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ABSTRACT

Under suitable conditions, if the scaling functions ¢; and ¢, gen-
erate the multiresolutions V;)(¢;) and V;)(¢,), then their con-
volution ¢, * ¢, also generates a multiresolution V| ;,(¢, * ¢,). More-
over, if p is an appropriate convolution operator from /, into itself
and if ¢ is a scaling function generating the multiresolution V;,(¢),
then p * ¢ is a scaling function generating the same multiresolution
Vi) = V(p*¢). Using these two properties, we group the
scaling and wavelet functions into equivalent classes and consider
various equivalent basis functions of the associated function spaces.
We use the n-fold convolution product to construct sequences of
multiresolution and wavelet spaces V/;)(¢") and W ,,(¢") with in-
creasing regularity. We discuss the link between multiresolution
analysis and Shannon’s sampling theory. We then show that the
interpolating and orthogonal pre- and post-filters associated with
the multiresolution sequence V,)(¢") asymptotically converge to
the ideal lowpass filter of Shannon. We also prove that the filters
associated with the sequence of wavelet spaces W ,(¢") converge
to the ideal bandpass filter. Finally, we construct the basic wavelet
sequences {7 and show that they tend to Gabor functions. This
provides wavelets that are nearly time-frequency optimal. The the-
ory is illustrated with the example of polynomial splines.
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1. INTRODUCTION

Digital signal processing requires a means by which to represent functions defined
on R in terms of discrete sequences and vice versa [57]. This is one of the reasons
for which the classical Shannon-Whittaker Sampling Theorem [48, 55] has become
popular in applied mathematics and engineering. It states that bandlimited L,
functions (i.e., L, functions that have compactly supported Fourier transforms)
are completely characterized by their samples, as long as the sampling rate is
sufficiently fast. In particular, if the Fourier transform S(f) of the real valued
function s is such that Support(S(f)) C [—3, 3], then s can be recovered from its
samples {s(k)},cz by the interpolation formula

i=+x
s(x) = > s(i)sinc(x — i), 1)
where sinc(x) = sin(mx)/mx.

Another method to discretize signals utilizes the canonical Gabor transforms
which represent a signal by a weighted sum of modulated Gaussian functions [9,
26]. These functions are optimally localized in both time (space) and frequency
(see Section 6). This implies that the weighting coefficients, which form the discrete
representation, are the “best” description of how the different portions of the
signal contribute to the various frequency bands (more details in Section 6).

More recently, the concepts of multiresolution analysis and discrete wavelet
transforms have offered an infinite variety of discrete representations [4, 9, 15, 19,
21, 24, 27, 34, 37, 40, 45, 49, 53]. Specifically, a signal s € L, is represented in
terms of dilations and translations of a single wavelet function

s(x) = ’EEZ kgz 272 d (k)2 — k). 2)

The coefficients d; (k) form the discrete representation. Roughly speaking, each
coefficient d;(k) corresponds to a time interval of about [2/(k — 3), 2/(k + )]
and to a frequency band of about [-2~/, —2~/=1] U [2-/~1, 2~/]. Thus, this
representation has the desirable property of being localized in both the time (space)
and the frequency domains. However, no wavelet representation can achieve the
optimal time-frequency localization of a canonical Gabor transform [8, 10, 22].

In this paper, we present a unified view of digital signal representation the-
ories. First, we construct a set of scaling functions in which the convolution product
is an internal law of composition. This set and the set of corresponding wavelets
are then partitioned using convolution operators associated with the discrete space
l,. Second, we construct sequences of scaling functions ¢” and wavelets " whose
regularity increases with n. In particular, we study the properties of the basic,
orthogonal, interpolating, and dual-interpolating sequences. We then use them to
create “Shannon-type” and ‘“Gabor-type” scaling and wavelet functions. A sim-
plified version of these results appears, without proofs, in our Chapter [3].

This paper is organized as follows. In Section 2, we introduce some definitions
and notation. In Section 3, we construct a class of scaling functions and wavelets
in which the convolution is an internal law of composition for the scaling functions.
We then study the algebraic properties induced by this internal convolution product
and by the external convolution product between a function from the class and a
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discrete sequence {p(k)},ez from L. In Section 4, we introduce the n-fold convo-
lution sequences of scaling functions and their associated wavelets. These are the
natural extensions of the B-spline scaling functions and the B-spline wavelets of
order n [17, 50]. In Section 5, we review the approximation-sampling procedures,
which are extensions of the classical sampling procedure of Shannon [2]. We then
relate these techniques to the multiresolution analysis of L,. In particular, we show
that the pre- and post-filters associated with the orthogonal, interpolating, and
dual-interpolating sequences of scaling functions (resp., wavelets) converge to the
ideal lowpass filter (resp., bandpass filter). In Section 6, we show that the basic
sequences converge to the real part of the canonical Gabor functions as n goes to
infinity. This further emphasizes the link between the different representations and
allows us to construct wavelets that are nearly time-frequency optimal (see Sec-
tion 6).

2. DEFINITIONS AND NOTATION

The signals considered here are real valued functions defined on R. They belong
to the space of measurable, square-integrable functions L, with the usual norm
lI-ll.,- We also consider the Sobolev spaces W’ which consist of L, functions with
r distributional derivatives in L, [1]. The space of real-valued square-summable
sequences (discrete functions) is denoted by /.

The symbol “+” will be used for three slightly different binary operations that
are defined below: the convolution, the mixed convolution, and the discrete con-
volution. The ambiguity should be easily resolved from the context.

For two functions f and g defined on R, * denotes the usual convolution

+x

(f*e)(x) =) f(O)glx —§de xER (3)

The mixed convolution between a sequence {b(k)},cz and a function f defined on
R is the function b = f defined on R that is given by

k= +x

(b+f)x) = > bk)fx —k) xER (4)

k= —x

The discrete convolution between two sequences a and b is the sequence a*b given
by

k=+x

(a=b)(l) = k}) alk)b(l — k) 1€z (5)

A filter A(f) is the Fourier transform of a function \ that defines a bounded
convolution operator on L:

NgEL, > \xgEL, (6)
Since the convolution product A * g becomes a multiplication product Xg in Fourier

space, the filter A selectively alters the frequency components of §.
Whenever it exits, the convolution inverse (b) ! of a sequence b is defined to be

((B)~'*b)(k) = o(k) 9
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where 9, is the unit impulse located at i, i.e., (i) = 1, and 3,(k) = O for k + i.
The reflection of a function f (resp., a sequence b) is the function fV (resp., the
sequence bY) given by
f'x) = f(-x)  VxeR ®)
bV(k) = b(-k) VkeZ 9)

The modulation b(k) of a sequence b is obtained by changing the signs of the odd
components of b:

bk) = (—1)*b(k) (10)

The decimation (or down-sampling) operator by a factor of two [-], , assigns to a
sequence b the sequence [b], , which consists of the even components of b only:

(6] ,2(k) = b(2k) VkEZ (11)

3. MULTIRESOLUTIONS OF L,

A multiresolution of L,, introduced by S. Mallat and Y. Meyer [36, 39], is a set
of subspaces {V/;)};cz of L, that are generated by dilating and translating a single
function o

Vi(®o) = {viv(x) = ;E:Z 2772¢(k)@o(27/x — k), ¢(;) € 12}. (12)

The spaces V|;, induced by the orthonormal basis {27/2¢y(27/x — k)},cz must
satisfy the conditions:

l) ClOS (V(O)) = V(O) C L2
i) Vi) € Vi

jEZ
iv) NV, = {0}
j€Z

The function ¢, in (12) is called an orthogonal scaling function.

