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ABSTRACT

We view Shannon’s sampling procedure as a problem of approx-
imation in the space § = {sis(x) = (¢ # sinc)(x). ¢ € I,}. We show
that under suitable conditions on a generating function X € L.,
the approximation problem onto the space V = {imo(x) = (¢ » M.
¢ € 15} produces a sampling procedure similar to the classical one.
It consists of an optimal prefiltering, a pure jitter-stable sampling,
and a postfiltering for the reconstruction. We describe cquivalent
signal representations using generic, dual. cardinal, and orthogonal
basis functions and give the expression of the corresponding filters,
We then consider sequences X' where N denotes the n-fold con-
volution of A. They provide a scc quence of increasingly regular
sampling schemes as the value of # increases. We show that the
cardinal and orthogonal pre- and postfilters associated with these
sequences asymptotically converge to the ideal lowpass filter of
Shannon. The theory is illustrated using several examples.

1. INTRODUCTION

A fundamental question in signal processing is how to represent a function defined
on R in terms of a discrete sequence. One way is to sample the function on a
uniform grid. However, there are infinitely many continuous functions having the
same sample values. A class of functions completely characterized by their sample
values is the bandlimited functions described by the Shannon-Whittaker Repre-
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sentation Theorem [23, 25]. Specifically, if S(f) € L, is the Fourier transform of
s(x} and if s(x) € B, i.e., if Support (§) C [—1, 3], then this representation is
given by ’

s(x) = E s(i)sinc(x — i) (1

f= —=

where sinc(x) = sin(mx)/mx.

In the mathematical and signal processing literature, this result is known as
Shannon’s Sampling Theorem. It can be interpreted as an interpolation formula
for the class of bandlimited signals. This point of view has been the basis for many
generalizations of the classical sampling theory, mainly for nonuniform sampling
[5. 13. 15]. We will call these type of extensions interpolation-sampling (see the
survey papers [7. 11, 14]). A unified view is obtained from representation theorems
in Reproducing Kernel Hilbert Spaces (RKHS) [19, 26]. Other extensions use the
relations between various sampling expansions and Sturm-Liouville boundary value
problems [27]. The converse of the Shannon-Whittaker representation is also true,
i.c., a well defined series (1) is a bandlimited function.

Using Poisson’s summation formula, we can evaluate the Fourier transform
of (1)

i=+=
S(f) = rect(f) 2 S(f - 1) )
where the rect function is given by
~ )1 lf] = 172 ‘
rect(f) = {D elsewhere (%)

This function is the ideal lowpass filter used in Shannon’s sampling theory.
Its effect in (1) is to suppress all the frequency components that are not in the
bandpass region (i.e., the interval [—1, 1]).

When a signal is not bandlimited, it is first preprocessed and forced to be
bandlimited. This is done by prefiltering the signal with the ideal lowpass filter
before sampling, as schematized in Figure 1. In effect, this is equivalent to finding
the L, least square approximation of the signal in the space B,,. This procedure.
which prevents aliasing errors, is widely used in signal processing in connection
with the Sampling Theorem [23]. It has been extended to signals in finite dimen-
sional spaces [20] and to the representation of functions using polynomial splines
[12, 24]. We will call these types of extensions approximation-sampling procedures

Ideal lowpass Ideal lowpass

s(x)

Sa (‘x )
——fi- B

Sampling

Figure 1 Block diagram of Shannon’s sampling procedure for non-bandlimited signals.
The samples ¢(k) = s,(k) are the coefficients of s,(x) in the basis {sinc(x — k)},c, of B,,.
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to distinguish them from the interpolation-sampling techniques discussed in the
previous paragraph.

In this paper. we adopt the approximation-sampling point of view and pPropose
some genceralizations. First. we will consider the extension of Shannon's sampling
procedure for the class of “shift-invariant™ function spaces of the form V(\) =
{ov(x) = (¢ X)(x) ¢ € I} where A is an appropriate function of 1., An important
point will be to find conditions on X that insurce that V(A) is a closed subspace of
Ly with {Mx = K)pe- as its Riesz-Schauder basis. We will also show that the
orthogonal projection of a function in V(X) can be computed using a procedure
similar to the one described in Figure 1 with an appropriate set of filters. Sceond.
we will investigate the propertics of sequences of increasingly regular approximation
spaces obtained by using the n-fold convolution of a regular function . This
construction provides a natural extension of the sampling theory for polynomial
splines deseribed in [12,24]. 1t is also motivated by a convergence result established
by de Boor, Hollig, and Riecmenschneider [8]. We will show that. under mild
conditions. some of the corresponding approximation and interpolation filters tend
to the ideal lowpass filter of Shannon as i goes to infinitv. The connection between
the present results and the theory of multiresolutions and wavelets is discussed in
[2]. The results also appear. in a simplificd version without proofs. in our chapter
(3]

The paper is organized as follows: We start by introducing some definitions
and notation in Scction 2. In Scction 3. we consider the problem of the L, ap-
proximation of a function in V(X) and derive a general sampling procedure: we
also provide extensions for the approximation in the norm associated with the
Sobolev spaces WP+ In Section 4. we describe equivalent representations of signals
using different sets of basis functions with some special propertios (orthogonality.
interpolation. duality). In Section 5, we look at the families of n-fold convolution
sequences and study their asymptotic propertics. Finallv, in Section 6., we illustrate
the theory with several examples.

