  of parti-  
cles on each. Little improvement  was registered 
in the quality of the reconstruct ion (fig. 6a). How- 
ever, when the procedure  was repeated  using the 
magnif icat ion scaling factor de te rmined  by this 
algorithm, a considerable  improvement  was ob- 
ta ined (fig. 6b). The  algori thm's  result showed 
that  the initial manua l  est imate of relative magni-  
fication had been  in error by ~ 1.5%. This seem- 
ingly small discrepancy was enough to have a 
substant ial  effect on the result ing reconstruct ion.  

4. Discussion 

4.1. Principle of  the method 

Our  method is based on the assumption that  
the particles analyzed are identical in size, and 
that it is therefore valid to use them to cross- 
calibrate magnificat ions,  both be tween micro- 
graphs and within a given micrograph. This as- 
sumpt ion  is well founded  in the case of cryo-elec- 
t ron micrographs of icosahedral virus capsids, 
whose d imensions  are precisely de te rmined  in the 
assembly process, and are preserved upon em- 
bedding  in vitreous ice [19]. We believe that this 
also holds true for cryo-electron micrographs of 
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other kinds of macromolecules and supramolecu- 
far complexes. With non-spherical particles, how- 
ever, projected dimensions are orientation-de- 
pendent, so that use of the algorithm is more 
involved than straightforward analysis of the au- 
tocorrelation function (see below). 

With specimens prepared for electron mi- 
croscopy by conventional methods, distortions 
caused by dehydration, flattening, staining, etc., 
may change the particles' projected dimensions 
by several percent or more, so that the condition 
necessary for applicability of our method (uni- 
form size) is not met. For such data, we do not 
see a way to improve on the traditional methods 
of magnification calibration, such as optical 
diffraction analysis of micrographs of catalase, or 
some other periodic test specimen. We note, 
however, that it has been reported that magnifi- 
cation discrepancies of the order of 2 -5% among 
negatively stained specimens may be detected by 
correspondence analysis [25]. 

4.2. Size dependence 

Quantitative appraisal of the implications of 
combining data with different magnifications of a 
three-dimensional reconstruction shows that this 
effect manifests itself as a progressive damping of 
the structure factors in the composite three-di- 
mensional Fourier transform towards higher spa- 
tial frequencies (appendix A). Specification of the 
resolution limit for particles of a given size, as 
imposed by a particular level of disparity in mag- 
nification, may be made with reference to fig. 7 
and table 5. The effect is systematically more 
pronounced for larger particles. This trend repre- 

[,'(rR. >.) 

i " N ~  X=0.998 

o. 6 - ~ _  

C . 4  

0 . 2  
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2'0 4'0 6'0 8'0 10 0 
Fig. 7. The radial dependence of the magnification 
mismatch-associated damping function (eq. (A.5)), as aver- 
aged over all azimuths, is ploncd for several different relative 
scaling factors (A). The independent wLriable is the producl 
(rR), where r is the radial coordinate in real space, and R is 

the radial coordinate in Fourier space. 

sents a second obstacle to achieving a given reso- 
lution for larger particles, as compared with 
smaller particles, since it has already been 
demonstrated that larger particles require a cor- 
respondingly higher number of independent pro- 
jections [20]. 

4.3. Applicability 

In applications to cryo-electron micrographs of 
icosahedral capsids, in order to attain the desired 
accuracy of within 0.1-0.2% in magnification cali- 
bration, the following conditions must be satis- 
fied: (1) At least five particles in random orienta- 
tions, and preferably quite close together, must 
be taken from each micrograph. (2) The micro- 

Table 5 
The resolution limits (Ro), expressed in reciprocal space units, imposed by magnification mismatches for particles of different radii 
(r o) are compiled for several different degrees of mismatch (A); for instance, a = 0.98 is equivalent to a 2% mismatch; the radius 
anributed to purple membrane (crystalline bacteriorhodopsin) is the radius required to cover its hexagonal unit cell 

Ro 

}t = 0.98 (2%) A 0.99 (1%) a = 0.995 (0.5%) a - 0.998 (0.2%) 

HSVcapsid r , = 6 2 . 5 n m  (4.71 nm) ] (2.35nm) 1 (1.18nm) i (0.47nm) [ 
Bacteriophage T7 capsid r 0 25 nm (1.88 nm) ] (0.94 nm) ] (0.47 nm) i (0.188 nm) 
Purple membrane r . -  3.5 nm (0.264 rim) i (0.132 nm) I (0.066 nm) i (0.026 nm) I 



A. Aldroubi et al. / Correcting magnification mismatches 185 

graphs should have approximately the same de- 
gree of defocus, or have been correctly restored 
to standardize phase contrast effects. 