Obviously, if V(;) C V{;, then the orthogonal projections s, of a function s
in L, is a coarser approximation of s than the projection s;,. Thus, Properties (i),
(i) and (iii) allow us to approximate a function to any desired accuracy by taking
an appropriate approximation space V;,. In contrast, Property (iv) states that
coarser and coarser approximations will eventually lose all the information about
the original function.

The orthogonal complement of V;, relative to V|, _,, is the associated wavelet
space W,y

Wi ® Vi = Vi (13)
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It is generated by the orthonormal basis {27/2y(27/x — k)},cz induced by the
orthogonal wavelet function s, [36, 40]:

W) = {w:w(x) = kzz 272 d (kW2 7x = k), d;) € 12} (14)

The difference between the two approximations s(;, and s(;_,, of a function s is
equal to the orthogonal projection of s on W;,. From Property (iii), it follows that
they constitute a direct sum of L,:

L, =W, = @®Wy,®W,®W_,,d - (15)
J

Thus, the discrete wavelet representation of a function s consists of the sequences
{---d_1), d), day, ---} (in Eq. (14)) which are obtained from the orthogonal
projection of s on {W,)};cz.

Remark 3.1: The only wavelet functions that we will consider here are those
that are associated with multiresolution structures. Another weak definition can
be found in [35].

3.1. Equivalent Classes of Scaling Functions and Wavelets

A function ¢ is a scaling function if {¢(x — k)};cz is an unconditional Riesz-
Schauder basis of V). The set {¢(x — k)},ez is not required to be orthogonal.
The only requirement is that ¢ must generate the spaces V/;, as in (12) by replacing
¢o by ¢ [15]. Clearly, two nonidentical scaling functions ¢; # ¢, may generate
the same multiresolution V;(¢;) = V(;)(¢,). Depending on the application, a
particular choice of ¢ may have advantages over others (e.g., axially symmetric,
interpolating, time-frequency localized, . . .).

The set of scaling functions can be partitioned into equivalence classes by the
relation = that associates two functions whenever they generate the same space.
In fact, given a scaling function ¢, we can use the mixed convolution (4) to construct
an equivalent scaling function ¢_. This is done by convolving ¢ with a sequence

p:
¢~(x) = (p*e)(x) (16)

where p is an invertible convolution operator from /, into itself. A possible sequence
p is one which has a Fourier transform P(f) satisfying P(f) € L.., and essinf|P(f)|
= m > 0. The first condition implies that p is in /,. The second condition implies
that (P(f))~'is in L, [0, 1]. Therefore, it is the Fourier transform of a sequence
(p) ! which is the convolution inverse of p (i.e., p*(p)~! = §,). Using Plancherel
Theorem, it then follows that if ¢ € ,, then

m|cl|7, = llp*clly, = fo |P(NCHI df = |IPIZ llcllZ, (17)

Thus we have the simple proposition:

Proposition 1: Let p(k) be a sequence and P(f) its Fourier transform. If
P(f) € L. and if essinf| P(f)| > 0 then p defines a convolution operator on /, which
is bounded and which has a bounded convolution inverse (p) 1.
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Remark 3.2: Clearly, if P(f) is continuous and nonzero on [0, 1], then p
satisfies the conditions of the proposition above. The converse of Proposition 1 is
also true [2]. :

Equation (16) allows us (by choosing a bounded invertible convolution op-
erator on 1,) to create different scaling functions generating the same spaces V).
In fact, if ¢, and ¢, are two scaling functions for the same multiresolution V/;,
then there exist two sequences p € I, and g € [, such that ¢,(x) and (p*¢,)(x),
and that ¢,(x) = (g*¢,)(x). It follows that ¢,(x) = (g*p=*¢;)(x). This implies that
pxq = &, Thus, g = (p)~ ! is the convolution inverse of p. Moreover, since
{¢:(x — k)}ez and {@,(x — k)},ez are unconditional bases of V,, we have that

myllpcll, = (c*p @)X, = e @)Xz, = My licll, (18)

where m, and M, are two positive constants. Thus we have proven:

Proposition 2: The functions ¢, and ¢, are two scaling functions generating
the same multiresolution structure {V;)};cz, if and only if there exist two sequences,
p € L, and its convolution inverse (p) ' € L, defining bounded convolution op-
erators on /, such that

ex) = (p*e)(x) (19)

Remark 3.3: If the scaling functions (resp., wavelets) are required to have
compact support or to have exponential decay, then p must be restricted. For this
case, necessary and sufficient conditions on p have been established by C. K. Chui
and J. Z. Wang in [16].

All of our results for the scaling functions are also valid for the wavelets.
Thus, they can be partitioned into equivalent classes. Moreover, given a wavelet
¥ generating the spaces W, ,),‘ we can construct an equivalent wavelet . simply by
replacing ¢ in Equation (16) by . Clearly, Proposition 2 is also valid for wavelet
functions.

3.2. The Basic Scaling Function

A constructive method to obtain a multiresolution is to start with a scaling function
¢ and use Equation (12) to define the subspaces V;,(¢). Obviously, the scaling
function cannot be chosen arbitrarily. In fact, since V(;, C V), there must be a
sequence u(k) that relates the dilated function ¢(x/2) and the scaling function ¢:

2712 (’5‘) = (o)) (20)

where “+” is the mixed convolution defined by (4). The sequence u(k) in (20) is
called the generating sequence and Relation (20) is usually referred to as the two-
scale relation.

Sufficient conditions on u(k) and its Fourier transform U(f), as well as a
method of constructing the orthogonal scaling function, can be found in a theorem
by S. Mallat [36, Theorem 2]. In order to obtain a class of scaling functions in
which the convolution is an internal law of composition, we have to devise a
variation.
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Theorem 3: Let u(k) be a sequence such that u(k) = O(k~2) and let U(f)
= ez u(k)e > denotes its Fourier transform. If U(f) satisfies the conditions

2-12|y(0)| = 1 1)
up+o  vre [—% %] 22)

A —-1/2 f - 1
=120 (L) = ounn > (3)

then L(f) is the Fourier transform of a function ¢ that generates a closed subspace
Vio(¢) of L,. Furthermore, if L(f) € C*(R) and if DOL(f) = O(|f|=*) i =
0, 1,2 with s > 2, then ¢ is a scaling function generating the multiresolution V(o).

The conditions in Theorem 3 are the same as those given by Mallat in [36,
Theorem 2] except that we have removed the Quadrature Mirror Filter require-
ment, added the growth Condition (23), and replaced his regularity conditions by
some smoothness and growth in the Fourier domain. The fact that the infinite
product in (23) makes sense is a direct consequence of a result by 1. Daubechies
[20, Lemma 3.1]. Let D™ denote the nth derivative. Condition (23) and the
other smoothness and growth conditions on the Fourier transform L(f) are reg-
ularity requirements. They imply that ¢ satisfies the decay conditions |@(x)| =
C,(1 + x?)~'and |[DWe(x)| = C5(1 + x?)~'. For faster decay, further smoothness
and decay conditions must be imposed on L(f). Sufficient conditions on the se-
quence u to obtain a desired decay on L(f) have been established by I. Daubechies
[20].

We will call the scaling function ¢ obtained from Theorem 3, the basic scaling
function (sometimes we also denote it ¢,). The set of functions {¢(x — k)},, are
not necessarily orthogonal. If U(f) is chosen to be real symmetric then ¢ will also
be real and symmetric. Moreover, if u(k) has finitely many nonzero values then ¢
will have compact support, i.e., ¢(x) will be zero outside a closed bounded set
[20].

