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Abstract. In this chapter, we look at the algebraic structure of nonorthog-
onal scaling functions, the multiresolutions they generate, and the wavelets
associated with them. By taking advantage of this algebraic structure, it
is possible to create families of multiresolution representations and wavelet
transforms with increasing regularity that satisfy some desired properties.
In particular, we concentrate on two important aspects. First, we show
how to gencrate sequences of scaling functions that tend to the ideal low-
pass filter and for which the corresponding wavclets converge to the ideal
bandpass filter. We give the conditions under which this convergence occurs
and provide the link between Mallat’s theory of multiresolution approxima-
tions and the classical Shannon Sampling Theory. This offers a framework
for generating generalized sampling theories. Second, we construct families
of nonorthogonal wavelets that converge to Gabor functions (modulated
Gaussians). These latter functions are optimally concentrated in both time
and frequency and are therefore of great interest for signal and image pro-
cessing. We obtain the conditions under which this convergence occurs;
thus allowing us to create whole classes of wavelets with asymptotically
optimal time-frequency localization. We illustrate the theory using polyno-
mial splines.

§1. Introduction

A recurrent question in signal processing is how to best represent signals.
This issue arises naturally in applications such as detection, data storage, data
compression, signal analysis, signal transmission, etc. When the signals are
continuous, it is usually desired to represent them by discrete sequences. One
approach is simply to sample the functions on uniform grids. However, there
are infinitely many continuous functions having the same sample values. For
this reason, a signal is first preprocessed and sampled so that, after the whole
process, the sample valucs are the “best” description of the original signal.
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This procedure is contained in the well known Shannon Sampling Theorem
({15} and [21]). The theory as well as the class of functions that are completely
characterized by their sample values will be reviewed in Section 6.

Another widely used approach is to discretize a signal by describing it as a
weighted sum of elementary signal packets (in fact Shannon’s sampling theory
can also be described in this way). The Gabor rcpresentation uses modulated
Gaussian functions as the elementary packets [14]. This representation has
been praised because modulated Gaussian functions are optimal in terms of
their time-frequency localization. This means that the expansion coefficients
describe, in an optimal sense, the frequency components at their occurrence in
time {or space).

Recently, the concepts of multiresolutions and wavelet transforms have
offered an infinite variety of discrete representations to choose from ([13], [17],
and [19]). Moreover, the wavelet representations have the desirable property
of being localized in both the time (space) and the frequency domains. How-
ever, no wavelets can achieve the optimal time-frequency localization of Gabor
functions. Still, we will show how to construct families of wavelets that tend
to Gabor functions.

In this chapter, we present a unified view of these various signal repre-
sentation theories. To do this, we identify their essential properties. We use
these propertics to extend some results from multiresolution analysis and to
generalize Shannon’s Sampling Theory. We then introduce the new concept of
wavelet sequences and apply it to create “Shannon’s-type” and “Gabor’s-type”
scaling and wavelets sequences. ‘

The presentation is organized as follows: in Section 3, we briefly review
Stephane Mallat’s theory of multiresolution analysis and orthogonal wavelet
transforms. In Section 4, we show how to extend some of his results to nonortho-
gonal scaling functions. We define equivalent classes of scaling and wavelet
functions and construct basis functions with certain special properties. In Sec-
tion 5, we define related sequences of scaling and wavelet functions with an
increasing regularity index n. We concentrate on three particular sequences:
the basic, the cardinal, and the orthogonal sequences. The connection with
Shannon’s Theory is provided in Section 6. In particular, we show that the
cardinal and orthogonal sequences tends to ideal lowpass and bandpass filters
as the regularity index n tends to infinity. Finally, in Section 7, we discuss the
Gabor transform which is optimal in terms of its time-frequency localization.
We then show that the basic wavelet sequence constructed in Section 5 tends
to Gabor functions. This implies that we can obtain wavelets that are nearly
time-frequency optimal. The various aspects of the theory are illustrated using
polynomial splines. Many results in this chapter are new; their proofs can be
found in [1] and will be published elsewhere.
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§2. Definitions and notations

The signals considered here are defined on IR and belong to the space of
measurable, square-integrable functions: L. The space of square summable
sequences (discrete functions) is denoted by lo.

The symbol “#” will be used for three slightly different binary operations
that are defined below: the convolution, the mixed convolution, and the discrete
convolution . The ambiguity should be easily resolved from the context.