In practice, three-dimensional density maps 
may be refined by using an initial reconstruction 
to generate the two-dimensional projection corre- 
sponding to each constituent view, and then ap- 
plying the scaling algorithm to calibrate their 
precise magnifications. After appropriate adjust- 
ment of the scaling of each particle, a refined 
reconstruction is then calculated. 

averaged powder diffraction pattern calculated 
for a set of such particles. With regular particles 
that contain repetitive internal structure, such 
structure may show up as rings in the powder 
pattern (see, for example, fig. 5 of ref. [9]), which 
provide a suitable signal to which the algorithm 
may be applied. 

Acknowledgements 

4.4. Detectability of size differences 

Under certain circumstances, a preparation 
may contain particles of several different (dis- 
crete) sizes. In the case of polymorphism of a 
given virus capsid, the size differences should be 
sufficiently great that the respective polymorphs 
may be readily distinguished, and analyzed sepa- 
rately. More subtle differences may arise in the 
event of co-isolation of two or more viruses that 
are similar in size, and morphologically alike. 
However, it seems reasonable to expect that the 
presence of multiple components with size differ- 
ences as small as 1% or so may be detected by 
systematic use of our algorithm. 

4. 5. Non-spherical particles 

With cryo-electron micrographs of non-spheri- 
cal particles, variants of this procedure may be 
employed. In these cases, the particles present in 
each image should first be analyzed by correla- 
tion alignment, classification, and averaging 
[13,21,22]. Then, line scans across corresponding 
averaged images from the different micrographs 
under comparison should be processed with our 
algorithm, instead of the azimuthally averaged 
autocorrelation functions used here. The results 
obtained with noise in simulated experiments 
(section 3) suggest that the algorithm is suffi- 
ciently robust to perform well under these condi- 
tions, particularly if preceded by a significant 
amount of averaging. An alternative approach to 
applying the algorithm to calibrate the magnifica- 
tions of particles is to apply it to the azimuthally 

We thank W. Newcomb and J. Brown (Univer- 
sity of Virginia) for supplying purified viral 
preparations and T. Baker (Purdue University) 
for making available his reconstruction software. 

Appendix A. Resolution-limiting effects of magni- 
fication mismatches when micrographs are com- 
bined 

When the information contents of two or more 
electron micrographs are to be combined, this 
process may be performed in two dimensions by 
averaging them after correlation alignment, or in 
three dimensions by some reconstruction algo- 
rithm, after determining their relative orienta- 
tions. In either case, the act of combining them 
may be viewed as an averaging operation. If (as- 
suming perfect mutual alignment) we consider 
corresponding points on the respective particles, 
one is at radius r, and the other at Ar, i.e., they 
are mutually displaced by a distance d = r(1 - A). 
Thus, one may expect details that are smaller 
than d to be blurred out in the averaged image. 
This effect is negligible close to the origin (i.e., 
near the center of the particle), but grows linearly 
with increasing radius. Thus, it is evident that the 
problem becomes more acute for large particles 
(which have larger outer radii) than for small 
particles, 

More generally, we may consider this effect as 
a progressive attenuation of the particles' com- 
posite Fourier transform towards higher spatial 
frequencies, i.e., at relatively high resolution. In 
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two dimensions, the two particles' Fourier trans- 
forms in polar coordinates are given by: 

+or r 2 f r  r 
F . ( R , & ) : ~  Jo f(  ' O )  e-J27rrR . . . .  (#, 0) 

×27rr  dr  dO, 

F2( R, &) = fo+~£2~f( ar, O) 

×2rrr dr dO, 

(A.1) 

e - J 2 z r r R  cos (h -0}  

(A.2) 

where R is the radial frequency and & the Fourier 
angle. Changing variable r in eq. (A.2), and aver- 
aging them, we obtain: 

½(FI(R, b )  + F2(R, b ) )  

f + o c  r27r  r :Jo Jo f( ,O) e ,2=rRco~(o-o) 

XU(r, R, O, &, A)2~-r dr  dO, (A.3) 

where 

U ( r , R , O , & , A )  

= 2 1  l + A 2 _ _ e  j2~rR . . . .  (& 0 X A - I )  . (A.4) 

This gives essentially the same quantity as eq. 
(A.1), apart from the additional factor U. Note 
that 0 < ]U ] < 1; i.e., U is a damping factor. 

To obtain a more balanced estimate of the 
overall effect of this distortion, we compute a 
radial damping factor by taking the average over 
all angles, which yields 

U(r, R, A) = 2~ fo 2~U(r' R, O, &, A) dO 

{1 ) 
- - -  ½ + VJo[2, rR(1/a - 1)]  , 

(A.5) 

where Jo(x) is Bessel function of order 0, which 
is defined by 

1 f2= r 
J°(x) = -J~rrJ, i e x p [ - j x  cos(& - 0)1 dO. 