3.2.1. Proof of Theorem 3

The proof of Theorem 3 is based on the lemma and the proposition below.

Lemma 4: If the Fourier transform L(f) of a real function is such that L(f)
€ C'(R), L(f) # OVfE [, 3], and DDL(f) = O(f|-")j = 0,1, . . . n with
r > 3, then the periodic function (2, |L(f — k)|?)~'? belongs to C*(R).

Proof: Let L(f) = X(f) + iY(f). The decay conditions DPL(f) = O(|f|~")
j=0,1,...nwith r >3} imply that DOX(f) = O(|f|~") and that DVY(f) =
olf /) j=0,1,...n
The derivative D®|L(f)|? is given by

DWIL(f)? = 2X(f)DDOX(f) + 2Y(f)DOY(S). (24)

From the equality above, we conclude that DD|L(f)[> = O(|f]~%). Similarly, by
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taking the derivatives of Eq. (24), we get that DD|L(f)|>? = O(|f|"*) j =
0,1, ... n. It follows that the series

> DW|L(f — k)P < Const Y, k=% (25)
kez k=1
converges uniformly for j = 0, 1, ... n. Therefore, the periodic function

S |L(f — k)|* belongs to C*(R). Since L(f) # 0 Vf € [—3/3] we conclude that
3 |L(f — k)[? > 0 and the result follows.

Proposition 5: The function L(f) in Theorem 3 satisfies

sy o 2|+ (t-)

(5 25

Proof: The change of variable x to x/2 gives that for any function A € L,,
we have the identity

1 X X
3062 (5-4), - oo o 7

Clearly, Equation (23) implies that L(2f) = 2~ "2U(f)L(f). From ths equality,
and Equality (27), we obtain using the Fourier transform and simple substitutions

2

(26)

2

—+

[ lwinLippea= ap = [ 1Lippemwrap (28)

We make the change of variable f' = 2f in the integral on the left hand side of
(28) and then rewrite (28) by decomposing R into intervals of length one to get

; f 31U = DL — e df = | 10 - pPe a9

Equality (26) then follows from (29), the fact that U(f) = U(f + 1) and the fact
that {e~ 2™}, - is a basis of L,[0, 1].

Proof of Theorem 3:  Using Lemma 4, the decay conditions on L(f) imply
that the periodic function P(f) given by

P(f) = (Z IL(f - i)lZ) (30)

is C*(R). Therefore, P(f) is the Fourier transform of an /, sequence p. We consider
the function

&(f) = P(f)L(S) (1)

From the expression of L(f), &(f) can be rewritten as

o) = 12720, (£) (32

i=1
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where Uy(f) = U(f)P(2f)/P(f). Using (21) and (22), it follows that |U,(0)] = 1
and Uy(f) # 0, Vf € [—3, 5]. Moreover, using the expression of P(f) given by
(30) and Proposition 5 we get that
1
U, (f - 5)

The smoothness of P(f) together with the smoothness and decay properties
of L(f) imply that &(f) = P( f)L(f) is C? smooth and has the same decay prop-
erties as L(f). The decay of ¢(f) and its two derivatives implies that DW¢ and
DY(if$) are in L, for J = 0,1, 2. We take the inverse Fourier transform of &
and integrate by parts twice to get

2

[Us(NIF + =2 (33)

80 = @m0 2 [ b g (34)

Since ¢ belongs to L,, ¢ is continuous. From this, the fact that ¢" is in L,, and
(34) we conclude that |¢(x)] = Cy(1 + x?)~'. A similar argument implies that
IDD(x)| = C5(1 + x?)~'. These properties of ¢ and the properties of U, that we
have derived are precisely the conditions needed in the Construction Theorem of
Mallat to obtain an orthogonal scaling function ¢ [36, Theorem 2]. Thus ¢ generates
a multiresolution. Proposition 2 and Equation (31) then imply that ¢ generates the
same multiresolution.

3.3. The Basic Wavelet

From the results of Subsection 3.1, we know that there are infinitely many wavelets
that generate the wavelet spaces W, associated with the multiresolution Vi(e).
One such wavelet is the basic wavelet s, which we define in the following prop-
osition:

Proposition 6: If ¢ is a scaling function generating V(@) then the wavelet
spaces W, can be generated by the wavelet function Vs, given by

k= —x
2712y, (’2—‘) = 3 GeaVea®elx - k) (35)
k= —x
where a is the sampled autocorrelation function of ¢:
ak) = (exe")(k) keZ (36)

The symbol “~” denotes the modulation operator as defined by (10), and the
symbol ¥ denotes the reflection operators as defined by (8) and by (9).

The well-known results of Daubechies [20] imply that s, has compact support
whenever the generating sequence u has finitely many nonzero values. Moreover,
if the generating sequence u has a vertical axis of symmetry (e.g., u(k) = u(—k))
then {, also has a vertical axis of symmetry. In particular, if ¢ is the B-spline of
order n, then we obtain the B-spline wavelet [17, 50]. Another special case is the
generalized B-spline wavelet of Chui and Wang which corresponds to the situations
in which u has finitely many nonzero values [16].

Proof:  From the proof of Theorem 3, ¢ as given by Equations (30) and
(31) is the Fourier transform of an orthogonal scaling function ¢ corresponding to
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Vi;(d) = V(;(¢). Thus, the Fourier transform & of an orthogonal wavelet s, is
given by

li"u(f) =27 U, (Zz'f - %>$ (g) (37)

where as before, U,(f) = U(f)P(2f)/P(f), and where U, is the complex conjugate
of U, [36]. Taking the Fourier transform of (36) and using Poisson’s formula we
find that a(f) = (P(f))~2. Hence, the Fourier transform of the basic wavelet

,(x) defined in (35) is given by
-2
f

Ky — N —12,—im j_r_l j_r_l
W) =2 erQ )(PQ 9)
o = (»(§) rr (4-3)) (39)

The ratio between {s,(f) and Jy(f) is then given by

Since P(f) is continuous and positive, Q(f) is well defined. Moreover, since
P(f) = P(f + 1) we have that P(f2 + 2) = P(f/2 — 1), from which we deduce
that Q(f) = Q(f + 1). Thus Q(f) is periodic with period 1 and, by Proposition
1, it is the Fourier transform of an invertible convolution operator 4. We have

Up(x) = (q*Po)(x). (40)

3.4. Special Bases of Scaling Functions and Wavelets

In all the constructions below, u will denote the generating sequence of ¢ as in
(20). The sequence {a(k)}ez is the sampled autocorrelation of ¢ as defined by
Equation (36).

3.4.1. Orthogonal Scaling Functions

An orthogonal scaling function ¢, must satisfy

1 k=20
+

(@o(x), @olx — k)) = (@o*@y)(k) = {0 k= +1, +2, ... (41)

To obtain such a function from an arbitrary scaling function ¢, we can choose
p = p, in (19) to be the inverse of the operator-square-root of the sampled au-
tocorrelation function a(k) defined by (36):

po = (@)~ (42)
This is the inverse Fourier transform of
—-1/2
mm=(2uu—mﬂ (43)

Of course, there are many other orthogonal generating function associated with
Vi j)(‘P)-
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3.4.2. Orthogonal Wavelets

Similarly, an orthogonal wavelet s, must also satisfy the orthogonality condition
(41). Using the sampled autocorrelation function {a(k)},,, we obtain Y, from an
arbitrary basic wavelet s, as follows:

Po(x) = go*s (44)

where
go = (ax[axa] )17 (45)

The operator [ -], , is defined by (11) and 4 is the modulation of a as defined by

(10). Equation (45) is derived using (41), the fact that [A] 12 = [h], for all
sequences ki, and'the identity

[uxa+u¥],, = a (46)

Identity (46) can be deduced by taking the Fourier transform of (26) in Proposi-
tion 5.