2. DEFINITIONS AND NOTATION

The signals considered here are real valued functions defined on K. They belong
to the space of measurable, squarc-integrable functions: £... We also consider the
Sobolev spaces W™ which consist of L., Tunctions with i distributional derivatives
in L, [1]. In particular. a function g belongs 1o W= if and only if its Fourier
transform has the property that (1 + |f|")é(f) is in 1.,. The space of square
summable real valued sequences (discrete signals) is denoted by [, and its associated
norm by |[+|[,..

The symbol + will be used for three slightly different binary operations: the
convolution, the mixed convolution, and the discrete convolution: these are defined
below. The ambiguity should be casily resolved from the context. For two functions
[ and g defined on R. = denotes the usual convolution

+

(f = §)x) = f:./‘(té)g(-\' ~§de  yER (4)

The mixed convolution between a sequence h(k). & € Z. and a function fonRis
the function b = fon R. given by
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k=4
(b *f)lx) = k;_ b(k)f(x — k)  x€ER (5)
The discrete convolution between two sequences a and b is the sequence a = b
k= 4=
(@=b)l) = > akp(l -k [1€Z (6)
k= —m

A filter A(f) is the Fourier transform of a function A that defines a bounded
convolution operator on L.

NgEL,—>AN*gEL, (7

Since the convolution product A * g becomes a multiplication product Ag in Fourier
space, the filter A selectively alters the frequency components of £.

Whenever it exits, the convolution inverse (b)~' of a sequence b is defined
to be

((b)~1 = b)) = By(l) (8)

where 3, is the unit impulse; i.e., 8,(0) = 1 and 8,(!) = O for ! *+ 0.
The reflection of a function f (resp., a sequence b) is the function fV (resp.,
the sequence bY), is given by

V) = f(—=x) VYxeER 9
V() = b(—-1) VIEZ (10)

3. GENERALIZED SAMPLING THEORY

If we consider the subspace of L, generated by the span of all the shifted sinc
functions

k= +=

V= {v:v(x) = (c * sinc)(x) = > c(k)sinc(x — k) cE 12} (11)

k= —= |
then Shannon’s sampling procedure [6, 23], which is depicted in Figure 1, is equiv-
alent to computing the L, least square approximation in V. Taking this point of
view, the whole scheme applied to a function s can be expressed as

k= +=%

s x) = >, (sinc * s)(k)sinc(x — k) - (12)
where s, is the orthogonal projection of s in V. The function (sinc = s)(x) is an
ideal lowpass filtered- or bandlimited-signal. Its Fourier transform has a compact
support which lies in the interval [—3, 3]. By the Paley-Wiener Theorem, it must
be an entire function of exponential type. Thus, the operation of taking the samples
c(k) = (sinc * s)(k) of (sinc = s)(x) makes sense. These samples are then used as
coefficients in the series (12) to obtain the approximation s,. A sampling ¢,(k) of
a translation s(x + k) of s has the property that |c, — cl;, goes to zero as |h| —
0. Because of this property, we say that the sampling scheme is strongly jitter-
stable.
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3.1. Generalized Sampling in .,

We usc the previous interpretation to gencralize Shannon's sampling procedure.
We start with an “‘appropriate™ real valued function N € L, and define the space
V(X) by

o

V() = {7*:1’(.\’) = (¢ * N)(x) = A}i 7 c(h)A(x — k) s Iw} (13)

We view sampling as a problem of least square approximation in the space
V(M). The whole procedure is then reduced to finding the coefficients (k) of the
orthogonal projection in V(X) of a function ¢ € ... The reconstruction is then
obtained by g, = ¢ = X. To do this. we must choose the function A appropriately.
First. we must insure that V(A) is well defined and is a subspace of L. Second.,
the subspace V(A) must be closed. Finally. the st {A(x - &)}~ must form a
Ricsz-Schauder basis of V().

Since we scek a class of sampling procedures that extends the classical scheme
(sce Figure 1), we require that the orthogonal projection on V(A) be implementable
using the following three-step procedure:

(i) a shift-invariant prefilter

(ii) a strongly jitter-stable sampling

(it1) a shift-invariant postfilter
where filter is defined in Section 2. The sequence obtained from the sampling is
the discrete representation that we scek.

If we start from a function X € L, satisfying |e = N||7, = Mlellz. forall ¢ €
[,. then V(A) is a well-defined subspace of L. Obviously, this docs not guarantee
that V()\) is closed. However, if we further assume that milelly, = fle = N7, for
somec number m > 0, then we insure that V(A) is closed and that it is gencrated
by the Riesz-Schauder basis {Nx = &)}, -. To sce this. we note that if the sequence
¢, + A of elements in V(N) is convergent in L., then the inequality |fe||7. = m !
lle * MI7.. implies that ¢, is a Cauchy sequence in /,. Thus. it converges to an clement
¢, € l,. The incquality [[c = X||7, = M||¢|7, then implics that ¢, * X converges (o
(c, * A) € V(X) as » tends to infinity. Finally, if ¢ = A = 0. then Nell7, == m !
lc = |17, implies that ¢ = 0. Hence, {A(x — Kb 1s a basis of V(X). Thus we
have:

Proposition 1:  If for some M = m > ()

miellf, = lle* M7, = Mllc|f, Ve el (14)

then V(\) is a closed subspace of L,. Morcover. Ny — K)}es is a Riesz-Schauder
basis of V()).