(A.6) 

Note that U is a function of the product p = rR. 
This function U((r,  R, A) is plotted in fig. 7 for 
several pertinent values of A, The resolution limit 

is determined by searching for the radial fre- 
quency R 0 at which the damping becomes signifi- 
cant, assuming that the particle is confined within 
a radius %. The cut-off limit is arbitrarily set to 
1/ff2-~. Hence, we find that the radial cut-off 
frequency and particle radius are inversely pro- 
portional to each other: 

R[,r o = p ( A ) ,  (A.7) 

where the critical value p(A) is the solution of the 
equation /~(p, h ) =  2 1/2. This technique was 
used to obtain estimates for the resolution limits 
for three representative cases of particles (cf. 
table 5). 

We conclude that for relatively small particles 
(i.e., % = 10 nm), no significant effect arises until 
resolutions that are high by current standards 
(viz. 0.1 nm-1). However, with large particles, 
such as HSV capsids, the effects of magnification 
mismatches at the 1-2% level are already sub- 
stantial, even at the moderate resolutions of 0.3- 
0.4 nm 1 that are currently accessible. 

Finally, we note that the formalism presented 
above is equally applicable to quantitative assess- 
ment of other resolution-limiting effects, e .g . ,  
translational and orientational displacements, 
arising from imperfect alignment. In each case, 
the corresponding displacement operation is sub- 
stituted in eq. (A.2), and the analysis followed 
through in otherwise the same way. 

Appendix B. Proofs of  theorems 

B. 1. Proof of theorem l 

Since 

K ( x y ) = H ( x )  L(y) ,  Vx,y > 0, (B.1) 

we have that: 

H(x)  L ( y ) = H ( y )  L(x) ,  V x , y > 0 .  
(B.2) 

We use eq. (B.2) and group the terms to get: 

L(y)  L(x)  
Vx,y > 0. (B.3) 

H(y)  H(x)  ' 
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Since x and y are independent we have that: 

L ( y )  L(X) 
H ( y )  H ( 1 ) '  V y > 0 .  (B.4) 

Using eq. (B.1) together with eq. (B.4) we con- 
clude that: 

K ( x y )  = A K ( x )  K(y),  Vx,y>O, (B.5) 

where A is some positive constant. 
We differentiate eq. (B.5) with respect to x 

and evaluate at x = 1: 

yK'(ly) = A K ' ( 1 ) K ( y ) .  (B.6) 

Eq. (B.6) is a differential equation that we solve 
to obtain: 

K(y) =cy% (B.7) 

where a =AK' (1 )  and c is an arbitrary positive 
constant. 

B.2. Proof of theorem 2 

The steady-state solutions of the difference 
equation (12) must satisfy 

£ = R~ ( £ ) .  (B.8) 

The value £ = s satisfies eq. (B.8) since by as- 
sumption we have that g(t)=f(st). In order to 
study the stability of the steady state, we linearize 
at the steady state. To do this, we need to evalu- 
ate the derivative of R~(x) at the steady state 
.~ = S :  

S a+l f ( s )  
R',(s) = - -  (B.9) 

a + 1 foSt ~ f ( t )  dt 

A simple integration by part yields: 

R'~,(s) 

s +lf(s) 
a + l  

, j; )l 
X ~ T 1 -  c~ + 1 t ~+1 f ' ( t )  d t  

(B.10) 

If eq. (13) is satisfied then it follows from eq. 
(B.10) that 0 < R ' ( s ) <  1 which implies the 
asymptotic stability of the steady state. 

B.3. Proof of theorem 3 

Because of eq. (14), (s, M)  is a steady state of 
system (16). In order to study its stability, we 
linearize the right side at the steady state of eq. 
(16) and obtain the Jacobian matrix: 

s s 
L ¢ [  \ 

a + 1 n,~s) a + 1 

/ 3 + 1  
- - - h ; ( s )  0 

s 

(B.11) 

where hu(x), which is introduced to simplify the 
notation, is given by: 

h~,(x) = foXt" f ( t )  dt /  foStu f ( t )  dt. (B.12) 

To study the stability we look at the eigen-values 
of the Jacobian in eq. (B.11). The eigen-values 
satisfy the characteristic equation: 

~t 2 - -  Tr A + D = 0, (B.13) 

where 

s ~+' f (s)  
Tr = (B.14) 

c~+ l fot~ f ( t )  dt 

and 

D / 3 + 1  ( s t3*' f (s)  ] 
- 1 . ( B . 1 5 )  

a + 1 /3 + 1 fott 3 f ( t )  dt 

If the roots of eq. (B.13) would have magnitude 
less than 1, then (s, M) would be asymptotically 
stable. Conditions that must be satisfied guaran- 
teeing the roots to have magnitude less than 1 are 
given by ref. [23]: 

ITr  I < D + l < 2 .  (B.16) 

From expressions (B.14), (B.15) and using inte- 
gration by parts as in eq. (B.10), it can be seen 
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that the condit ions  of  eq. (B.16) are satisfied as 
long as /3 < c~ and that condit ions  (17) hold. 
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