3.4.3. Interpolating Scaling Functions

A function ¢; which interpolates between samples on Z must have a value of zero
at all integers except at the origin where it must be 1:

oi(k) = 8o(k) = {é s q_rl, +2, .. (“47)

In the literature, such a function is sometimes called fundamental or cardinal.
If ¢ is a scaling function satisfying the conditions of Theorem 3, and if P(f) =
[2; L(f — i)| # 0 for all f € [0, 1], then we can choose a sequence p; so that
¢; = p;*¢ is an interpolating function. The sequence p, can be specified by its
Fourier transform as

P/(f) = (2 L(f - i)) (48)

From Poisson’s formula, the sequence p,(k) is simply the convolution inverse of
the sequence b(k) given by

b(k) = o(k) (49)
3.4.4. Interpolating Wavelets

The interpolating wavelet {; must be such that Y, (k + %) = §y(k) i.e., U,(2) =1,
U, (k + 2) = Ofor all k € 2\{0}. We have chosen a slightly different characterization
from the one for ¢,. Specifically, a function w € W0, can be expanded in terms
of its samples {w(k + 3)},cz as

W) = 3w (k ¥ %) bix — k) (50)

kez

This definition of the interpolating wavelet s, allows us to obtain interpolating
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wavelets with axial symmetry (see end of this section). To obtain {, from an
arbitrary basic wavelet {5, we choose an appropriate sequence g, as follows:

q; =272 ([0 +a«p], ) 5
where b is as in (49). The interpolating wavelet {s, is then given by
U (x) = qr* by (52)

If the generating sequence u is symmetric, then the associated basic function ¢ is
symmetric. From its expression (35), the corresponding basic wavelet ,(x) has
an axis of symmetry at x = . For this case, the wavelet {;;(x) defined by (52) has
an axis of symmetry at x = ; since, from the expression (51), g, is clearly sym-
metrical.

4. SEQUENCES OF SCALING FUNCTIONS AND WAVELETS

The convolution product is an internal law of composition for the set of functions
in Theorem 3. In particular, if u; and u, are two generating sequences corresponding
to the scaling functions ¢, and ¢,, then u = 27" u, *u, corresponds to ¢, * ¢,. To
see this, we simply note that the product ¢,(f)$,(f) satisfies the decay and smooth-
ness conditions of Theorem 3. Accordingly, we have:

Proposition 7: If ¢, and ¢, are two scaling functions generated by the pro-
cedure in Theorem 3, then @, * @, is also a scaling function.

If the Fourier transforms L(f) of ¢ are such that L(f) = O(|f|~"), then ¢
belongs to the Sobolev spaces W*2 for any s < r — 3. Thus, if the Fourier transforms
L,(f) and L,(f) of ¢, and ¢, are such that L,(f) = O(|f|™""), and L,(f) =
O(|f|~"2), then ¢, * ¢, belongs to the Sobolev space W*? for any s <r, + r, — 3
It follows that the convolution ¢, * ¢, is more regular than its individual constitutive
atoms ¢, and ¢,. This fact combined with Propositions 1 and 2 allows us to obtain
sequences of increasingly regular scaling functions and wavelets with other pre-
scribed properties.

Remark 4.1: Note that, in general, the convolution of two wavelet functions
is not a wavelet (see Remark 3.1).

4.1. The Basic Scaling Sequence

Starting from a scaling function ¢, we define the basic sequence ¢” (or ¢}) by
QX)) = @rr@* - *@ (n — 1 convolutions) (53)
The corresponding generating sequence u” is given by
ur = 2" -D2 yxyx---xu  (n — 1 discrete convolutions) (54)

where u is the generating sequence associated with ¢ and where u” in (54) is the
generating sequence for ¢” (see Theorem 3).
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4.2. The Basic Wavelet Sequence

For each function ¢”, there is a corresponding basic wavelet function Y7 obtained
from the construction (35):

k= —cx
2712y (’2—‘) = 3 @ravea) e — k) (55)
k= —x
a(k) = (¢"x¢"™)(k) VkEZ (56)
where as before, the symbol “~’ denotes the modulation operator as defined by

(10), and the symbol ““V” denotes the reflection operators as defined by (8) and
by (9).
Remark 4.2: 1t should be noted that the sampled autocorrelation function
a" is not equal to the (n — 1)-fold convolution of a(k) = (¢ *¢V)(k).
4.3. The Orthogonal Scaling Sequence
Using the result of Subsection 3.4.1, we obtain the orthogonal scaling sequence

¢5(x) = (@)™ +¢")(x) (57)
a'(k) = (¢"+¢™)(k) VkeEZ (58)

4.4. The Orthogonal Wavelet Sequence

The orthogonal wavelet {7 is obtained from the basic wavelet Y% by (cf., Subsec-
tion 3.4.2)

b5(x) = (g5+¥3)(x) (59)
where

qi(k) = (a"x[@"+a"]2)" 2 (k) VkEZ (60)

4.5. The Interpolating Scaling Sequence
Starting from a scaling function ¢”, we define the discrete function b(k) by
b (k) = ¢"(k) Vke z (61)

From Subsection 3.4.3, an interpolating sequence ¢ exists as long as b" is invertible.
The interpolating sequence ¢7 is then given by

¢7(x) = ((b") "' *¢")(x) (62)

4.6. The Interpolating Wavelet Sequence

Using the modulation, reflection and down sampling operators of Section 2, we
define g7(k) to be

qi(k) = 2712([bm+aV+ar] )" N(k)  VkEZ (63)
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The interpolating wavelet sequence is then given by
Yix) = (g7 *bp)(x) (64)

where {7 is the basic wavelet (see Equation (55)).

4.7. Symmetrical Sequences of Scaling and Wavelet Functions

If ¢ is symmetrical, then a*(k) = b>(k) = ¢*'(k) and there is a direct relation
between the orthogonal and interpolating scaling sequences @ = @f+¢f. In this
case, the even sequence b has an inverse. This is because its Fourier transform

is always positive:

b*(f) = (2 |L(f - i)lz") >0 (65)

Thus, if ¢ is symmetrical, then the existence of an interpolating scaling sequence
is guaranteed for even values of n. This is also true for the interpolating wavelet
sequence 7. Moreover, the basic wavelets U7(x) defined by (55) have an axis of
symmetry about x = 3. This also holds for the interpolating wavelets §7(x). Finally,
it is easy to construct symmetrical scaling functions. For instance, we can start from
a symmetrical generating sequence u(k) = u( — k). Alternatively, we can start from
any scaling function T and obtain by convolution the symmetrical function ¢ =

TV,

5. MULTIRESOLUTION AND WAVELET SEQUENCES IN
CONNECTION WITH SHANNON’S SAMPLING PROCEDURE

The classical signal processing paradigm for the discretization of signals is shown
in Figure 1A. This scheme is widely used in connection with Shannon’s Sampling
Theorem when the signals are not bandlimited [13, 48]. In particular, when a
function is not bandlimited, it is first prefiltered with the ideal lowpass filter (Equa-
tion (66) below) before sampling:

1
rect(f) = {1 = 2 (66)

0 elsewhere

The whole procedure prevents aliasing errors. It is equivalent to finding the least
squares approximation of the signal in the space V 0)(sinc) generated by sinc(x) =
sin(mx)/mx:

k= +x
V(o) (sinc) = {v:v(x) = k—Z— c(k)sinc(x — k) cE 12} 67)
The least squares approximation of a function s in V0 (sinc) is given by

k= +=

S@)(X) = k;x (s *sinc)(k)sinc(x — k) (68)
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Ideal lowpass Ideal lowpass
8(x) 1 c(k) 8.(x)
A f
Sampling
A
Prefilter ¢¥ Postfilter f';\>
/o\ A
8(x) oY c(k) g 8.,(x)
—_— P
B a2 g AR 12 f
Sampling

Figure 1

We call this procedure approximation-sampling to distinguish it from the inter-
polation-sampling scheme and its extensions [12, 30, 32, 41, 54, 56, 58] (for a survey
see [14, 28, 31)).