Remark 3.1: By definition, a set {e},. - C J of a Hilbert space Jis a Riesz-
Schauder basis if there exist two constants M = m > 0 such that miellf, =

2

> cl)el| = M|\c||7,. Thus, Condition (14) is a necessary and sufficient condition

i R

for V() to be a closed subspace of L, with the Riesz-Schauder basis NMa = Bher
If we take the Fourier transform of an clement (¢ + \) € V(N\). and use

Plancherel’s Theorem and the fact that C(f + i) = C(f), Vi € Z. we obtain
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fe* X3, = | 1COOLDI df (s)

= |, 1R S 1L+ P s

where C(f) and L(f) are the Fourier transforms of ¢ and A, respectively. Clearly,
if m=A(f) = Z |L(f — i)|?> = M, then it follows from (15) that (14) is satisfied.

The converse 1S also true; see, for example, [16]. These facts, together with a way
of obtaining the orthogonal projection on V'(\), are stated in the following theorem:
Theorem 2: Let X be a function in L, and let M = m > 0 be two positive
constants. Then the following two conditions are equivalent:
(i) mlcln = e * AMi, = Mljcl

() m=A(f) =2 |L(f-D]P=M ae.

Moreover, the o‘rthogonal’ projection g, of a function g € L, on V() is given by

gx) = > (g0, ML — K Nx — k) (16)

keZ
where the dual function X, which belongs to V(A), is given by
Ax) = (@' N(Ex) VrER (17)

and where (a)~' (which is the inverse Fourier transform of 1/A(f)) is the convo-
lution inverse of the autocorrelation function a(k) = (A = \V)(k), Vk € Z.

We will call a function generating if it satisfies (i) (equivalently (ii)) of The-
orem 2.

Proof: We now assume (i) and prove (ii) with an argument that uses con-
tradiction. First, if the periodic function A(f) := >, |[L(f — )] is not bounded

above by M, then the measure meas(Ey,) of the set JEM = {fe€ (0, 1:A(f) > M}
is strictly positive. We consider the periodic function Cy(f + 1) = Cy,(f) defined
by C,,(f) := (meas(Ey)) "Xy, for all f € (0, 1), where X, is the characteristic
(or indicator) function of the set £,,. From its construction, Cy,(f) is the Fourier
transform of a sequence ¢, € [, with ||cyll, = 1. Using Identity (15), and the
hypothesis that |[¢ * AJ|2, = M|lc|}., we obtain M < [, |Cyu(NPA(f) df = M,
which is a contradiction. Thus, A(f) = M almost everywhere. Similarly, if we
assume that A(f) is not bounded below by the positive constant m, then we can
construct the periodic function C,,(f) := (meas(E,,))”"*xp, for all f € (0, 1),
where the measure meas(E,,) of the set E,, := {f € (0, 1):A(f) < mj is strictly
positive. We immediately obtain that m < [, |C,.(f)|?A(f) df < m, which is a
contradiction.

Since V() is closed, the least square approximation g, of g exists and is equal
to the orthogonal projection of g in V(). Let g, = >, c({)A(x — ). To find the

coefficient (i), we use the fact that g — g, is ‘orthogo‘na] to V(A):

(g — g)X), Mx =), =0 VIEZ (18)

By simple substitution, we get
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(e a)(l) = {g(x). Nx = 1)), vieZ (19)

where the sequence a is the sampled autocorrelation function. given by
a(ly = (A= AV vie Z (20)
To sce that the sampling ()\ A1), VI € Z. makes sense, we note that because

N € L,. the Fourier transform | L{f)]? of X + AV belongs to L, Thus. (A = AY)(x)
is a continuous function. Clc(nl\ by Poisson’s ﬁmmuﬂ . the sequence ¢ is the inverse

Fourier transform of A(f) ]1 (f The coersivity property A(/)

1y

m > 0 in (i) implies that l//\ (/) 18 bounded above w.e. by m ' Thus, @ has an
{5 Lonvohmon mverse (a) ! wnh Fourier transform A(S). Hence. we can solve
Equation (19) for ¢ to get

(1) = (g(x). Ax = 1)), (21)

where A is given by Equation (17).

Theorem 2 may be viewed as a generalization of Shannon’s sumpling pro-
cedure. To make this link explicit. we note that the expansion coefficients in (16)
can be obtained by sampling a prefiltered signal at the integers:

(k) = (g(x). ANy — k) = (A\Y 5 )W), , (22)

The impulse response of the optimal prefilter therefore corresponds to the reflection
AY of the function A (sec Equation (9)). This operator has a role that is an: logous
to the antialiasing lowpass hlu:r required in conventional sampling theory, The
Icast squares approximation of g (or reconstruction) in V(N) is then obtained from
the mixed convolution between the coctticient sequence ofk) and the function A:

gx) = (¢ = N)(v) (23)

a step that can be interpreted as a post{i ttering, The full approximation procedure
can therefore be described by a block diagram that is essenti: iy cquivalent to the
onc shown in Figure 1. The main difference is that the ideal lowpass filters must
be replaced by the appropriate pre- and postfilters: (,\V) and \. respectively.
Morcover. the sampling defined by (22) is strongly jitter-stable. To see this. let
¢, A denote the orthogonal projection Py.g of ¢ on V(X)) We immediately see that

mlcli, = lleg * Mz, = [1Pugli, = gl (24)

This, together with the fact that m > 0 and Theorem 2. allows us to state:

Theorem 3: If A\ € L, isa generating function. then the orthogonal projcction
in V(\) is a well defined sampling procedure that consists of a prdxitulm_ followed
by a strongly jitter-stable sampling and, finally, a postfiltering for the reconstrue-
tion.