For two functions f and g defined on IR, * denotes the usual convolution:

400
9@ = [ 1@se-0d zeR M
—o0

The mixed convolution between a sequence b(k), k € ZZ and a function f on R
is the function b* f on R given by:

(b* f)(z Z b(k)f(x—-k), ze€R. (2)

k=—oc0

The discrete convolution between two sequences a and b is the sequence a * b:

(axb)(k) = izfo a(i)b(k —1), k€ Z. ()

==

Whenever it exists, the convolution inverse (b)~* of a sequence b is defined to

" (@7 #8) (0 = bo(k), @

where & is the unit impulse; i.e., §(0) = 1 and 8g(k) = 0 for k # 0.
The reflection of a function f (resp., a scquence b) is the function f’ (resp.,
the sequence V') given by:

fl@)=f(-2), YzekR, (5)

b (k) =b(-k), VkecZ. (6)

The modulation E(k) of a sequence b is obtained by changing the signs of the
odd components of b N

b(k) = (-1)*b(k). (7)

The decimation (or down-sampling) operator by a factor of two [],2 assigns
to a sequence b the sequence [b];2 which consists of the even components of b
only:

(0], (k) = b(2k), VkeZ. (8)

A pseudo-inverse to the decimation operator is the up-sampling operator [.]12.
This operator expands a scquence b by inserting zeros between its components:

[b]5 (k) = {gfk/z), i]z oven (9)
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§3. Multiresolution approximations

As defined by Stephane Mallat, a multiresolution structure of Lj is a sequence
of spaces V{;y satisfying:
() clos (V) = Vo) C La;
(i) Vi € V-1
(iil) clos( U V(])) = Ly;
Jj=—00
.\ d=teo
(iv) " n_ Vy={0}
j=—00
(v) f@) €V & f(2z) € Vig_y;
(vi)  there exists an isomorphism I from Vi onto {3
which commutes with the action of ZZ.

Relative to such a structure, a multiresolution approximation
{...8(_1),5(0),8(1), -} of a signal s consists of the Ly least square approxi-
mations s¢;) of s on the spaces V(). Because of property (i), if ¢ < j then
8(:) can be viewed as a finer approximation than sg;y. In signal processing,

5 8(=1)» 8(0)1 5 (1) } is called a fine-to-coarse pyramid representation. It is
used for finding efhc1ent algorithms in applications such as coding, edge detec-
tion, texture discrimination, fractal analysis, ete. ([6], [17], [23], and [29]).

Properties (i), (i), and (iii) allow us to approximate a function to any
desired accuracy by taking a sufficiently large approximation space V{;, while
property (iv) states that coarser and coarser approximations will eventually
contain no information about the original function. The similarity property
(v) and property (vi) are essential for numerical computations. An important
result due to S. Mallat is that, in a multiresolution structure, each subspace
V(;) can be induced by an orthonormal basis {277/2¢(277¢ — k)},C »- The
basis vectors are generated by dilating and translating a unique functlon 1)
called the orthogonal scaling function. Formally, this can be stated as follows:

Vin(e) = {U (@)= D eyk)ga(z — 2k), ¢y € 12} ,  (10)
k=—c0

where

(2 (x) = 279/%¢(2 7). (11)

Associated with the space V), is the wavelet space W(;y which is defined
to be the orthogonal complement of Vi;y relative to V;_1y:

Wi © Vi) = Vig-1)- (12)

Similarly to V{;y, the wavelet space W ;) can also be generated by an orthonor-
mal basis {279/29)(277z — k)}, . induced by the orthogonal wavelet function
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¥ ([13], [17], and [19)):

W(J-)(’(/)) = {w : 'U!)(.’L‘) = Z d(j)(k))if)zj (:17 — 2jk:), d(j) S lz} s (13)

k=—o00

where
o (x) = 279/ 2p(27 7). (14)

Equation (12) implies that the difference between the two approximations
s(j) and s(;_1y of a function s is cqual to the orthogonal projection of s onto
W;y. For this reason, the spaces W,y are also called the detail spaces, or
sometimes the residual spaces. They constitute a direct sum of the square
integrable function space Lo:

Ly = G_)W(j) =..0 W(l) @® W(o) &3] W(_1) @ .... (15)
7

Thus, a function s can be represented by the cocfficients {...d(_l), d(0),d), }
(in Equation (13)) of the orthogonal projection of s onto Wy ). This represen-
tation is what is called the discrete wavelet transform.