The function (s *sinc)(x), x € R, corresponds to prefiltering s with the ideal
lowpass filter. Thus, its Fourier transform has a compact support which lies in
[—2, 2]. By the Paley-Wiener Theorem, it must be an entire function. Therefore,
the samples c(k) = (s=*sinc)(k), k € Z, are well defined. Moreover, a sampling
cy(k) of a translation s(x + h) of s has the property that ¢,(k) converges to c(k)
as h goes to zero. Because of this property, we say that the sampling scheme is
jitter-stable. In fact, the convergence of c,(k) to c(k) is in the /,-norm, and we say
that the sampling is strongly jitter-stable.

It is not difficult to show that the sinc function, which acts as a convolution
operator in this sampling theory, is an orthogonal scaling function. A corresponding
orthogonal wavelet is

Yo = cos(1.5mx)sinc(0.5x) (69)
It is the inverse Fourier transform of the ideal bandpass filter
BP(f)= rect2f — 1.5) + rect(2f + 1.5) (70)

5.1. Generalized Sampling Procedures for Multiresolutions of L,

The approximation-sampling procedure described in the last section has been ex-
tended to finite dimensional signals [42], to polynomial splines [29, 52], and to
infinite dimensional *shift invariant” function spaces [2]. In this latter extension,
we show that under suitable conditions on a function A € L, called the generating
function, the least squares approximation on the space V = {viv(x) = (c*\)(x),
¢ € L} produces a well-defined sampling procedure. This means that V must be a
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closed subspace of L,, and that the orthogonal projection on V must be imple-
mentable as:

i) a shift invariant prefilter

ii) a strongly jitter-stable sampling

iii) a shift invariant postfilter
where the notion of filter is defined in Section 2 (see Equation (6)). The full
procedure is described in Figure 1B. It is very similar to the classical scheme shown
in Figure 1A. The main difference is that the ideal lowpass filters are replaced by
the appropriate pre- and post-filters: AV and A respectively. The role of the optimal
prefilter AV is analogous to the anti-aliasing lowpass filter required in conventional
sampling theory.

We have shown in [2] that in order to obtain a well defined sampling pro-
cedure, the Fourier transform L(f) of A € L, must satisfy the decay condition

1
L(f) =o(fI") r>5 (71)
Moreover, the zeros of L(f) must not be «structured.” Specifically, the intersection
of the sets A, := {f € [0, 1]:L(f — 1) = 0} must be empty:

nA =9 (72)

A scaling function obtained as in Theorem 3 satisfies all the above properties
for \. First, the smoothness and decay of ¢(f) imply that ¢ is in L,. Specifically,
since & € CXR), ¢(f) = Olf|™*), and DWG(f) = O(f|~*) with s > 2, we
conclude that ¢(x) € L,. Also, Conditions (21) and (22) on U(f) imply that o(f)
# 0 for all f € [—3, 2]. This in turn implies that the intersection N; A; of the sets
A, associated with ¢(f) satisfies Condition (72): N; A; = @. A similar argument
also holds for the basic wavelet function ;. We state these simple facts in the
following proposition:

Proposition 8: A scaling function ¢ satisfying the conditions of Theorem 3
belongs to L,(R) and satisfies Conditions (71) and (72). The associated basic wavelet
U, also belongs to L,(R) and satisfies Conditions (71) and (72).

As a corollary of this proposition and the results in [2] we immediately obtain:

Theorem 9: If ¢ (resp., V) is a scaling function (resp., wavelet) obtained as
in Theorem 3, then the orthogonal projection in Vo (@) (resp., Wy()) is a well
defined sampling procedure which consists of a prefiltering with &V (resp., W),
followed by a strongly jitter-stable sampling, and finally a postfiltering with ¢
(resp., {5). The function ¢ is given by

o) = (@ '*@)x) VxeER (73)

where a is the autocorrelation of ¢ given by
ak) = (exeV)(k) VkEZ (74)

Remark 5.1: The function &, which is the reflection of the optimal prefilter,
is simply the dual scaling function (resp., dual wavelet function) [17]. Particular
examples for polynomial splines can be found in [52]. It is not difficult to verify
that the functions ¢ and § are biorthogonal, i.e., (p(x), @(x — k)) = do(k) [18].
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5.2. Asymptotic Results

The sequence of scaling functions and the sequence of basic wavelets defined by
(53) and (55) provide us with a set of increasingly regular multiresolution structures
Vi(@") and wavelet spaces W) (¥"). As discussed earlier, there are different
choices of basis functions that will characterize the spaces V(@™ and W, (¢").
The orthogonal projection on Vioy)(¢™) or W, (¥") does not change. However, the
filters associated with the sampling procedure depend on the choice of the basis.
These are related by a discrete convolution operator as described by Proposition
2 and their choice depends on the application. A case of specialinterest is the orthogo-
nal scaling sequence (57) and its associated orthogonal wavelet sequence (59). An-
other case of interest is the interpolating scaling sequence (62) and the wavelet
sequence (64).

As n increases, the sequences of filters become more regular. The Central
Limit Theorem implies that the basic sequence ¢” converges to a Gaussian function
[25]. In Section 6, we will show that the basic wavelet sequence s} tend to Gabor
functions (modulated Gaussians) as n tends to infinity. This latter result, however,
is not a consequence of the Central Limit Theorem. For instance, the orthogonal
and interpolating wavelets y% and {s} generate the same spaces as ¢} but converge
to the ideal bandpass filters, as stated in Theorems 13 and 14 below.

We will start by showing that the orthogonal, interpolating, and dual-inter-
polating scaling sequences (see Remark 5.1), converge to the ideal lowpass filters.
These asymptotic properties are consistent with the results of de Boor, Héllig, and
Riemenschneider [23, 43, 44]; a detailed discussion of this issue can be found
in [2].

5.2.1. Convergence Results for the Scaling Sequences

From Proposition 8 and [2, Theorems 14 and 16], we obtain the asymptotic con-

vergence results of the orthogonal, interpolating, and dual-interpolating scaling
sequences.

