
SIAM J. MATH. ANAL.
Vol. 25, No. 5, pp. 1412-1432, September 1994

() 1994 Society for Industrial and Applied Mathematics
010

DISCRETE SPLINE FILTERS FOR MULTIRESOLUTIONS AND
WAVELETS OF

AKRAM ALDROUBIt, MURRAY EDENt, AND MICHAEL UNSER?

Abstract. The authors consider the problem of approximation by B-spline functions, using a
norm compatible with the discrete sequence-space 12 instead of the usual norm L2. This setting is
natural for digital signal/image processing and for numerical analysis. To this end, sampled B-splines
are used to define a family of approximation spaces SUm C 12. For n odd, Sn is partitioned into sets
of multiresolution and wavelet spaces of 12. It is shown that the least squares approximation in Sn
of a sequence s E 12 is obtained using translation-invariant filters. The authors study the asymptotic
properties of these filters and provide the link with Shannon’s sampling procedure. Two pyramidal
representations of signals are derived and compared: the /2-optimal and the stepwise /2-optimal
pyramids, the advantage of the latter being that it can be computed by the repetitive application of
a single procedure. Finally, a step by step discrete wavelet transform of 12 is derived that is based on
the stepwise optimal representation. As an application, these representations are implemented and
compared with the Gaussian/Laplacian pyramids that are widely used in computer vision.

Key words, multiresolution, wavelets, splines, sampling, ideal filter, pyramid
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1. Introduction. Images, signals, and numerical data are usually available to us
as a sequence of real or complex numbers. The sequence space 12 is therefore natural to
consider. However, for the purpose of deriving numerical algorithms, it is sometimes
desirable to represent an 12 sequence by an analog function. This is often realized
by interpolation techniques [20], [21], [37], [44], [45]. The computations are usually
performed numerically on digital computers, and the results are sequences of numbers.
Image magnification, reduction, signal coding, and reconstruction are examples [8],
[21], [22], [37], [38]. In order to allow for such dual discrete/analog representations, we
develop the theory of polynomial spline approximation for discrete sequences. For this
purpose, we consider the problem of least squares approximation of discrete functions
in the discrete spline spaces:

(1) Sn := {v E12 v(k) iezZC(i)bn(k-mi)’ c E/2},
where bn is the sampled B-spline functions of order n (cf. 2.2). It should be noted
that any sequence v S can be obtained by sampling a polynomial spline function
of order n (for an extensive treatment of polynomial splines, see [9], [15], [32], [34]).
Thus, the approximation of a sequence s(k) in S is equivalent to fitting s(k) with
a uniformly spaced analog polynomial spline function that minimizes the discrete 12-
norm of the error (cf. Remark 1 in 5.1). For nonuniformly spaced knot points, the
latter problem is usually solved by standard matrix techniques [14]. In our case, we
treat the uniformly spaced knot points. We show that in this case, the approximation
in Sn can be obtained by discrete translation-invariant filtering, as illustrated in Fig.
1. Therefore, this theory is particularly well adapted to signal and image processing.
We study the properties of the approximation filters and discuss the theory in light of
Shannon’s sampling procedure. We then use the results to construct multiresolution
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DISCRETE SPLINE FILTERS 1413

and wavelet spaces for 12 instead of the usual space L2 [10], [26], [29], [43]. Other
approaches to constructing multiresolution and wavelet spaces of 12 can be found in
[33] (cf. Remark 2 in 5.2).

This paper is organized as follows: In 2, we use discretized B-splines of order n
to construct and analyze a family of discrete sequence spaces $n, where n indexes
smoothness constraint and where m is a scale index measuring the coarseness of the
space. In 3, we solve the problem of finding the best 12 approximation to a signal in

Snm and show that it can be obtained by a prefiltering followed by a down-sampling,
an up-sampling, and an interpolation, as shown in Fig. 1. Both the prefiltering and
the interpolation can be carried out by translation-invariant filtering using fast algo-
rithms [41]. In 4, we provide the link between the approximation problem in
and the classical Shannon sampling procedure [3], [4], [22], [39]. More specifically, we

prove that the frequency response of the prefilters Hm(f) tend to the ideal discrete
lowpass filter with periodic support in yez [J- 1/2m, j + 1/2m], and that the dis-
crete spline interpolators H(f) tend to the ideal lowpass filter with periodic support
in yez [J 1/2m, j + 1/2m] and gain m. Related convergence results for the nlog
case can be found in [4], [15], [25], [28], [35]. In 5, we use our results to construct
and discuss two multiresolution representations of signals: the optimal spline pyr-
mid (OP) and the stepwise optimal spline pyramid (SOP). Based on the SOP and
some techniques similar to those developed by Daubechies, Mallet, and Vetterli [13],
[27], [42], we derive a stepwise discrete wavelet transform of 12 (the stepwise opti-
mal wavelet pyramid SWP). FinMly, we use an example to compare the OP and the
SWP representations with the Gaussian/Laplcian pyramids that are widely used in
computer vision [6].