The simplest example of orthogonal scaling function is the rectangular or
indicator function x(o,3) which takes the value 1 in the interval [0,1) and the
value O elsewhere. The corresponding wavelet is the Haar function which takes
the value 1in [0, 1) and —1 in the interval [3,1). The associated multiresolution
spaces V(;) are the piccewise constant functions or splines of order zero. Other
examples arc the orthogonal spline scaling functions and their corresponding
orthogonal spline wavelets which have been found independently by Lemarié
and Battle ([5] and [16}).

Another important scaling function is the sinc function ( i.e., the impulse
response of the ideal lowpass filter) uscd in the Shannon’s Sampling Theory.
The associated wavelet is a modulated sinc (the ideal bandpass filter) ({15],
[21]). The link between Shannon Sampling Theory and polynomial splines ap-
proximations can be found in some of our previous work ([2] and [27]). The
theory for discrete signals has also been considered by Aldroubi et al. ([3] and

14])-

§4. Nonorthogonal scaling functions and wavelets

A uscful and constructive method to build a multiresolution structure is
to start with a scaling function ¢ and use Equations (10) and (11) to define
the subspaces V{;y. Clearly, the scaling function cannot be chosen arbitrarily.
In fact, because Viqy C Vigy, there must be a scquence u(k) that relates the
dilated function ¢ and the scaling function ¢:

¢2(z) = (u* ¢)(x), (16)
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where the * is the mixed convolution defined by Equation (2). The sequence
u(k) in the relation will be called the generating sequence and the relation is
usually referred to as the two scale relation.

Sufficient conditions on u(k) and its Fourier transform U(f) as well as a
method of constructing the orthogonal scaling function can be found in [17).
Fast algorithms for computing the projections onto the corresponding spaces
V(;) and W,y are described in [18]. The construction method as well as the
computational algorithms are closely related to the multirate filter banks de-
veloped in signal processing ([12] and [30]).

If we drop the orthogonality constraint and require only that
{279/2¢(279z — k) : k € ZZ} be an unconditional basis of V(;) then we can
start from a sequence u(k) with Fourier transform U(f) and, similarly to [17],
construct a scaling function A with Fourier transform L(f) as described in the
following proposition:

o0

Proposition 1. Let U(f) = 5. wu(k)e™**"*f be such that:
k=—00
27 2U0)] =1, (17)
272U £ 1, (18)
U(f) 71" 0, v f € [_1/47 1/4]1 (19)
[Tzl ), (20)
=1
L(f) = O(f17'7), (21)

then L(f) is the Fourier transform of a scaling function A which generates a
muitiresolution Vi;y(\) as in Equations (10) and (11).

The conditions in Proposition 1 are the same as the one given by Mallat in
[17] except that we have droped the Quadrature Mirror Filter requirement and
added Equation (21). Except for the technical condition (19), all the others can
be inferred by taking the Fourier transform of Equation (16) and solving for
L(f). Condition (21) is a regularity requirement which implies the continuity
of the function A.

The set {279/2A\(277z — k) : k € Z} generated from a scaling function
obtained by the procedure of Proposition 1 are not necessarily orthogonal. If
U(f) is chosen to be real and symmetric then A will also be real and symmetric.
Moreover, if w(k) has finitely many nonzero values then A will have compact
support; i.e., A(z) will be zero outside a closed bounded set [13]. Nonorthogonal
scaling functions and wavelets using splines were proposed by Chui and Wang
(19], [10], and [11]) and, in the context of signal processing, by Unser et al.
(124], [27), and [28)).
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4.1. Law of composition of scaling functions

It should be noted that, if Uy (f) and Uz(f) are the Fourier transforms
of two sequences satisfying the conditions of Proposition 1 then so does their
weighted product :

U=Uiel; =2_1/2U1U2. (22)

This remark depicts an obvious algebraic structure which we state in the fol-
lowing proposition.

Proposition 2. The product (22) defincs an internal law of composition for the

set G which consists of all scquences satisfying the conditions of Proposition
1,

Using the property that the Fourier transform converts a convolution prod-
uct into a multiplication product, this last proposition allows us to use con-
volution to gencrate new scaling functions. Thus, the convolution A x ¢ of two
scaling functions A and ¢ generated by the sequences uy(k) and uz(k) is also
a scaling function gencrated by the discrete convolution ui * ug. An interest-
ing property is that the new function A * ¢ is more regular than its individual
constitutive atoms A and ¢. In fact, if A is vy regular and ¢ is ro regular, then
A * ¢ has 17y regularity. Another interesting property is that if Uy(f) has a
zero of order p; at f = 1/2 and Ux(f) has a zero of order pp at f = 1/2 then
Ur(f)U2(f) has zcro of order pyp; at f = 1/2. This implies that the degree
of the polynomials that can be exactly represented in terms of A x ¢ is pip2
instead of p; if the representation X is used or pe if ¢ is used [22].