Theorem 10: If ¢ is a symmetrical scaling function satisfying the conditions
of Theorem 3, and if its Fourier transform L(f) satisfies

min [L(P) > |L(D| Vf g1 = [—% %] 75)
fer

then the Fourier transforms $3*(f) of the interpolating functions ¢2*, and the

Fourier transforms ¢*(f) of their duals $7" converge pointwise a.e. and in L,
norms, p € [1, ), to the ideal lowpass filter as n tends to infinity:

L, — lim $3"(f) = rect(f) (76)
L, — lim $3(f) = rect(f) (77)

Theorem 11: If ¢ is a scaling function satisfying the conditions of Theorem
3, and if its Fourier transform L(f) satisfies

minlL(N)| > [L()|  VF@I= [—% %] (78)
fer
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then the modulus |$3(f)| of the Fourier transform of the orthogonal functions and
its dual ¢ = (7)Y converge pointwise a.e. and in L,-norms, p € [1, «), to the
ideal lowpass filter as the order n tends to infinity:

L, - lim |$5(f)| = rect(f) (79)

Using the property that the Fourier transform is a bounded operator from
L, into L, with p € [1, 2] and p~!' + q~! = 1, we immediately get:

Corollary 12: If ¢ is symmetrical then the interpolating, dual-interpolating,
and orthogonal sequences ¢7", $7", and ¢ converge, in L,-norms, g € [2, <], to
the ideal sinc interpolator of Shannon as the order n tends to infinity.

Remark 5.2: Since L(f) is a continuous function, Condition (75) (or (78))
implies that the minimum of [L(f)| = |L(—f)|in I = [—3, 2] is achieved at f =
+1. Clearly, this minimum can be achieved elsewhere in I, and |L(f)| can have
other local minima in [—%, 3]. An equivalent statement is: |L( )l > IL(fL)IVfi €
I and Yf, ¢ I. Thus, Condition (75) (or (78)), essentially means that L(f) is a
nonideal lowpass filter in the frequency band [—3, z]. The theorems can then be
viewed as stating that the ideal lowpass filter can be approximated as closely as
needed by the sequences ¢7", ¢7" or o3

5.2.2. Convergence of the Orthogonal and interpolating
Wavelet Sequences

As mentioned in Section 5, the bandpass filter BP(f) defined by (70) is the Fourier
transform of the orthogonal (also interpolating) wavelet associated with the sinc
function. This observation, and the results of the previous subsection, suggest that
the interpolating and the orthogonal wavelet sequences converge to the ideal band-
pass filter. In fact, this is known for orthogonal spline wavelets [33]. A general
result is given by the following theorem:

Theorem 13: The orthogonal wavelet sequence |da(f)| associated with a
scaling function satisfying Condition (78) of Theorem 11 converges pointwise and
inL,, 1 =p <, to the ideal bandpass filter BP(f) as the order n tends to infinity:

L, — lim [$3(f)] = BP(f) (80)

Proof: The Fourier transform of the orthogonal scaling function ¢§ satisfies
¢432f) = 277U, (N)e6(f) (81)

where U, is the generating function of the orthogonal sequence ¢g(f). Since
¢u(f) # 0 Vf € [—3, 3], Equation (81) in conjunction with Theorem 11 implies
that

lim [272Ua(f)| = rect(2f)  Vf€E (—%, %) (82)

n—x

The Fourier transform of the orthogonal wavelet sequence ¥g(f) is given by

Po(f) = 272 U, (’% - —;—) % (’;) (83)
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For f € [0, ), Equations (79), (82) and (83) imply that [{5(f)] — rect(2f — 1.5)
Vf € [0, ) pointwise as n — . Since U, (f) is periodic with period 1 we also

have that [j2(f)| — rect(2f + 1.5) Vf € (—=, 0]. To prove the convergence in
L,, we note that since 2"’2|U¢6( f)| =1 (see Equation (33)), we have

e ()
\2

From Theorem 11 the function T"(f) on the right side of Inequality (84) converges
pointwise and in L, to T(f) = rect(f2) + BP(f) as n goes to infinity. To finish
the proof, we use a standard argument which is a generalization of the Lebesgue
Dominated Convergence Theorem. Since the left side of Inequality (84), R"(f),
converges pointwise to zero, Fatou’s Lemma then yields

P

R(f) := [b§(f) — BP(f)I” = Const (

+ IBP(f)|”> =:T(f) (84)

0= [ 1) ar < timint [ (770s) - R ap

(85)
= fR T(f) df + lim inf fR —R"(f) df
From (85), we immediately obtain that
lim sup fn R*(f)df =0 (86)

from which the L, convergence of the orthogonal wavelets follows.

If the scaling function ¢ is symmetrical, then the functions @?" are symmetrical
and the interpolating wavelet functions ¥7"(x) have an axis of symmetry at x =
5. The functions {2 can be written in terms of the orthogonal functions 2" using
the invertible sequences b>(k) = §2"(k + 3). Specifically, y2" = q3" 3" where
q7" = (b*)~1. In Fourier space, we have

b3(f) = (2 [b3(f — i)l) b2(f) (87)

Since, by Theorem 13, the functions [{2"] — BP(f), we conclude that the series
in (87) tends to 1. Thus, [{?"(f)| converges pointwise to the bandpass filter BP(f)
as n— . Furthermore, if there exists a constant Const independent of n such that

(2 [$3(f - i)l) = Const (88)

then the convergence is in L,, Vp € [1, ). This last assertion follows from an
argument similar to the one in the proof of Theorem 13, so that we can state:

Theorem 14: If ¢ has an axis of symmetry, then the shifted cardinal wavelet
sequence |{7"(f)| converges pointwise, to the ideal bandpass filter BP(f) as the
order n tends to infinity. Moreover, if Condition (88) is satisfied, then the con-
vergence is in L,, Vp € [1, »).
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6. MULTIRESOLUTION SEQUENCES IN CONNECTION WITH
GABOR TRANSFORMS

When it is sufficiently regular, a wavelet is localized in time (space) and frequency.
This means that the standard deviation of its squared modulus o,,:, and the standard
deviation o for the positive frequencies in Fourier space, are both finite. More-
over, the Fourier transform of a wavelet ¥ has the property that {(0) = 0. Thus,
it is essentially a bandpass filter concentrated around some frequencies = f,. For
definiteness, if f, = 3, o,z = 27", and oyy3 = 2-2, then the coefficients d;(k),
of the wavelet decomposition of a signal s (see Eq. (2)), correspond to a time
interval of about [2/(k — %), 2/(k + 3)] and to a frequency band of about [—-27/,
—2-1=1 U [27/', 27]. Thus, a discrete wavelet representation has the desirable
property of being localized in both the space (time) and the frequency domains.
A measure of the time and frequency localization of a function is given by
the product X = 07420)y2- It s bounded below by the optimal value (4m) 2. The
only functions for which the equality holds are the canonical Gabor functions [26]:

g(x) = exp(iQ(x — xo) — i9) \/711—1_0 exp (—%) (89)

These are modulated Gaussian functions with four parameters: the offset x,, the
standard deviation o, the modulation frequency Q and the phase shift 8. Because
of their time-frequency optimality, they have led to the Gabor transforms used for
signal representations [6, 9, 26]. However, there are no values of the parameters
in (89) that can force the corresponding function, its real part or complex part to
form a wavelet basis of L, [8, 11, 22] (see Remark 3.1). Nevertheless, we will show
that, under mild conditions, the basic wavelet sequence § defined by (55) con-
verges to the real part of Gabor functions as n goes to infinity. This may appear
surprising since the orthogonal and interpolating wavelets § and {7 generate the
same spaces as s, yet we have proven in the last section that they converge to
modulated sinc functions instead.