To obtain an interpretation of the present sampling theory within the genceral
framework of Reproducing Kernel Hilbert Spaces {19, 26}, we consider a function
h € V(X\) that we reproject into V() according to (16). Formally, we have that
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S (h(©), ML = K Mx — k)

keEZ

<h(c), 2 ML~ Nx — k)>

h(x)

(25)

L,

Thus, if A € L, is smooth and has appropriate decay, then V(X) is a Reproducing
Kernel Hilbert Space with reproducing kernel

K(x, 0) = ; ML — Nx — k) (26)

In particular, we note that the orthogonal projection of a function g € L, can be
represented in the more compact form

8.(x) = (g(&). K(x, L))y, (27)

There are two problems with the necessary and sufficient Conditions of Theo-
rem 2. First, it is not easy in general to verify that Condition (i) is satisfied for an
arbitrary function A, except for some special cases like A = sinc. The difficulty
comes from the fact that A(f) is an infinite sum. Second, the condition is not
preserved under convolution. In fact, the convolution A, * N, of two functions X,
€ L, and A, € L, is not necessarily in L,.

Our goal for the rest of this section will be to find conditions on N that are
more directly verifiable and yet sufficiently general for most applications. Another
motivation is to find a set of sufficient conditions that is preserved under convo-
lution. To do this, we start by grouping the zeros of L(f) into sets A,;, i € Z as
follows:

A= (fE€[0, LU — i) = 0} (28)

We now have all the elements to state:

Theorem 4: If the Fourier transform L(f) of a real function X € L, is such
that L(f) = O(|f| ~7) for some r > %, and if the set N A; = @, then the periodic
functions D, |L(f — i)]? is continuous. Moreover, is a generating function.

The proof of this theorem is postponed to the end of this section. Clearly,
the n-fold convolution of a generating function satisfying the conditions of Theorem
4 is also a generating function satisfying the same conditions. The growth condition
on L(f) is essentially a smoothness condition on A. In fact, it implies that A belongs
to the Sobolev space W+*2 for any s for which s <r — 3 (see Section 2). However,
NE Ws2foralls < r — % does not imply that L(f) = O(|f] ~"). A slightly stronger
condition must be imposed. For instance, if the derivative of X is C'(R) N L, then
L(f) is O(|f|~"). In fact, if A\ € W*! with s = 2, then the Sobolev Embedding
Theorems imply that A € L, and that A € C'(R). Thus, in this case, A € L; 0
L,. and L(f) € L, with the decay L(f) = O(|f|~"). As a corollary of Theorem
4, we immediately obtain:

Corollary 5: If the Fourier transform L(f) of a real function A € L, is such
that L(f) # 0 for all f € [—3, 3] and L(f) = O(|f] =) with r > 3, then X is a
generating function.
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Clearly, if A, and A, satisfy the assumptions of Corollary 3. then so does the
convolution product A, * \,.

3.1.1. Proof of Theorem

Proof: By the Riemann-Lebesgue Lemma, L(f) is continuous. This and the
fact that L(f) = O(|f] ") for somc r > % imply that the serics

Nl . - - . . oV Iy
2L = )] = const X [i] (29)
i il
is absolutely convergent. independent of f. Thus. it is continuous on [O. 1], From
its expression, this series can be seen to be periodic with period 1.
. G ~ hl N Ly Y . N f— v
Since N A; = Bowe get that A(f) = :}J [L(f —~ 1) # 0, Y€ |0, 1]. Therelore.
! i

because the series A is continuous on [0, 1], it follows that it is uniformly bounded
below by a positive constant rn > 0. This fact. combined with (29). vields the
desired result.

3.2. Sampling in Sobolev Spaces

The sampling procedures considered so far provide the best representation of a
signal in the lcast squares sense (minimum L »-norm). However., one May conceive
of applications in which a good rendition of the derivatives of signals is also of
interest. For this purpose., we will now consider approximation-sampling schemes
using the norm associated with the Sobolev spaces W+,

Specifically. if the Fourier transform of A € 1., is such that LYy = o] ")
forsomer >n + i n=0.and n € Z, then an estimate similar 1o Incquality (29)
can be used to show that ¢ = N is in W2, Morcover. if the N A, = B (Sce Definition
(28)). then we have the following estimate: '

mlels = lle s Mg, = e s M (30)

where the constant mis the same as in Theorem 2. In this case. the best APProx-
imation in (V(A). || ]lyy»2) of a function ¢ € W22 iy obtained by a series of parallel
prefilters followed by a pure jitter-stable sampling and, finally. a postfiltering with
the function A. The samples ¢(f) are given by

ql)y = (W =g + A = (DUg) + o0 4 AV, = (D)) VieZ (31)

where D¢ is the jth distributional derivative of ¢ and where

o

No=(ay +ay + o 4 a,, ) e (DYDY (
a(l) = (DU=YN) * (DY) VIieEZ (33)

4. EQUIVALENT GENERATING FUNCTIONS AND
SAMPLING STRATEGIES

Two nonidentical functions A, and A, may generate the same subspace V. Depending
on the signal processing application, a particular basis for V may have advantages
over other choices. If phase distortion is not acceptable. then a generating function
with an axis of symmetry is desirable. If the sequence of the expansion cocfficients
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is required to be a faithful representation of the underlying continuous signal, then
an interpolating function is the most appropriate. In some applications, the gen-
erating function is chosen so that it is localized in time or frequency. In others,
the only requirement is to have an orthonormal basis. Given a function X\ that
generates the subspace V (\), we can use the mixed convolution to construct another
function A_ generating the same space V(A.) = V(). This is done by convolving
A with a sequence p (mixed convolution as in Definition (5)):

Ao() = (p* M)(x) (34)

where p is an invertible convolution operator from /, into itself. A necessary and
sufficient condition for p to define such an operator is provided by the following
proposition:

Proposition 6: Let p be a sequence and P(f) its Fourier transform. The
sequence p defines a bounded invertible convolution operator onto /, if and only
if ess sup|P(f)| < e and ess inf| P(f)| > 0.