Also, there are uscful propertics that are invariant under convolution. For
instance, symmetry is preserved; ie., if A and ¢ are symmetric then A * ¢ is
also symmetric. Moreover, if A and ¢ have compact support, then A * ¢ have
compact support as well.

4.2. Equivalent scaling functions

It should be noted that two non-identical scaling functions may generate
the same multiresolution V{;y. In fact, given a scaling function A that generates
the multiresolution V{;y(A), we can use the mixed convolution to construct
another function ¢ gencrating the same multiresolution V(;)(A) = V(5 (p).
This is done by convolving A with an invertible convolution operator p(k) on
Iz (mixed convolution as in Equation (2)):

p(z) = (p* N)(z). (23)

Thus, the sct of scaling functions can be partitioned into equivalence classes by
the relation that associates two scaling functions whenever they generate the
same multiresolution. Morcover, two scaling functions belonging to the same
equivalence class are always related by Equation (23).

As an example, we can choose p to be the inverse of the operator-square-
root of the autocorrelation function a(k) of A:

p(k) = (a) 7/ (k), (24)
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a(k) = (A * N)(k), ke, (25)

where the operator-square-root a'/? is such that a(k) = (a*/* x a*/?)(k). For
this choice of p we obtain the orthogonal scaling function ¢ of Stéphane Mallat,
To verify this claim, a simple calculation will show that:

, k=0

(¢+a")(k) = (26)
0, k==1,42, .

which is equivalent to the orthogonality condition.

4.3. Nonorthogonal wavelets

Similarly to the case of scaling functions, there are infinitely many ways
to choose a wavelet w so that {277/%w(2 7z — k) : k € Z} is a basis of Wiy
However, although {277/2w(2772 — k) : k € ZZ} are not necessarily orthogonal
at a given level 7, they retain the orthogonality between two wavelet spaces
at different resolutions. The reason for this is that W,y is still the orthogonal
complement of V{,y relative to V{;_1.

Since W;y is included in the space Vi;_;), any wavelet function w gener-
ating W{;) can be expressed in terms of the scaling function A generating V.
For our purpose, we begin by choosing the basic wavelet p defined by:

oo

2-1/2(2/2) = po(z) = Z (6, @' * a)(k)A(z — k), (27)

k=—00

where §; is the unit pulse centered at 1 (ie, 8:(1) = 1 and &;(k) = 0 for
k £ 1), where a(k) is the sampled autocorrelation of A as in (25), and where
u(k) is its generating sequence. An interesting property of the construction
(27) is that if the generating sequence u(k) has finitely many nonzero values,
then the wavelet 1 has compact support.

To obtain other wavelet functions w generating the same spaces Wi, we
use an invertible convolution opcrator g(k) on I as in (23) to get:

w(z) = (g* p)(z). (28)

For example, we can choose ¢ to obtain the orthonormal wavelet function 1 of
Mallat:

N —1/2
alk) = (axlaxal,) (k) (20)
where a is the sampled autocorrelation function defined by (25) where & is the

modulation of a as defined by Equation (7) and where the decimation operator
[.]12 is defined by Equation (8).
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§5. Families of scaling and wavelet functions

As we have mentioned in Subscetion 4.1, we can generate new multires-
olution structurcs simply by convolution of known scaling functions. We can
even start with a single function and gencrate, by repeated convolution, an
infinite sequence of scaling functions. Well known cascs that can be obtained
in this fashion are the B-spline functions 8"(z) of order n, which are used as
basis for generating certain polynomial spline function spaces. In fact, it is the
structure and propertics of B-spline functions that motivated part of this work.
In this sense, the constructions that follow can be viewed as a generalization
of polynomial splines.