2. Notation and preliminaries.

2.1. Definitions and notation. The signals considered here are discrete func-
tions with "finite energy." The collection of all such signals constitutes the space of
square summable sequences 12.

The symbol "." will be used for three slightly different binary operations that are
defined below: the convolution, the mixed convolution, and the discrete convolution.
The ambiguity should be eily resolved from the context.

For two functions f and g defined on , denotes the usual convolution:

(2) (f g)(x) fffff f()g(x )d, x e

The mixed convolution between a sequence {b(k)}kez and a function f defined on
is the function b. f defined on , given by

x e n.
k=-

The discrete convolution between two sequences a nd b is the sequence a b:

k=+

(4) (a e Z.
k=-

Whenever it exits, the convolution inverse (b)- of a sequence b is defined by

() (()- * )() 50(),
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1414 AKRAM ALDROUBI, MURRAY EDEN, AND MICHAEL UNSER

where 5 is the unit impulse located at i.e., 5(i) 1 and 5(k) 0 for k - i.
We will use the term Fourier transform to describe both the usual Fourier trans-

form for functions defined on 7:

(6) (f) / g(x)e-i2fXdx,

and the usual Fourier transform for sequences,

(7) (f) b(k)e-’.

A continuous filter (f) is the Fourier transform of a function on T (the impulse
response) that defines a bounded convolution operator on L2"

(8) A" g L2 --+ A * g L2.

Since the convolution product A g becomes a multiplication product in Fourier
space, the filter selectively alters the frequency components of

A discrete filter h(f) is the Fourier transform of a function h on Z (the impulse
response) that defines a bounded convolution operator on 12"

(9) h" u E12 -+ h,u E l2.

The reflection of a sequence b is the function bv, given by

(10) bv(k) b(-k) Vk e Z.

The modulation b(k) of a sequence b is obtained by changing the signs of the odd
components of b:

(11) (k) (-1)kb(k).

The operator m of down-sampling by the integer factor m assigns to a sequence b
the sequence , [b], given by

(i2) (m [b])(k) b(mk) Vk e Z.

The operator T. of up-sampling by the integer factor rn takes a discrete signal b and
expands it by adding m- 1 zeros between consecutive samples"

b(’), =,k’,(13) (Tm [b]) (k) 0, elsewhere.

2.2. The discrete spline spaces sn. We begin by defining the discrete B-
spline b(k) of order n and integer coarseness m >_ 1:

(14) b(k) n(k/m) Vk e Z,

where/n(x) are the continuous symmetrical B-splines of order n. These are obtained
by the n-fold convolution of the B-spline of order zero:

(15) flU(x (f0, f0 ,...,/0) (x) (n convolution),
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DISCRETE SPLINE FILTERS 1415

where/(x) is the characteristic function in the interval [-1/2, 1/2) (i.e., (x) 1 in
[-1/2, 1/2) and (x) 0 elsewhere). The bell-shaped functions n(x) have compact
support. They were introduced by Schoenberg, who used them to construct a simple
basis for the polynomial splines spaces of order n [34].

Using the sequences b in (14), we define the subspaces Sn of 12 to be

vElg’v(k)=c(i)b(k-mi)=(b*Tm[C])(k), c El2,(16)

where n and m are positive integers and where the operator I’m is defined by (13). As
shown in 3, for n odd (which we will assume throughout) the vector spaces Sn are
closed subspaces of/2, and S 12. The discrete functions in Sn are smooth in the
sense that they are samples of polynomial spline functions of class Cn- 1. In this way,
the index n is the description of a smoothness constraint. In 3, it is shown that if
m2 kml (ml, m2, k are positive integers), then Sn. C Sn

ml Thus, in some sense,
the index m is related to the coarseness of the spaces SUm