Proof: We first assume that ess sup|P(f)| < «, and ess inf| P(f)| > 0. Since
ess sup| P(f)| < =, P(f) € L,[0, 1]. Hence, the sequence p is in [,. Similarly,
since ess inf| P(f)| > 0, we also have that 1/P(f) is in L,[0, 1]. Therefore it is the
Fourier transform of (p)~' € I,, the convolution inverse of p (see Definition (8)).
If ¢ € 1, then using Plancherel’s Theorem, we have

P~ ENelZ, = llp = cll7, = fo |P(HCHI? df = PNl (35)

It follows that p defines a bounded convolution operator from [, into itself, and
that its inverse (p) ! is also a bounded convolution operator from [, into itself.
This proves the first part of the proposition.

Next, assume that p defines a bounded invertible convolution operator onto
l,. Thus, by assumption, there exist two positive constants 0 < m = M such that
milcl?. = |lp * ¢} = M]c||%.- By using (35) and the same argument as in the proof
of Theorem 2, in which we replace A(f) by P(f), we then obtain the desired result.

Remark 4.1: An example in which the conditions of the proposition are
satisfied occurs when P(f) is continuous and P(f) # 0in [0, 1].

The set of generating functions can be partitioned into equivalence classes
by the relation that associates two functions whenever they generate the same
space. Moreover, two generating functions belonging to the same equivalence class
are always related by Eq. (34). By appropriately choosing the sequence p, we can
construct generating functions with some desired properties. Next, we will show
how to construct biorthogonal, interpolating, and orthogonal basis functions. In
all cases, the orthogonal projection in V does not change. However, the prefilter
and postfilter in the sampling procedure depend on the particular choice of basis.

4.1. Dual Generating Function

The inner product between X\ and the generating function A. defined by (34) is
simply

(N, A(x — k), = (p¥ * a)(k) (36)
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where the symmetrical autocorrelation sequence « is defined in Theorem 2. It
follows that the corresponding sets of basis functions are biorthogonal if and only
if p = p¥ = (a)~". For this particular choicle of p. A is precisely the dual generating
function A defined by (17) in Thecorem 2. Since \ and A generate the same space
V(\). we conclude that their role in Equation (16) can be simply interchanged.

4.2. Orthogonal Generating Function
We will say that a generating function ¢ is orthogonal if g(x — k). & € 7 constitutes
an orthonormal basis of V({):

(@) dlx = KDy, = (b * $V)(K) = {(l) l/: _ (L =2 ... G0

In this casc. the function ¢ and its dual ((l’) arc identical. An example of such an
orthogonal generating function is sinc(x).

As is well-known [ 16, 18], to obtain an orthogonal function from an arbitrary
A, we can choose p in (34) 1o be the squarce-root convolution inverse of the sampled
autocorrelation function: p,, = (a) "7, This is the inverse Fourier transform of

P4n=:(iltuw~nﬁ) (38)

Clearly. because of Theorem 2, P, (/) satisfies the conditions of Proposition 6. Of
coursc, there are many other orthogonal generating functions associated with V(N).

4.3. Interpolating Generating Function

Another generating function of interest is the interpolating function 7. which is
continuous and vanishes at all the integers except the origin where it takes the
value I:

, [1 k=0 ,
'ﬂ(/\) - 8()(!‘) - 1“ ko= 1. +2. (3())
Because of this property. it can be used to interpolate between samples on Z. An
example of such a function is sinc(x). An interpolating function can be obtained
from A as described in the following proposition:

Proposition 7:  If A is a gencrating function satisfying the conditions of Theo-

rem 4 with r > 1, and if S(/f) = Z L(f — )| # 0.¥f & R. then we can choosc

I
a sequence p, so that m = p, = N is an interpolating generating function. The
sequence p, is given by the convolution inverse of Mk). k € Z: it can be specified
by its Fourier transform,

ﬁm=(2uwwﬂ (40)

Proof: Since r > 1, the series Z L(f — i)| converges uniformly and is
-
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therefore continuous. Moreover, since the series is never zero, P,(f) defined by
(40) exists, and it is continuous. Thus, m is a generating function. Its Fourier
transform H (f) is continuous, and |H(f)| = O(|f)| ") with r > 1. This implies
that v is continuous and the sequence n(/), I € Z is well defined. If we use Poisson’s
formula to get the Fourier transform E(f) = > H(f — i) of the discrete sequence

(), [ € Z, we immediately get that E(f) = 1. Hence, m is interpolating.

5. CONVOLUTION SEQUENCES OF GENERATING FUNCTIONS

The n-fold convolution of a generating function that satisfies the conditions of
Theorem 4, is also a generating function. Thus, we can start with a single function
and construct, by repeated convolution, an infinite sequence of generating func-
tions. In fact, the well known B-splines can be obtained precisely in this fashion.
These functions turn out to be very useful for generating certain polynomial spline
function spaces [21, 22]. In this sense, the constructions that follow can be viewed
as a generalization of polynomial splines.