5.1. Basic scaling functions and wavelets
We start with a scaling function X and generate, by convolution, a sequence
of increasingly regular scaling functions A™ as follows:

A*(x) = A* A% Ax..* A (n— 1 convolution). (30)

These functions will be called the basic scaling functions of order n. For each
A", there is a corresponding basic wavelet function p™ obtained from the con-
struction (27):

oC
272 f2) = pp () = Y (Bux @™ x @) (K)AM (@ — k), (31)
k=—o0
a(k) = (A"« A¥)(k), VkelZ, (32)
u" =27 D 2 k. xw, (n—1 discrete convolutions). (33)

The remarks of Subsection of 4.1 imply that the regularity of the scaling func-
tion A™ and the wavclet p™ increases with increasing values of the order n.
Also, if the starting generating sequence w is finite then the basic scaling and
wavelet functions A® and g™ have compact support. Morcover, A™ and u™ will
be “lincar phase” (have a vertical axe of symmetry) if u has a vertical axe of
symmetry. This property is relevant in signal processing for obtaining repre-
sentations that have no phase distortions.

5.2, Cardinal families of scaling functions and wavelets

The basic scaling functions A" ane the corresponding wavelets p™ gener-
ate the multiresolution spaces Vi and the wavelet spaces Wiy We can use
Equations (23) and (28) to create other scaling functions and wavelets associ-
ated with the same multiresolution spaces V- A particular scaling function
of interest to us is the cardinal scaling function ™ which has zeros at all the
integers except at the origin where its value is 1

wien o« m_ J1 k=0
n" (k) = bp(k) = {() k=41,£2, ... 39
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The expression of the cardinal scaling function in terms of A™ is given by:
n*(z) = (7)1« A") (=), (35)

br(k) = A"(k), Y ke Z. (36)

An associated wavelet which has the same property (34) as the cardinal
scaling function is the cardinal wavelet given by:

2722 /2) = i (o) = (["la * 13 (@), (37)

-1
(k) = 2-1/2 ([51 AL &”hz) (k) YkeZ, (38)

where u¥ is the basic wavelet in Equation (31).

An important property of a cardinal representation of a signal s is that the
expansion coefficients in the representation are precisely equal to its sampled
values. This implies that the expansion coefficients can themselves be viewed
as a faithful representation of the sampled signal s(k), k € ZZ. This property
will be further discussed in Section 6.

5.3. Orthogonal families of scaling functions and wavelets

Another family of interest is the orthogonal scaling sequence ¢™. It is
obtained from the basic sequence A" using Equations (23)-(25) as follows:

#"(@) = (@72 2") (2), (39)

a*(k) = (A" x A)(k), Y k€ Z. (40)

The corresponding orthogonal wavelet 9™ is obtained from the basic
wavelet ™ using Equations (28) and (29):

¥3(@) = (0", 43 (@), (41)

where

o™ (k) = (a" * (3" * a"]w)—l/2 (k), VkeZ. (42)
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5.4. Examples using polynomial splines

Polynomial spline functions of order m are C™-! functions that are formed
by patching together polynomials of degree m at grid points called the knot
points. Here, we will only consider uniformly spaced knot points. In this case,
Schoenberg in a remarkable paper shows that any polynomial spline function
s(zx) of order m can be represented in terms of a unique bell shaped function
B™(z); the B-splinc function of order m [20]. As an example, when the grid is
ZZ, s(z) can be written as :

o0

@)= 3 (k)™ (@ — k), (43)

k=—oc
where the symmetric B-spline #™(2) is given by:
B™(x) = (B°« B * -+ ¥ §%)(x), (m convolution), (44)

and where 8°(z) is the rectangular function rect(x) defined by Equation (47).

The fact that spline functions are constructed from pieces of polynomials
and that they can be casily represented by compactly supported functions
B™(z) makes them computationally, as well as theoretically, very attractive.
Moreover, it can be casily shown that, for m odd, g™ (z) are scaling functions.
For m even, the shifted functions ™ (z—1/2) are also scaling functions. In fact,
there are numerous cxamples of spline scaling functions and spline wavelets.
The simplest of all, the Haar basis function used in the Haar transform, is a
spline wavelet of order zero. The Lemarié and Battle orthogonal scaling and
wavelet functions are splines of order m ({5 and [16]). For m = 2n+1, they can
be obtained from the tent function 7 = g1 by substituting 7 for A in Equations
(39)-(42). The gencrating sequence w for the tent function 7 (see Equation
(16)) is given by:

2—1/2, k=0
u(k) = ¢ 2732, k=+1 (45)
0, otherwise

Nonorthogonal spline scaling and wavelet functions with various desired prop-
erties have also been proposed ([7-11], [24-25), and (27]). For example the car-
dinal spline functions and wavclets are obtained by replacing A™ in Equations
(35)-(38) by 7. The basic spline wavelets proposed by Chui and Wang [11]
and by Unser et al. [24] arc obtained from Equation (31) by replacing A" by
T",