We start from a symmetrical scaling function ¢ with Fourier transform
¢(f) = L(f). The Fourier transform G?'(f) of the shifted basic sequence
2-125_, «s2"(x/2) generated by ¢ (see Equation (55)) is given by

s le(r-1-)

Using the fact that 2'2L(2f) = U(f)L(f), and the periodicity of U(f) (i.e., u(f)
= U(f + 1)), we rewrite (90) to obtain

4n

G¥(f) = 2 (90)

2w (1= 3) Lo

2n

212G (f) = ‘L(f)L (v - 3)eer-v
2n (91)

+ > L(f)L<f—i—%>L(2f—2i—1)

i#0
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We consider the function Z(f) given by

ol Yo

‘ Lo (s - Heer- 1)‘

2

2-—1/2

Z(f)

(92)

Il

which appears in Equality (91). Since u(k) is a real-valued sequence, and since ¢
is a real-valued function, we have that Z(f) = Z(—f). Thus, we will only consider
the positive frequencies. For f € [0, ), Lemma 16 (Subsection 6.1 below) asserts
the existence of a global maximum of Z(f) which must occur in the frequency
interval [4, z]. Let f, be the frequency at which this maximum occurs (if more than
one, then f; will denote the smallest frequency) and define the number o, by

d*zZ

W = —(Q2mao)’Z(f,) (93)

f=fo

We will assume that o, + 0. We are now ready to state the convergence theorem:

Theorem 15: Let ¢ be a symmetrical scaling function, and let L(f) be its
Fourier transform. If

. 11
min [L0) > 10 vre 1= | -4 04)
fer 272
then the Fourier transforms G2*(f) of the wavelets 27128 _ 7" (x/2) have the
convergence property given by

. 1 2n i + ST _f_2
Jm {(Z(fo))z"G <<r,, ‘f°)} - 2 e < 2) ©3)

where o, = 2moo(2n)"2. If, in the interval [0, ®), fy is unique, then

: 1 f (f = foo,)
lim || 5= G¥ <—> —212 ex (—“" =0 (9
2 @ar €\, P 2 Mioan 0 ©9
and for ¢ € [2, ), we have in L,(R)
) 2-12g <0 x>
lim “".8_ walp2n | =22
e | @y Y\
(2mx)? @7)
— 4m'”2 cos(2nfyo,x)exp (—T> =0
Lq

Roughly speaking, the theorem states that the basic wavelet U (x/2) is es-
sentially the real part of a Gabor function. It is centered at x = 1, its standard
deviation is ¢, = 2mo(27)"2 and its modulation frequency is Q = 2muf,. The
functions {s3” have axial symmetry, and their regularity increases with increasing
values of n. Moreover, if the generating sequence u(k) is finite, then the wavelets
have compact support (see Section 4.1).

Remark 6.1:  For a detailed discussion of Condition (94), we refer the reader
to Remark 5.2.
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6.1. Proof of Theorem 15

The proof of Theorem 15 relies on the following five lemmas:

Lemma 16: For f € [0, «), the function Z(f) defined by (92) has a global
maximum which can only occur at a frequency fo € (5, 3]

Proof: The regularity conditions of Theorem 3 imply that U(3) = 0. This
in turn implies that L(i) = 0, Vi € Z\{0}. Hence Z(0) = 0. Moreover, because
L(f) is continuous and L(f) = O(|f|-7) with r > 2, Z(f) is continuous and Z(f)
— 0 as f — ». Thus, Z(f) has a global maximum Z(f,) which occurs at some
frequency f,. Let m be the minimum of |L(f)| for fE [0, 2];m = minge o121 L(f)!-
Condition (94) then implies that Z(f) = m3, Vf € [4, 3], from which we get that
max;-o Z(f) = m?3. For f > 1, Condition (94) implies that Z(f) < m*. Thus the
global maximum of Z(f) cannot occur for f> 1. For f € (3, 1], we use the symmetry
IL(f)| = |L(—f)|, the fact that f* =1 — fis in [0, 3], and Condition (94) to get

20 - p - |La - pr(r-3) eer -
©98)
SATE ) res - 1)\

Since the right hand side of Inequality (98) is precisely Z(f), the maximum of Z(f)
cannot occur in (3, 1]. A similar argument in which we use f = 3 — f will show
that the maximum must occur in the interval [, 3].

Lemma 17: If a sequence e; is such that |e;| < 1Vi € Z, and |e;| = Const|i| =
for some o > 1, then

lim ), ()" =0 (99)

n—+x I€Z

Proof: Since |e]| = Constli|~® with a > 1, there exists an integer i, such
that |e;,| = |e, Vi € Z. We multiply and divide the series by |e;o|" to get

S, = [Ser| =2 lel = legl 2 lefeql” (100)

The decay of e; for large values of i and the fact that |e/e;,| = 1 imply that we can
bound the series on the right hand of (100) by substituting n = 2. Thus we obtain

S, = el 2 |eJe;|? = Const |e;|" (101)

Since le; | < 1, S, tends to zero as n tends to infinity.
Lemma 18: If a function g(x) satisfies

lgx)] =1 — &x? x| < e (102)
for some £ > 0, then
lg(n= V)" = exp(—ex?)  |x| <n'Ze71? (103)
Proof: Using the inequality In(1 + u) = u for |u| < 1, we get
nln|gn "x) | =nin (1 - en~x?) = —ex?  |x| <n'e71? (104)

from which the proof immediately follows.
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Lemma 19: If a function g(x) satisfies
lg(x)| = |ex|~2 (105)
then there exists a constant Const independent of 7 such that ¥ > 2
lg(n="2x)|" < Const|x|~2  |ex|n- "2 = E > 1 (106)

Proof: Let t(x) be the right side of Inequality (105). The function
[t(xn="2)|" can be written as

[t(xn=12)|" = ¢~ *n(cxn=12)2=2n|x| -2 (107)

For c|x|n™" = E > 1 and for n > 2, we can estimate the right side of (107) to
obtain

[t(xn=12)|" < c2E2pE-2n|x|-2 (108)
Since the term ¢=2E2nE~2" in (108) is bounded above by a constant Const inde-

pendent of n > 0, the proof of the lemma follows.

The next lemma is well-known. It appears as part of the proof of the Central
Limit Theorem [25]. In this latter context, A(x) is the characteristic function of a
random variable and has a maximum at x = 0.

Lemma 20: If a function A(x) is such that

i) Axo) = 1
.., dA(x) B
ii) o |, =0
d?A
i) — < LA o
dx? e
then
im (4 (=2 4 x)) - exp (-5 109
,,_,Tx aVn %o - oxp 2 (109)

Proof:  Without loss of generality, we assume that Xo = 0, and that o = 1.
For a fixed value of x, we consider the function

L,x) = nln (A (;f;)) (110)

To evaluate the limit, we apply ’'Hospital’s rule and differentiate twice to get

. . 1 n=2xA’(n= %)
,,ETx L) = ,,_llTx <2 A(n~"2x)n =2 )
2

x? x
; 2o ~12 -
th ( > A <n x)) >
which immediately yields (109).