5.1. The Basic Sequence

We start with a function A that satisfies the conditions in Theorem 4 and construct,
by convolution, a sequence of increasingly regular functions \", as follows:

AM{x) = N*x N s NF 0 kN (n — 1 convolution) (41)

These functions will be called the basic generating functions of order n. The fact
that \” is also a generating function satisfying the conditions in Theorem 4 can be
deduced by taking the Fourier transform of (41). In fact, if the Fourier transform
L(f) of X is O(If| ="), then the Fourier transform (L(f))" of N is O(|f]~"). It
follows that the regularity of N\ improves with increasing n. Moreover, if X is
“linear phase,” then A\ will also be “lincar phase” (i.e., having a vertical axis of
symmetry). This property is relevant in signal processing for obtaining represen-
tations that have no phase distortions.

Another result that motivates such a construction is a general convergence
theorem by de Boor, Hoéllig, and Riemenschneider [8], which we give here in one
dimension using our notation.

These authors start with a compactly supported function p € L, with Fourier
transform | M(f)| = O(|f] ~"), and introduce the set

Q = {f:IM(f + DI <IM(f)]. ] € 2)\0} (42)

Next, they define the class of functions

V., = {g € L,: lim dist(g, V(p")) = 0} (43)
They then prove the following theorem:

Theorem 8: g € V.. if and only if the support of the Fourier transform of g
is contained in ).

In the special case of polynomial splines, stronger results can be found in
[17]. In particular, Marsden, Richards, and Riemenschneider show that the spline
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interpolant £ g(/)m*"(x — j) of a bandlimited function ¢ € B,,, N L, converges
to gin the L,-norms as n — <.

Theorem 8 applics dircctly to our construction, provided that the function A
in (41) is compactly supported. A case of special interest is 2 = [ —*%, 4], in which
V.. 1s precisely the class of bandlimited functions considered in Shannon's sampling
theorem. This observation suggests a closc connection between the sampling in the
subspaces V(M) and the classical sampling procedure. Next, we make this con-
nection explicit and extend the results above to noncompactly supported functions,
and to the case of L, spaces (sce Remark 5.2 below), Specifically, we use our
results in Scetions 3 and 4 to obtain approximations of signals in ¥V (\"). We will
then prove that, under mild conditions, the filters in the interpolating and orthog-
onal representations tend to the ideal lowpass filter. However, filters associated
with other basis functions (c.g.. N") do not necessarily converge to the ideal filter.

5.2. The Interpolating and Orthogonal Sequences

Our previous results provide us with a number of possibilitics for characterizing
the sequence of spaces V(A). A natural approach is to use an orthogonal generating
function, We can use (34) and (38) to obtain a gsenerating function & that satisfics
the orthogonality property (37). It is obtained from A" as follows:

B = (@) ) (44)
a(k) = (A" = NVYK) Yie 7 (45)

Remark 5.1: 1t should be noted that the sampled autocorrelation function
a" is not equal to the (n — 1)-fold convolution of a(k) = (A » AVI(k).

Similarly. we can use the interpolating representation in which the expansion
cocflicients are precisely the sampled values s(h). k € Z., of the underlying signal
s(x). This implics that the expansion coeflicients can themselves be viewed as a
faithful representation of the signal s(x). For this purpose, if A is as in Proposition
7. we can define

ho(ky = z(k)  Vke7 (46)

From Proposition 7, we know that an interpolating generating function exists pro-
vided that the sequence b" is invertible. 1t is given by

() = (b)) A)() 47)

A casc of special interest occurs when A is symmetrical, In this case. a'(k) = b(k).
and there is a direet relation between the orthogonal and interpolating functions:
n" = " = ¢". This relation also implies the existence of the im@:rpblming rep-
resentation for n ceven. Note that symmetrical functions are casily constructed;
starting from any generating function 7 that satisfics the conditions of theorem 4.
it is always possible to obtain a symmetrical one: A = 1+ 1V,

5.3. Asymptotic Convergence Results

As n increases, the scquence of basic functions N converges to a Gaussian. This
result is a consequence of the well-known Central Limit Theorem [9]. If, instead,
we consider the interpolating representation, then the underlying filters tend to
the ideal lowpass filter of Shannon, as expressed by the following thcorem:
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Theorem 9: If L(f) is the Fourier transform of a symmetrical generating
function A satisfying the conditions of Theorem 4, and if L(f) satisfies

min |L(f)| > LD Vf& 1= [-é— %] (48)
rer

then the Fourier transforms H?'(f) of the interpolating functions n*" generated by
(47) and the Fourier transforms fﬁ”(f) of their duals %' converge pointwise a.e.
and in L,-norms, p € [1, ), to the ideal lowpass filter as n tends to infinity:

L, — lim H>(f) = rect(f) (49)

H—>

L, — lim H>(f) = reet(f) (50)

Corollary 10: The interpolating functions m>' and their duals n?" converge,
in L -norms, g € [2, %], to the ideal sinc interpolator of Shannon as n tends to
infinity.

The proof of Theorem 9 is postponed until the end of this section. The
assumption (Theorem 4) that A belongs to L, implies that L(f) is a continuous
function. Thus, Condition (48) implies that the minimum of |L(f)| = |L{—f)|in
I = [—3,1]is achieved at f = =3. Clearly, this minimum can be achieved elsewhere
in I, and |L(f)| can have other local minima in [ -z, 3]. An equivalent statement
is: |L(f))] > |L(f,)| for all f, € I and for all f, ¢ I. Condition (48) essentially
means that L(f) is a nonideal lowpass filter in the frequency band (-3, ). The
theorem can be viewed as stating that the ideal lowpass filter can be approximated
as closely as necessary by the sequences n" and n**. These are obtained by repeated
convolutions and a simple correction of a single nonideal lowpass filter. If the basic
generating function is not symmetrical, we can define A" to be (A = A¥)” and obtain
the same convergence results as in Theorem 9.