§6. Multiresolution families and Shannon’s Sampling Theory

Shannon’s Sampling Theory describes how to process a function before a
uniform sampling. The goal is to “best” reconstruct the original function from
the sample values. Clearly, there arc many different functions having the same
sample values. Thus, it is important to describe the class of functions that are
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fully characterized by a uniform sampling. This class is the sct of bandlimited
functions (i.e., functions that have a compactly supported Fourier transforms).
In particular, a function s(z) with Fourier transform S(f) supported in [—%, %
(ie, S(f) =0,Vf ¢ [-3, 3]) can be recovered from its samples s(k), k € Z,
using the sinc-interpolation:
oo
s(z) = Z s(k)sinc(z —~ k). (46)

k=—00

where sinc(z) = sin{nz)/mz. Equivalently, S(f) can be recovered by multiply-
ing the Fourier transform of the sampled sequence with the ideal lowpass filter.
" The ideal lowpass filter is the rect function :

L, Ifl<1/2
rect(f) = (47)
0, elsewhere.

In general, however, the functions to be represented by their samples are
not band-limited. To address this problem, the functions are first preprocessed.
This is done by first applying an idcal lowpass filter, thus forcing them to
be bandlimited before the sampling. The whole process, which is depicted in
Figure 1, is what is known as Shannon’s Sampling Theory.

Ideal lowpass Ideal lowpass

g(x) 8. (x)

2 f

Sampling

Figure 1. Block diagram for Shannon’s sampling procedure. The function
g is prefilter by the ideal lowpass filter before sampling. The reconstruction
g0y is obtained from the samples by a sccond ideal lowpass filtering.

6.1. Multiresolution interpretation of Shannon’ Sampling Theory

If we consider the subspace of Lo generated by the span of all the shifted
sinc functions:

Vioy = {v cv(z) = Z clk)sine(x — k), ce lz} , (48)

k=—oo

then, Shannon’s Sampling Theory is equivalent to the least square approxima-
tion of L in Vig). Taking this point of view, the whole procedure in Figure 1
applied to a function g is expressed as:

goy(z) = Z (g * sinc)(k)sinc(x). (49)

k=—00
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In fact, this interpretation was suggested by Shannon in his original paper [21].

It is easy to show that the sinc function is a scaling function. Thus, by
defining ¢(z) := sinc(z) in Equations (10) and (11}, we generate a multiresolu-
tion structure V{;) of L. Since the sinc function vanishes at all integers except
at the origin, the coefficients (g * sinc)(k) in Equation (49) are exactly equal
to the samples of the approximation gy (k). Because of this property, the sinc
function is a cardinal scaling function and the resolution associated with it
is a cardinal multircsolution. Interestingly enough, sinc is also an orthogonal
scaling function.

6.2. Generalized sampling theory

By adopting the previous interpretations, we can generalize Shannon’s
Sampling Theory. This is achicved simply by using an arbitrary scaling function
@. The whole sampling procedure applied to a function g is reduced to finding
the Ly projection of g on the space Vigy(¢):

k=—o0

Viole) = {v cv(z) = i c(k)p(x — k), cé€ lg} . (50)

By computing the projection of g and by making the appropriate identification
we get:
i o}
golx)= Y (gxP)k)e(z), (51)

k=—00

where Q(Z? is also called the dual of ¢ and is given by:
P(a) = (@) * ))(a), (52)

a(k) = (pxo")(k), VEkeZ. (53)

In this context, the function g is first preprocessed using thg prefilter with
impulse response © and then sampled. The sample values (g * ¥)(k) can then
be used to reconstruct the “best” (least square) approximation g(oy of g given
by Equation (51).

By analogy with Shannon’s Sampling Theory, we can say that the func-
tions that arc fully characterized by their sample values are the p-limited
functions (i.e., the class that is described by Equation (50)).