2.3. Review of some results on the continuous fundamental spline fil-
ters. The fundamental spline function of order n, n(x) (also known as cardinal, or
interpolating spline) has the value 1 at x 0, and is zero at all the other knot points
(the only knot points we consider here are the integers). Thus, it is used to interpolate
between data points producing a continuous spline function of order n [4], [28], [34].
Given a discrete signal s(k), its spline interpolation an is given by

(17) (yn(x) (8 $ ?n)(x) 8(i)T]n(x i).
iEZ

Equation (17) states that the polynomial spline interpolant fin (X) is obtained by filter-
ing the tempered distribution -4ez s(i)5(x- i) with a filter whose impulse response
is n(x). Using Poisson’s formula, the Fourier transform of r/n(x) is given by

(sinc(f))n+l 0, f e Z \ 0,
(18) H(f)

(sinc(f i))n+l
1, f 0,

ez (1 + vn(f))-1 elsewhere,

where sinc(x) sin(Trx)/Trx and where un(f) is given by

i--oo

(ill + 1) -n-1 + (ill 1) -n-l, n odd,
(19) vn(f) i=1

i=x

)i --n--I(--1 ((ill -- 1) (ill 1)--n--l), n even.
i=1

An important feature is that the Fourier transform H(f) of Tn(x) converges to
the ideal lowpass filter; a well-known property [4], [15], [28], [35] stated in the following
theorem.

THEOREM 1. The Fourier transforms of the fundamental spline interpolators
Hn(f) converge to the ideal lowpass filter as n goes to infinity pointwise almost every-
where and in Lp(-oo, +o) for all p e [1, o):

1, Ill < 1/2,
(20) Lp- lim H’(f)= rect(f) 1/2, III= 1/2,

O, Ill > 1/2,
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1416 AKRAM ALDROUBI, MURRAY EDEN, AND MICHAEL UNSER

3. Least squares approximation in the spaces Sn Since one of our goals
is to find least squares approximations in the spaces Sn, we start by studying the
properties of SUm

3.1. Properties of Sn. First, we prove that the spaces Sn in (16) are well-
defined subspaces of 12 by showing that b. Tm [c] E 12, for all c E 12. To see this, we
note that since n has compact support, the sequence b defined by (14) has finitely
many nonzero values. Thus, b is absolutely summable. This implies that b defines
a bounded convolution operator from 12 into itself. om this and the fact that the
up-sampling operator is an isometry, we get

(21) fb
om the last inequality, it immediately follows that S, given by (16), are well-
defined subspaces of 12.

There are embedding relations between the spaces S. These embeddings follow
from the well-known embedding properties of the continuous polynomial splines of
order n [25], [27], [30].

PROPOSITION 2. If n is odd, then

() s? c s w e z+.

Proof. For n odd, the B-spline fln(x/lm) (where/is a positive integer) is also
a polynomial spline with knot points on mZ. Thus, it can be written, in terms of
n(x/m) and a sequence u 12, as

X
(23) n(x/lm) u(i)n ( --i).

iZ

Both this equality and the definition of b given by (14) imply that

(:a) ? * (T []).

We use (24), together with the operator identity

(25) Tmz=T/Tz

and the equality

(6) [vii, [:] = [v, v]

to get

(27) (’t, [c]) b, (Ttm [c]) (Tm [u]) b (Tm [(Tt [c]) u] b, Vc e 12.

The Fourier transform of u,

(28) U(f) lsincn+t(lf)/sincn+t(f),

is continuous and bounded above by a constant. Thus, we have

(29) IIT [1 * ull, Const I111.
The proof of the proposition then follows from (27) and (29) and from the definition
of S, given by (16).
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DISCRETE SPLINE FILTERS 1417

Since our aim is to find least squares approximations in Sn, we need to show that
S are closed subspaces of/2a result that we state in the following theorem.

THEOREM 3. If n is odd, then S. 12 and Sn are closed subspaces of 12.
The proof of the theorem relies on the following simple lemma.
LEMMA 4. Let Bn(f denote the Fourier transform of bn(k). If n is odd, then

there exist two positive constants 1 and c2 such that

(30) <_ B(f) Vf e [-1/2m, 1/2m],

(31) B(f) <_ a2 V/ T.

Proof. We first note that the Fourier transform of B(x) is the function sinc(f).
From this fact, Poisson’s formula, and the definition of bn (equation (14)),
can be expressed as

(32) Brim(f) mE (--1)(n+)m
m’n(f i)

n+l

Clearly, the function BUm(f) is both symmetrical (B(f) B,,(-y)) and periodic
with period 1. Since the terms of the series in (32) are continuous and of the order
of lil -n-l, it follows that the series in (32) converges uniformly for all n > 0 in
the interval f E [0, 1]. Thus, Br(f is continuous. Since B,(f) is continuous and
periodic, it is bounded above by some constant a2.