It should be noted that Condition (48) can be relaxed. In fact, we only need
to have

LD > |L(f - )] i=rl,rz,u.,w¢(—%,§) (51)

Similar to the interpolating family, the Fourier transforms of the sequence
¢" also tend to the ideal lowpass filter as n goes to infinity. This fact is stated in
the following theorem:

Theorem 11: If the Fourier transform L(f) of a generating function A sat-
isfying the conditions of Theorem 4 is such that

. 11 X
min [L()| > |L(AH]  Vf&ET=|-5.5 (52)
et 22
then the modulus | F*(f)| of the Fourier transform of the orthogonal functions and
its dual ¢" = (¢")V converge pointwise a.e. and in L,-norms, p € [1, ®), to the
ideal lowpass filter as the order n tends to infinity:
L, — lim |F(f)| = rect(f) (53)

H—>x
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Remark 5.2: The remarkable result in Theorem 8 of de Boor, Hollig, and
Riemenschneider contains the essence of the asymptotic equivalence of our aen-
eralized sampling procedures with the classical scheme. Qur theorems which de-
scribe the convergence of specific basis functions make this connnection explicit,
They also provide extensions for L -norms and noncompactly supported functions.
By sctting p = 2. and choosing a compactly supported function X, we can use (49)
to obtain Theorem 8. The converse is not true. Theorem 8 implies that the [ ,-
limit of a convergent sequence is a bandlimited function. However. this result is
not sufficient to mfer that the various scquences of basis functions in Theorems 9
and 11 tend to be the ideal filter. Morcover, a sequence of functions s, € V(p*)
IS not necessarily convergent.,

Equation (49) in Theorem 9 can be used to obtain a generalization of the
convergenee result for polynomial splines in [17]. Specifically, we can show that

the interpolants s, € V(N") of the samples {s(k)},.. - of an 1., bandlimited function
§ € By (ie.o s is a function of exponential type in 1) tend 1o s and # goes 1o
infinity, in L, -norms for all p € [2. =].

5.4. Proof of Theorems 9 and 11

5.4.1. Proof of Theorem 9
Proof:  The Fourier transfrom H2(f) is given by

(54)

2

H=>"(f) = Z II(/ — B

2

It is well-defined, since the dummmmun

is strictly positive. This

follows from the fact that L(f) is mnlmnums and L( _/) # O forallfet =|-1.
3] For f € I, we estimate [H2(f) - 1] by

; i | ( l n
[H(f) ~ 1] = : -
f L(/‘)‘ B AS 1 — )' |
LV > 127 = i 5
= 2 LU = VL]
We rewrite the series on the right side of the inequality in (55) to get
o . 19 AN . a WY 5 /1 = -

2 LU = LI = max | LG = DILG) S, LU DR
i P40

7o max [L(f — i)L(/)

ic fact that the term of the series in the right side of (56) is ()(]1| ~2) with
3 implies that the series converges. Morcover. since the terms in the series are no
blggcr than 1. we can choose n = 1 in the scries and obtain the upper bound:

2, |LU = iYL = max | L( 2L = LD (57)

The series on the right side of the Inequality (57) can be bounded above by a
constant independent of f € I. We have
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> IL(f = iYL(f)]> = (melp IL(f)lz) 2L -DEP=C (58)

i#A0) I i+=0

where C is a constant independent of f. Thus, by (55), (57), and (58), we obtain
the upper bound:

|H>(f) - 1l =C max |L(f — i)/L(f)|*~2 (59)

Since | L(f — {)/L(f)| is O(]i| =) and because of Condition (48) in the theorem,
we have that for f € (-3, 1), max |L(f = i)/L(f)| < 1. Thus, we conclude that
|H?(f) — 1| converges pointwise to 0. Moreover, | H?'(f) — 1| is bounded above
by the constant C, which is independent of n. Hence, by the Lebesgue Dominated
Convergence Theorem, we have that |H>'(f) — 1| converges to zero in L,(—3,

3).

Because | H'(f)| = |[H?>(—[)|, it only remains to look at the case for which
f € (&, =). For L(f) # 0, we rewrite (54) to obtain
- L{f)|*™ 1 _

SILG =P T+ F LG - DILO)

Letfe (k— %, k + 3],k =1,2,... Since Condition (48) implies that
L(f — k) is the largest term, we can estimate | H>'(f)| by

[H> (O] = |LUYYLS = k)P <1 (61)

Together, the first inequality of (61) and Condition (48) imply that N*'(f) tends
to zero as n tends to infinity. For large values of f, we use the first inequality of
(61) to obtain

[H2(f)| = |LOYL(S = k)|
= |L(ILU = BP
-1
1 Y | 2 [2
= (r;gp |L(f)] ) |L(H)]
= Clf|~*
where C is a constant independent of f and n. Because of the last inequality in
(62), and because | H?'(f)| is bounded above by 1 (Eq. (61)), we can use Lebesgue’s
Dominated Convergence Theorem to conclude that H?'(f) converges to zero in
L,(0, =). The proof of part (i) of the theorem is thus completed.

(62)

The expression for the dual filter ﬁz"(f) is given by
LI 2 LG = DI
2 IL(f = DI

f1(f) = = H¥(f) + E*(f) (63)

where E?'(f) is defined by
Ly L = i)
E ”(f) = 2 |L(f - i)7|4”

(64)
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The term H*(f) converges to rect(f) by part (i) of the theorem. Thus. we only
need to show that E27(f) converges pointwise and in L, 1o zero as o tends to
infinity.