Finally, the assumption that ¢ bec a scaling function is in no way crucial
to the gencralization. The only important requirement is that the space Vo(i)
be a closed subspace of L.
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6.3. Sampling with cardinal and orthogonal functions

It should be noted that, in general, the samples (g * s%)(k:) are not equal
to the sampled approximation gio)(k). If we require equality, then we need
to replace ¢ in Equations (50)-(53) by the cardinal scaling function 5. The
function n vanishes at all integers except at 0 where it takes the value 1. It can
be obtained from  as described by Equations (35) and (36):

n(z) = ((6)"! * ¢) (), (54)
b(k) = p(k), VkeZ (55)

More generally, starting from a scaling function A, we obtain a sequence
of cardinal scaling functions 7™ by using Equations (30), (35), and (36). If we
replace ¢ in Equations (50)-(53) by ™, we obtain a cardinal sampling proce-
dure for each member of the family. In fact, under the appropriate conditions
on A, the sequence of cardinal sampling procedures tends to the scheme of
Shannon as n goes to infinity. This result, which further emphasizes the link
with Shannon’s Sampling Theory is stated in the following theorem.

Theorem 3. Let A(x) be a scaling function and L(f) its Fourier transform.
Let n™ be the sequence of cardinal scaling functions generated by Equations
(35) and (36) and let 1™ be the corresponding duals. If the Fourier transform
L(f) of X(z) satisfies:

LA > 1L(f 0, Yie(-1/21/2VieZ i£0,  (50)
s 'I‘g—(;)fﬂ <oo, feE(-1/2,1/2), (57)

then the filters H"™(f) and H "(f) corresponding to n™ and 7™ converge to the
ideal lowpass filter as the order n tends to infinity:

lim H™(f) = rect(f), (58)
lim H™(f) = rect(f). (59)

With a few more conditions on the scaling function, L, convergence can
also be obtained as in the case of polynomial splines ([2] and [28]). Conditions
(56) and (57) essentially mean that L(f) is a non-ideal lowpass filter in the
frequency band (—%, 3). They can be satisfied by appropriately choosing U(f)
(e.g., U(f) smooth and U(f) monotonically decreasing). The theorem can be
viewed as stating that the ideal lowpass filter can be approximated as closely as
needed by the sequences 5™ and 7. These are obtained by repeated convoly-
tions and a simple correction of a single non-ideal lowpass filter. Moreover, by
the remarks in Subsection 4.1, 7™ and 7" increase their regularity (smoothness)
with increasing values of n.
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Instead of cardinal scaling functions ™, we can select orthogonal scal-
ing functions ¢™ (ie., {277/2¢(277z — k) } .5 is an orthogonal set). They are
obtained from A using Equations (39) and (40). As previously noted, this or-
thogonality property also holds for the sinc scaling function. An interesting
property of orthogonal functions is that they are equal to the reflection of
their duals. This means that the preprocessing and the reconstruction filters in
the sampling procedure are the same. Similarly to the cardinal scaling family,
the Fourier transforms of the sequence ¢™ also tend to the ideal lowpass filter
as n goes to infinity. It can also be shown that the Fourier transforms of the
cardinal and orthogonal wavclets (37) and (41) tend to the ideal bandpass filter
as the order n gocs to infinity.

In Figure 2, spline scaling functions are used to illustrate the extension to
Shannon’s theory and the above theorem. This figure shows the totality of the
sampling and representation procedure; it consists of a prefiltering followed by a
sampling and finally a reconstruction using a postfilter. As can be seen from the
graphs, the cardinal and orthogonal spline filters of order 3 are already a good
approximations to the ideal filter. The graphs also show that the orthogonal
filters and their duals are equal.

g(x) | o [% © goxx)

Sampling

Q

(A) Cardinal spline filters

H(f)

(B) Orthogonal spline filtars

H o
\ n
- \i  F(f)

f

2

Figure 2. Block diagram for the general sampling theory.
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Graph (A) corresponds to the cardinal spline filters and Graph (B) cor-
responds to the Orthogonal spline filters. The filters of order n = 1 are drawn
with a continuous lincs, the ones of order n = 3 are in dashed lines (- - - -)
and the ideal lowpass filter is in dotted line (- ).

?

§7. Multiresolution families in connection with Gabor transform

An important property of wavelets is that they are localized in both space
(or time) and in frequency. This property is useful because a decomposition
of a signal in terms of a wavelet w determines the signal frequency content
at “each” location in space (or time). A measure of the time and frequency
localization of a function is given by the product of the standard deviations of
its squared modulus and the squared modulus of its Fouricr transform. This
measure is bounded below by the constant (47)~2 [14]. The lower bound cannot
be achieved by any wavelet. The only time-frequency optimal functions that
achieve the lower bound are the Gabor functions:

\/21_M exp (—%ﬁ) . (60)

These are modulated Gaussian functions with four parameters: the offset g,
the standard deviation o, the modulation frequency €2, and the phase shift 8.
All the parameters can be chosen arbitrarily.