For n odd and for f E [0, 1/2m], all the terms of the series (32) are nonnegative,
and the term for 0 is strictly positive. Hence, B(f) is bounded below by a
strictly positive constant c1.

Proof of Theorem 3. To prove that S. are closed, we show that the operator
b,, Tm: c e 12 b* Tm [c] e 12 is coercive (i.e., lib.* Tm [cilium. _>  llcllt for
all c 12 for some > 0). Taking the Fourier transform of b, T, [c] and using
Plancherel’s theorem, we get

m

(33) Tm [c]
0 0

where B(f) is the Fourier transform of b. By integrating over intervals of length
1 and using the fact that (f) and B(f) are periodic with period 1, we rewrite the
term following the last equality in (33) to obtain

o o j=o

>m-1 essinf (,B(f/m-j/m),2) 12/eI=[0,1]
k =0

> m- essinf IN(l/m)l

herefore, the coercivity of the operator b, T follows directly from (aa/, (a4), and
Lemma 4.

(34)
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1418 AKRAM ALDROUBI, MURRAY EDEN, AND MICHAEL UNSER

3.2. Approximations in Sn. Since by Theorem 3 Sn is a closed subspace of
12, the least squares approximation Sa of s is given by the orthogonal projection on

Sn. Hence, the error s- Sa is orthogonal to S. In particular, because of definition
(16), the error is orthogonal to bn and to all of its shifted versions at integer multiples
of m:

(35) ((s Sa)(k), bn(k -lm)) 0 Vle Z.

Using the expression of sa E Sn given by

(36) o() o()( -) (T [o] )(),

we rewrite (35) to get

(7) ((), b(a .)) co(i) ((t: i.),( n)), W e Z.
iEZ

Using the fact that bn is symmetric, we can express (37) as the convolution equation

(38)

This equation can be solved to obtain the unknown sequence Ca. A filtering interpre-
tation of this process is given in [40]. The facts that this procedure is well defined, that
the filters are stable, and that equation (37) can be solved follow from the following
theorem.

THEOREM 5. The Fourier transform Tn(f) of tn(1) :=m [b * bUm](/) is strictly
positive. Moreover, tn 11, and it has a convolution inverse (tn) -1 11 with Fourier

transform (TrY(f)) -1 that is also strictly positive.

Proof. The sequence tn(1 :=[m [bn * bnm](/) has finitely many nonzero values.
Thus, t /1, and it defines a bounded convolution operator from 12 into itself (e.g.,
IItn cllt <_ Constllcllt2). Using the relation between the Fourier transform of a
discrete signal b(k) (cf. (7)) and its down-sampled version Sm [b]

m--1

(39) (’ [bl)(f) m-1 E ,(f/m- j/m),
j=0

we obtain the Fourier transform Tmn (f) of t:

(40)
m--1

TUrn(f) m-1 E IB,(f/m J/m)12"
j=0

The function T(f) is precisely the sum that appears in the right-hand side of the
first inequality in (34). Therefore, Lemma 4 implies that T(f) is strictly positive
and is bounded above by a constant. It follows that (tn)-1 12 exists. In fact, since

tnm has only finitely many nonzero values, T(f) is a strictly positive trigonometric
polynomial. Therefore, (tn) -1 decays exponentially fast as Ill--, c. Hence, (tn)-l(/)
is also absolutely summable.

From Theorem 5, tn and (t)-1 define bounded convolution operators on 12
that are the inverses of each other (cf. (9)). Thus, they are the impulse responses
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DISCRETE SPLINE FILTERS 1419

of the filters T(f) and (T,(f))-1
approximation Ha"

We use (tn) -1 to solve (38) and obtain the

(41) s]]
bn* Tm [m [Tm [(tn) -1] * bn * s]],

where in the last equality of (41), we have used the functional equality

(42) a* $m [b] =$m [Tm [a] * b] Va, bel2.