For f € (—3. 7). we have that

2 L= |
D= TSI g = A K

IRt

(65)

This is the same expression as in the last inequality of (53). Thus. L)) converpes
pointwisc and in £,(—3.3) to 0 as n tends to infinity.
/\Lmn because of symmetry. we only need to look at f € (0, =). For e (k
Lk o+ 3] we multiply and divide by the term L(f — k) to rewrite (64) as

LD LS = P 2 [ = DL~ k)]

E(f) = TSI (66)

Ifwelet z = [ — k. then the serics in the numerator can be estimated above as
follows:

> LS = VLS

= 2L = L))

i 0 (67)
o
=]+ (min ]L(z)i’) >z - D=
1<l Y

where C in the last Imqlmhw 18 a constant independent of fand n. Thus, if L(/))
# 0 (otherwise E>(f) = 0), the expression of [ () in Equation (66) can be
estimated by

LD L - K]
N DT

- oLt
|L(f = k)
Together. Condition (48) and the sccond imquali of (68) imply the pointwise

convergence of E*(f) to zero. Finally, since DL = k)] < 1. we estimate
LE>(f) for large values of [ as follows:

L) =
(68)
=

2n

L/
|L(f = B

oy
= (min | L(f 3) |L(f
ret

where C| is a constant independent of # and f. Because of this last incquality, and
the fact that |E(f)| is bounded above by a constant C (Eq. (68)). we can use
Lebesgue’s Dominated Convergence Theorem to conclude that E () converges
to zero in L,(0, =). The proof of part (i) of the theorem is thus completed.

E¥(f) = C
(69)

=Gl
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5.4.2. Proof of Theorem 11
Proof: The Fourier transform F"(f) is given by

(LD

Fr(f) = 172 (70)
(Z |L(f - i)|2")
For f € (0, 3), we get the upper bound estimate,
1 - (1 + 2 LU - i)/L(f)P")
||F"(f)| - ]'S 172 ‘
(1 + 2L - f)/L(f)lz”)
i#0 ‘ (71)

=

I~ (1 + 2L - z')/L(f)P”)
= 2, |L(f = L P

The last inequality is the same as in (55). Thus, the pointwise and L, convergence
follows for f € (-4, 3).
For f € (3, «), we have that

—-172

|F(f)| = = |L(f - k)YL(F)|~" (72)

o (Z IL(f - i)/L(f)P”)

where f € (k — 1, k + 1]. Note that if we replace n by 2n in the last inequality,
we obtain inequality (61) in the proof of Theorem 9. Thus, by following exactly
the same arguments, we complete the proof.

6. EXAMPLES

6.1. Polynomial Splines

A particular example of the present theory is provided by polynomial splines. The
sampling theory for this class of functions has been investigated by several authors
(12, 24].

The B-splines of order m, B, are obtained by repeated convolution of a B-
spline of order 0 [21]:

B(x) = (B * B = --- * B(x) (m convolution) (73)

where B°(x) is the characteristic function in the interval [0, 1). Schoenberg has
shown that these functions generate the polynomial splines of order m with knot
points at the integer. These splines are C*~' functions that are formed by patching
together polynomials of degree m at the grid points, which are called the knot
points. Accordingly, when the grid is Z, any polynomial spline function s(x) of
order m can be represented as
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R
s@) = 2, c(k)BM(x — k) (74)
R,

The function B" satisfies the conditions of Theorems 9 and 11 if we select #
= m + 1. Thus, we can concludc that the interpolating and orthogonal splinc
filters (m2), (). (&¥)7, and (b )" converge to the ideal filter as n tends to
infinity. More detailed convergence results can be found in [4. 24]. Related asymp-
totic properties of spline interpolants arc also discussed in [17, 22].

6.2. Gaussian Functions
Another casc is provided by the example of Gaussian functions. These functions
arc optimally localized in the time-frequency plane [10]. Because of this property,
they have been widely used in physics and cngineering for signal representation.,

$(x) : i
——1 prefilter - -| postfilter ()

sampling
(A) Cardinal Gaussian filters

1.2 o
| M H(f)

f f
1 e 1
' F{f)
0.8
0.6
0.4 §‘l
A\
]f 6.2 0.4 : :.E‘E\ 0.8 1 f

Figure 2 Block diagram of the generalized sampling procedures with the example of the
Gaussian functions A = (wn) ~'? exp(—xn). (A) Interpolating Gaussian filters, and (B)
orthogonal Gaussian filters: continuous lines for n = 1, dashed lines for n = 2. and dotted
lines for the ideal filter.
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Any Gaussian function Mx) = (2wo)~"? exp(—2~!'(x/c)?) satisfies the
conditions of Theorems 9 and 11. Thus, we conclude that_the interpolating
and orthogonal Gaussian filters (nZ)", (mZ)", (62", and ($2)" converge to
the ideal filter as n tends to infinity. The process of Gaussian sampling with \?'(x)
= (mwn)~"* exp(—x?n) and the convergence of the corresponding filters are illus-
trated in Figure 2. The approximation procedure involves a prefiltering followed
by a sampling and, finally, a reconstruction using a postfilter. As can be seen from
the graphs, the interpolating and orthogonal Gaussian filters of order 4 are already
a good approximation to the ideal filter.

6.3. Scaling Functions

Finally, we can obtain similar constructions starting from any scaling function that
satisfies the QMF conditions of S. Mallat [16]. These functions generate multi-
resolution analysis of L,, and are widely used in the context of wavelet transforms.
An interesting property is the fact that the multiresolution structure is preserved
under convolution [2].
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