It can be shown that there are no values of the parameters that can force
the corresponding function to form a wavelet basis of La. Moreover, this also
holds for the real and complex parts of Gabor functions, even though it is
still possible to create a sequence of wavelets that approaches the real part of
Gabor functions as close as we choose. One way of doing this is by choosing
the nonorthogonal family of wavelets given by Equation (31). This family is
easy to construct since the only operations that are involved are: convolutions,
discrete modulations and a single reflection. The way in which this family tends
to the real part of a Gabor function as the order n tends to infinity is stated
in the following theorem.

9(z) = exp (iQz — zo) — 10)

Theorem 4. Let A be a scaling function, L(f) its Fouricr transform and u(k)
the corresponding generating function. Let u be the sequence of nonorthogo-
nal scaling function gencrated by Equations (31), (32), and (33). Let U(f) be
symmetric and U(—1/2) = 0. Furthermore assume that :

ILIAI>ILUf =D, YV fe(-1/2,1/2),YieZ i#0, (61)
2L —i=1/2) < oo, (62)

then the Fourier transforms G} = e*2™f MZ(F) of §_1 %} have the convergence
property given by
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Az (% (e 1)) = oo

where Z(f), fo € (—3,1), and o are given by

Z(fy=2""20(f - 1/QLNILP( - 1/2), (64)

Z(fo) > 1Z(H)l, YV feR f# fo (65)
d*z 5

Ff"z— P = —(27T00) Z(fg) (66)

The conditions that U(f) be symmetric and U(1/2) = 0 are not restrictiv?.
The first is simply the requircment that A be real symmetric. The second is
a standard condition that is usually desirable as mentioned in Subsection 4.1.
Conditions (61) and (62) constitute the requirement that L(f) essentially be
a lowpass filter in the frequency band (—32,2). They can be met by choosing

U(f) appropriately ( e.g., U(f) smooth and decreasing). Roughly speaking, the
theorem statcs that the basic wavelet of order n is essentially the real part of
a Gabor function. It is centered at the origin, its standard deviation is n'%aq
and its modulation frequency is 2 = 2x foon'/2. If (63) also holds in Lz then
Parseval identity gives us that

- Ly Cos@nfosovz) 2Py o
G )),;5_1*10 ((ocovn)z) > NGYs ° p( 2) (o0

It should be noted that the sequence of wavelets satisfying the conditiorfs
of the theorem above is symmectric. They also have linear phase, and their
regularity increases with increasing values of the order n. Moreover, if the
gencrating sequence u(k) is finite, then the wavelets have compact support
(see Subsection 4.1).

As a particular casc, the B-spline wavelets proposed in ([11] and [26]) can
be obtained by replacing A™ in Equations (30)-(33) by the function 7™ defined
in Subsection 5.4. They satisfy all the properties of Theorem 4 and converge
to the real part of the Gabor function with frequency fo 22 0.41. Moreover, the
convergence (63) is in all L, norms and (67) holds in Lg for q € [2, 00) [26].

Figure 3 illustrates the basic B-spline wavelets and their relation to th'e
real part of Gabor functions. Even though the theorem is only an asymptgtlc
result, the graph already shows a very good agreement between the B-spline
wavelet of order 3 and its Gabor limit. In fact, the time-frequency localization
measure defined at the beginning of this section is found to be within 2% of
the optimal number (27)72.
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Al
VY

Figure 3. Gabor function (dashed lines) and the Basic spline function of
order n = 3 (continuous line).

]

§8. Concluding remarks

Multiresolutions and the related wavelet representations offer an infinite
variety of signal representations. Which one to choose depends on the applica-
tion. As we have shown here, we have an easy procedure to construct scaling
and wavelet functions that have certain desired properties. We only need to
start from a generating sequence or a scaling function. Then, by using sim-
ple convolutions and appropriate corrections, we obtain multiresolution and
wavelet transforms with some special chosen features. For example, we can
construct arbitrarily regular cardinal and orthogonal functions that are linear
phase. Also, we can construct smooth wavelets that tend to a Gabor functions
and cardinal sequences that tend to the ideal filters of Shannon. The techniques
that we have developed here are general. They can be easily adapted to obtain
scaling and wavelets functions with some special features other than the ones
presented in this chapter.
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