3.3. Fundamental discrete spline filters. The space S (n, m fixed) can be
generated by bases other than {b(k- mi)}iez. h complete characterization of all
unconditional bases of a given separable Hilbert space as well as a simple way to
obtain any particular basis from any other can be found in [1]. In particular, all
Riesz bases for S can be characterized in term of {bn(k- mi)}iez by appropriate
"linear combinations." For instance, it is not difficult to show that if we sample the
Battle/Lemari spline scaling function Cn(x/m) on Z, we obtain the sequence l =Tm
[(b21n+1) -1/2] b. The set {l(k rni)}iez is also a basis for Sn. However, it does
not form an orthogonal basis of Sn. The orthogonal basis is given by {on(k rni)}iz
generated by on-Tm [(tn) -1/2] * bn.

A particular basis of interest is the fundamental basis {h(k mi)}ez, in which
the representation of any sequence s(k) E Sn is directly obtained from the sequence
values {s(mi)}iez:

(43)
iZ

The fundamental sequence hn (k) is obtained by sampling the continuous fundamental
spline filter Tn(X), defined at the beginning of 2.3:

(44) h(k) Tn(k/m) Vk e Z.

The sequence h(k) is the linear combination of b(k) given by [38]:

(45) h =’m [(b) -1] * bn.
The existence of (b) -1 follows from Lemma 4. In fact, since b has finitely many
nonzero values, it follows that (b)-1 decays exponentially fast. Thus, both b and
(b)-1 are in 11. The fact that {hn(k mi)}iez is a basis ofS follows immediately
from the definition of Sn Lemma 4, and equations (26) and (45).

Using identity (26), we manipulate (41) so as to exhibit h. We get

(46) 8a hn * Tm m * 8m

where

(47) nhm =Tin [(tn) -1 * b’] * bn.
nFrom (46), it is not difficult to see that h and hm are biorthogonal [11].

[(48) *m h,*h, (k)=50(k) VkeZ.
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1420 AKRAM ALDROUBI, MURRAY EDEN, AND MICHAEL UNSER

s(k) so(k)

FIG. 1. Schematic representation of the least squares approximation in S.
(A) Optimal prefilters (B) Interpolating postfilters

1.4

1.2

0.8

0.6

0.4

0.2

1.75.

1. 5.

1.25

I

\ o. 75,

’’ 0.25..--.2-._- fo: 0.2 o13 o:4 -61s 0"i 0’2

FIG. 2. Least squares spline filters. (A) Prefilters t(f) (-
(continuous line).

3-), H2(f) ), and H52(f)

nSimilar to Hummel [22], we can interpret h, to be the optimal prefilter needed
before the interpolator hn given by (45). The process that can be used to determine
the best approximation of a signal in S, is illustrated in Fig. 1. In effect, this

0?%procedure is equivalent to prefiltering the data with hm down-sampling by a factor
m, then up-sampling by m and applying a discrete fundamental spline interpolation.
The frequency responses of the filters (n 1, 3, 5 and m 2) used in our procedure
are shown in Fig. 2. The graphs show that the lowpass characteristics of these filters
improve with n. This behavior will be analyzed in more detail in the next section.

4. Asymptotic properties of the filters. We will show that for m fixed, the
n nprefilters Hm(f) and the interpolating filters Hm(f) tend pointwise and in L2(-1/2,

1/2) to an ideal discrete lowpass filter with periodic support in Ujez[J- 1/2m,
j + 1/2m].

These convergence properties are described in the following theorem.
nTHEOREM 6. For n odd, the prefilter Hm(f) converges in L2(-1/2,1/2) and

pointwise almost everywhere to an ideal discrete lowpass filter Prectm (the periodic
rectangular pulse) as n tends to infinity:

(49) lim Hm(f)= 1/2,
n--,oo

07

Ifl < 1/2m,
Ifl- 1/2m,
1/2m < Ifl < 1.

Similarly, for n odd, the interpolating filter H,(f) converges in L2(-1/2, 1/2) and
pointwise almost everywhere to an ideal discrete lowpass filter with gain m as n tends
to infinity:

(5o) nlim Hre(f) m Prectm (f).
n---oo
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DISCRETE SPLINE FILTERS 1421

Using Plancherel’s Theorem, we immediately obtain the following corollary.
nCOROLLARY 7. For n odd, the impulse responses hm(k converge in 12 to the

ideal discrete interpolator, Dsincm(k) sinc(k/m) with k E Z, as n tends to infinity.
Similarly, for n odd, the interpolators h(k) converge in 12 to the ideal discrete

interpolators with gain m, mDsincm(k), as n tends to infinity.
These results are conceptually interesting because they provide the link with