Proof of Theorem 15: (i) Pointwise convergence. The function 2-12G2(f)

(111)
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is given by (91). We divide (91) by (Z(f,))*", where Z( f) is defined by (92) and
where Z(f,) is a global maximum as in Lemma 16. We get

G 3 Nl
2 @ﬂﬁ;—kam>Lun(f QL@*lﬂ

+ 2

i+#0

(112)

LD~ i - 3 L =2 - D

To simplify the notation, we define the following quantities:

A(f) = |(Z(fo)) LS + fo)L (f +fo - %) LQf + 2 — 1)‘ (113)

c(f) = ‘(Z(fo))‘lL(f)L (f - %) L2f = 2i - 1)\ (114)
R..(f) = ;0 |Ci(f)|2" (115)

With these definitions, the function 2 "G 2"(0,, f + fo)(Z(f,)) " can be written
as

L Crw i D R -
2 (Z(f()))zn lA( n f)| + RZn( n f + fO) (116)

where o, = 2'rrcro(2n)]/2.
By Lemma 20, it follows that

Ao " = (Z(ox'f + F)Z(fo))™ (117)

converges to exp(—f?%2) as n tends to infinity.
The decay condition L(f) for large values of f implies that there exists a constant
Const independent of n such that the terms c{o7'f + fo) of the remaining series

R, (c;'f + fo) are bounded by
lefo;'f + fo)l = Const|i| ~*  Vn = N.(f) (118)

Moreover, using Condition (94), an argument similar to the one in Lemma 16
allows us to conclude that |ci(fo)| < 1 fori # 0. It follows that for f = 0, we have

lim |c o' + fo)l <1 (119)

n—x

The estimate (118) and the limit (119) allow us to find a sequence e; which does
not depend on n, satisfying e; < 1 Vi # 0, ¢; = 0O(Ji|=*), and such that

(o f + f)l=e <1 Vn=N() (120)

By Lemma 17, this last inequality implies that the remainder series R, (o, 1f +
f,) in (116) converges to zero as n goes to infinity. This finishes the proof of the

pointwise convergence (95).
(ii) Convergence in L,. For the remaining part of the theorem, we have that
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for f = 0 the global maximum occurs at a unique location fo- From this, and because

oy # 0 and L(f) = O(|f|~?), we have that the function AL(f) = Xi—pmA>S),
where x; denotes the indicator function on 1, satisfies

A DI =1 = ¢lfP |fl=e2 (121)
for all sufficiently small &; 0 < & < ¢,. We also have that
A DI=hfl"2 Ifl=T (122)

By choosing ¢ sufficiently small, and by using the last two inequalities, Lemma 18
and Lemma 19, we get the estimate

[A+ (@ )P = Constlexp(—e.f?) + Xuy_1ylfl?) VfER (123)

where the constants Const and €; > 0 are independent of n and where Xey—1.1] 18
an indicator function. The right hand side of Inequality (123) is a function inde-
pendent of n, which lies in the spaces L,(R) Vp € [1, ). Using the pointwise

convergence of |A(o,; f)[*" to exp(— f*2) established earlier and using the Le-
besgue Dominated Convergence Theorem, we then get

lim [[4, (o) ~ exp(~f12)| =0 (124)

Lp(—oc,ac)
It follows that, in L,[0, ) we have the limit
IZ(fo)) 7 Z(o 7 )P ~ exp(—(f - SR, =0 (125)

lim l

To finish the proof, we need to estimate the quantity
f :" 1o IR 'f + fo)|P df (126)
where R,,(f) is defined by (115). We first note that
f:,,,fo Ran(o i f + fo)lP df = f: IRo(o )P df = o, fo CIRu(fP df (127)

We bound [§|R,,(f)]P df from above by the sum of the three terms below:

Jyrnpar=c '] S | o
. s (128)
e[| S e | @+ e[ R
0 |i]>ig T
where Cis a constant independent of n. We rewrite R, (f) as
IRn D] = [ZGaD LIPS, |1 (f —i- %) LQf -2 - 1| (129)

Since |L(f)| = O(|f|~2), the series on the right-hand side is bounded by C2” where
C'is a constant independent of n. Combining this fact and the fact that |L(f)| =
O(|f|~?) we conclude that

Rau(£)] = | Constlfl]| ™ V|f| > m, (130)
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Thus by choosing 7" > m; sufficiently large, we use the last inequality to estimate
the third terms in the right-hand side of (128) by

[ 1Ru(PIP dr = Constlaew el <1 (131)

where the constant Const; is independent of 7.
Since |L(f)| = O(|f|~?), we can estimate ¢,(f) in (115) for f € [0, T] by

(N = |Constlil| " Vil = m, (132)

From this inequality, we get an upper bound for the second term on the right hand

side of (128)
T
/13 e
|i|>io
The series on the right-hand side of (133) is largest when n = 1. It follows that by
choosing i, > m, sufficiently large, we obtain the inequality

[71S tepr

[i]>io
To estimate the first term on the right-hand side of (128) we first note that, by a
simple argument similar to the one in Lemma 16, Condition (94) implies that for
f=0,andi # 0

)4 —8np 8n|p

df = 2T

Iy
ip + 1

Const|i| (133)

li|l=1

P

df = Constyla,|¥  |ay| <1 (134)

leHl = la| <1 (135)
From the above inequality, it follows that
T P
[7].5 o] ar= miopiae = comsapr 130

Combining Equations (127), (128), (131), (134), and (136) we obtain
[ 1R b dr = Const o, + el + fast) (13D

where o, = 2may(2n)"? and where the constant Const is independent of n. Since
la] < 1fori = 1,2, 3, it follows that the left hand side of (137) tends to zero as
n — . Equations (116), (125), and (137) yield Equation (96) of the theorem.
Finally, Equation (97) in the theorem is obtained using (95-96), the fact that the
Fourier transform is a bounded operator from L, into the L, withp €1, 2], ¢!
+ p~!' =1, and from

lim flexp(—(f + 0.fo)* Do =0 VP E[L,*) (138)
lim lexp(—(f = 0 f0)?Dlp-=0 =0 VP E[1, ) (139)

7. EXAMPLES: POLYNOMIAL SPLINES

A particular case of the present theory is provided by the example of polynomial
splines. The centered B-splines of order m, p™, are obtained by repeated convo-
lution of the B-spline of order 0 [46]:

Br(x) = (BO*R°+---*BO)(x) (m convolutions) (140)
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where B%(x) is the characteristic function in the interval [—2, 2). Schoenberg has
shown that these functions generate the polynomial splines of order m with knot

points at the integer (m odd). In other words, any polynomial spline function s(x)
of order m can be represented as

k= +x

() = X c(k)Bm(x ~ k) (141)

By choosing ¢ = %0, the scaling functions ¢” = B2"~1 generate a well defined
sequence of multiresolutions of L,. For instance, it can be verified that the gen-
erating sequence u for ¢ has the Fourier transform

U(f) = 272 (1 + cos(2mf)) (142)

Using this last expression, it is easy to verify that all the conditions of Theorem 3
are satisfied.

Since the function ¢ also satisfies the conditions of our convergence theorems,
we can conclude that the interpolating and orthogonal spline filters ¢7, ¢ 7, and
$g, converge to-the ideal lowpass filter as n tends to infinity. More detailed con-
vergence results can be found in [5, 52]. Related asymptotic properties of spline
interpolants are also discussed in [38, 47]..

We can generate the corresponding basic, orthogonal, and interpolating spline
wavelets using the formulas in Section 4. This construction was performed explicitly
in [50]. The basic spline wavelets are the so called B-spline wavelets of compact
support [17, 51], The corresponding orthogonal wavelets are precisely the Battle/
Lemari¢ spline wavelets [7, 33]; see also [37]. From our convergence results, we
conclude that the Fourier transforms q}g, and JJ;‘ converge to the ideal bandpass
filter as n tends to infinity. The pointwise convergence in the special case of the
orthogonal spline wavelet has been established by Lemarié [33]. Figure 2 shows
the basic piecewise linear and cubic B-spline wavelets, and the Gabor limit, which
is a Gaussian function modulated by the cosine. The graph shows that cubic B-
spline wavelet is already a good approximation to the Gabor function. For this
case, the time-frequency measure xy = Olylz2041;2 defined at the beginning of this

section is found to be within 2% of the optimal number (27) ~2. More details can
be found in [51].

0.27

= B A —
Ay i

~0.24

Figure 2

0.3l
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