Shannon’s sampling theory [2], [4], [5], [7], [17], [18], [20], [24], [31], [39], [46]. In
particular, for the case of uniform sampling, Shannon’s sampling paradigm for non-
bandlimited signals states that a signal must first be prefiltered by an ideal filter before
sampling and that the signal "reconstruction" is obtained by an ideM post-filtering.
The approximation in S gives rise to the same structure as illustrated by Fig. 1. It

n,consists of a prefiltering with Hm followed by down-sampling by a factor m. This
first step gives an m fold reduction in the data. The approximation is then obtained
by up-sampling and postfiltering with H,. Moreover, in the limit, all the filters con-
verge to discrete ideal filters. Similar results for the analog polynomiM spline case
can be found in [4], [39]. The general case for analog functions is described in [2].

The above asymptotic results also explain the appearance of Gibbs oscillations
which occur when sequences are approximated by elements in spaces Sn with suffi-
ciently high smoothing order n.

Proof of Theorem 6. Symmetry allows us to restrict our attention to the frequency
interval f E [0, 1/2). The Fourier transform of bn is given by

(51) B,(f) mE sincn+l (m(f i)).

We use (39) and (40) in conjunction with the fact that the Fourier transform of a

discrete signal is periodic with period 1. We also use (Tin [b])f) (mf) to express
the Fourier transform of Tm [(tn) -1] and ’m [b] =m [$m [b]] in terms of B,(f) as

L+m-1

(52) (Tm [b?])f) m- E B(f j/m),
j=L

(53) (Tin [(tn)-ll)f)-- L+m-1
E
j:L

m

IB,(f j/m) 12
where L is an arbitrary integer. Using (51)-(53), we obtain the Fourier transform

nHm(f) of h:

n(54) Hm(f)

L+m-1
BUm(f) E Bm(Y J/m)

j--L

L+m-1
IB(I j/m)l2

j=L

Using (51), (18) and straightforward trigonometric identities, (54) can be written as

(55) -tnm(f) (Hn(f))-1

L+m-1

j=L
(-1)J(1 j/mf)-n-1 (Hn(f j/m))-

L+m-1

j-’L
(1 j/mf)-2n-2 (Hn(f j/m)) -2
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1422 AKRAM ALDROUBI, MURRAY EDEN, AND MICHAEL UNSER

where Hn(f) is the Fourier transform of the continuous fundamental spline function
of order n given by (18). We choose L in (55) to be L -(m- 1)/2 if m is odd, and
L -(m/2 1) if m is even. With this choice, we take limits in (55) to get

L+m-1
E (--1)J(1 j/mf)-n-

n j--L(56) lim Hm(f)= lim 1 Vf e (0, 1/2m)
n---o n--.cx LWm-1

(1--j/mf)-2n-2
j=L

We use Schwarz’s inequality on (55) to get the estimate

(57) Hm(f) <_ IHn(f)l E
j--L

-/

(1 j/mf)-2n-2 (Hn(f j/m))-2

For f e (1/2rn, 1/2), it follows from (57) and Theorem 1 that Hn(f) converges
pointwise to 0 as ,, tends to infinity. Moreover, (57) yields the upper bound

(58) oHm(f)l < ml/2

Because of Lebesgue’s dominated convergence theorem, equations (56)-(58) imply
nthat Hm(f) tends to Prectm(f) in L2(-1/2, 1/2).

To prove the second part of the theorem, we first note that H(f) is given by

(59) H(f) B(f)
(Tm [b])(f)"

From (51) and for n odd, it can be seen that

(60) (sin(mTrf))
n+

B(f) m-nB[(f) \ n(--)

Using the fact that (Tm [b])(f) [(mf), and using expressions (18) and (60), we

simplify (59) to obtain

Br(f) m-n (sin(mTrf))n+l B(f) Hn(mf)
(61) H(f) B(mf) sin(rf) Br(mf)

m
Hn(f.

The last equality in (61) and Theorem 1 together yield the pointwise convergence.
For n odd, a simple estimate derived for Hn(f) (cf. (18) and (19)) yields that for

f e (-1/2, 1/2), 1/2 < Hn(f) < 1. Hence, from (61) we get

(62) IHr(f)l < 2m,

which implies the L2(-1/2,1/2) convergence of H(f) to the ideal discrete filter
Prectm(f) with gain m and periodic support in [.Jjez [J 1/2m, j + 1/2m].
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DISCRETE SPLINE FILTERS 1423

5. Multiresolution pyramids and step-by-step discrete wavelet trans-
form.

5.1. The optimal and stepwise optimal discrete spline pyramids. A mul-
tiresolution pyramid representation of a discrete signal consists of several versions of
the signal at different resolution levels. The name pyramid derives from the fact that
the low-resolution levels are described by fewer samples than their high-resolution
counterparts. In applied mathematics and image processing, multiscale representa-
tions have been used to find efficient algorithms that start computations at coarse
levels and subsequently refine them at finer levels [19], [36].

A multiresolution representation of a signal is commonly obtained by the repeated
application of a filtering and a down-sampling to produce the pyramid layers. The
Gaussian pyramid for images [6] is an example in which each pyramid level is ob-
tained from the previous one by applying a Gaussian filter and down-sampling each
row and column of the image by a factor of 2. A shortcoming of this method is that
it does not attempt to minimize the loss of information that occurs when one signal
is approximated by another at a coarser resolution. Using (46), we can circumvent
this limitation, and produce a multiscale representation that optimizes the fine-to-
coarse conversion error. For m fixed, we interpret (46) as representing a signal at

na lower resolution: the signal s is prefiltered by hm, and only one sample out of m
is then retained. This sequence is then up-sampled (cf. (13)) and filtered with hn

nto obtain the best approximation Sa in sn. In effect, the signal sr =m [hm * 8]
contains in a compressed form (factor of compression equal to m) all the information
needed to reconstruct the approximation Sa. Hence, by selecting a sequence of inte-
gers {m P}j=I N., we can use equation (46) to obtain a multiresolution pyramid
{Sr(j)}j=l,...,N.:

(63) 8r(j) =$p hpj * s

st(0) s.

j- 1,...,N;

We have used the notation st(j) to represent level j (m pJ) of the pyramid in (63),
which is obtained by filtering the signal s with hp and then decimating with a factor
equal to pJ. More importantly, since S+1 c S (cf. Proposition 2), the filter used to
produce the signal st(j+1) from st(y) at the previous resolution level can be obtained
by using (46) and the fact that for any sequence b, we have that

(64)

The signal sr(/+) is given by the following.
The optimal pyramid (OP):

(65)
s(y+l)=$p h .x(y)

n
Xr(j) kpj * St(j),

nwhere the operators kp is given by

(66) kpn =Tp t+l t
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1424 AKRAM ALDROUBI, MURRAY EDEN, AND MICHAEL UNSER

Remark 1. Given a regular function a(x) E L2 with sufficient decay, it can
be approximated by an analog spline a;n (x) with knot points on pZ. The analog
spline approximation a;n (x) that minimizes the/2-error a(k)- a(k) computed at

nthe integer points g can be obtained from (63) or from algorithm OP: apt(X)
keZar(j)(k)rn(x/pj k), where n(x) is the interpolating spline as in 2.3. Thus,
the approximation problem in Sn. consists of finding a coarse polynomial spline
proximation that minimizes the discrete/2-norm of the error at the integers instead
of the usual minimization of the L2-norm on T.

The error e(j) s- Sa s- hpr. Tp [sr(j)] between the original signal and
its approximation is the smallest error in 12 that can be obtained for approximations
of s in S. However, a drawback of this representation is that the filter kn.p in (65)
depends upon the resolution level j. On the other hand, the first equation of (65)
is independent of the resolution, level, and is precisely the first pyramid level for the
representation of the signal xr(j). This observation suggests an alternative algorithm
for a multiresolution representation of a signal based on the first equation of (65) only.

The stepwise optimal pyramid (SOP):

[(+ h’ (jl

(o s.

If (67) is used instead of (615) for the pyramidal representation of s, then the error

() s- hp, Tp [(.)] is always larger than or equal to the error e(.) s- s.
The question of how the two algorithms (615) and (67) compare is partially answered
by the following theorem.

THEOREM 8. For n odd, the filter Kp(f) corresponding to kp converges in

L2(-1/2, +1/2) and pointwise almost everywhere to a discrete allpass filter as n tends
to infinity:

(68) lim Kp (f) 1 Vf e T.

The proof of this theorem will be omitted, since, except for the use of the identity

(69) Ibm] =$p
it is not very different from the proof of Theorem 6.

Heuristically, the above result states that for sufficiently large n the optimal
multiresolution algorithms (65) can be replaced by the simpler and more practical
algorithm (67), with only minor differences in the outcome. The advantage of the
stepwise optimal algorithm is that the passage from one level to the next always uses
the same algorithm, and can therefore be implemented using a fast recursive filtering
similar to the one described in [41].

5.2. A stepwise discrete wavelet representation. The pyramids discussed
in the previous sections are redundant. For instance, the stepwise optimal pyramid
OP is redundant because it consists of the signal itself (s st(0)), to which N copies
are added that are of increasingly coarser resolution: P {st(0), st(i),..., 8r(N) }.
The redundant information coincides with the data st(i),... ,s,.(g) and, for m 2,
the number of additional samples is approximately equal to the size of s s(0). In
the case rn 2, which is a case of practical interest, we will derive a nonredundant
representation equivalent to the SOP pyramid. The main idea is to find a suitable
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DISCRETE SPLINE FILTERS 1425

representation of (S)-L the orthogonal complement of S, analogous to (16). To
do this, we use techniques similar to the ones developed by Daubechies, MMlat, and
Vetterli [13], [27], [42]. We start by defining the discrete function w and the corre-
sponding space O associated with it:

(70) + 1).

(71) O:= {vel2"v(k)=c(i)w’(k-2i)=(w*T2[c])(k), c e/2}.
We have the following result.

THEOREM 9. The space 0’ is the orthogonal complement of S in 12" O

Before proving this theorem, we first note that the function w is the discrete
equivalent of a continuous wavelet, as defined in [13], [27]; however, in this case w
is not orthogonal to a shifted version of itself. An important point is that the error
signal da(1) s- sa, resulting from approximating s by Sa E S, can be obtained by
filtering, as in 3.2:

(72)

where the reflection operator " v and the modulation operator are defined
by (10) and (11), respectively, in 2.

Proof. First, we show that w(k- 2i) is orthogonal to b(k) by showing that
2 [(w)v .b] 0 (where (w)V(k) w(-k)). Using (39) and the properties of the
Fourier transform, we obtain

1
b])f)= [B(f/2)W(f/2)+ B(f/2- 1/2)W(f/2- 1/2))

],

-e (B(f/2)B(f/2- 1/2)
2

-B(f/2 1/2)B(f/2- 1))

-e (B(f/2)B(f/2- 1/2)- B(f/2- 1/2)B(f/2))

O

where W(f) denotes the complex conjugate W(f), which is the Fourier transform
of w(k). It only remains to show that any element s E 12 can be written as a sum
of its least squares approximations in S and in O. We sum the Fourier transforms
of da and sa, which are the approximations of s in O and S, respectively; we then
use (39), the second equation in (72), periodicity, and Lemma 4 to obtain

(74)

D
ow

nl
oa

de
d 

06
/0

3/
19

 to
 1

28
.1

78
.4

8.
12

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1426 AKRAM ALDROUBI, MURRAY EDEN, AND MICHAEL UNSER

from which the proof follows.
Using (72), we derive the difference or detail representation {dr(j)}j=l g."
The stepwise wavelet pyramid (SWP).

(75) Ii ]dr(j+l) --2 * h * St(j)

(j+) = * (j)]
(0) s.

From Theorem 9 and (46), (72), and (75), it can be seen that the SOP representation
is obtained from the SWP pyramid by the iterative algorithm:

The stepwise wavelet decomposition.

j= 1,...,N.

Remark 2.
(i) The algorithms (75) and (76) constitute a biorthogonal, perfect reconstruc-

tion filter bank [33], [43].
(ii) There are two corresponding analog scaling functions h and t’ and

two analog biorthogonal wavelets h and 9, for which the associated L2 analysis
h

of analog functions defined on 7 via nonorthogonal projections is exactly obtained
by (75) and (76) (cf. [11]). Obviously, t and ; are not polynomial splines.

h
(iii) There are infinitely many basis functions for Sn (cf. 3.3). For each basis, it

is possible to obtain a step-by-step wavelet decomposition (or a perfect reconstruction,
biorthogonal filter banks) similar to (75) and (76). However, they will not be a good
approximation to OP in general.

(iv) Two basis functions generating the same space Sn do not correspond to
analog scaling functions that generate the same space; e.g., the scaling functions
and b associated with h and b do not generate the same multiresolution space
V0, even though b and h generate the same space S.

(v) If we choose the biorthogonal filter bank decomposition using the orthogo-
Hal basis o in 3.3 instead of h, then the corresponding stepwise wavelet algorithms
are precisely the Mallat wavelet decomposition and reconstruction algorithms for the
analog scaling function (x) associated with the QMF o [27]. In this case, there
exists an underlying discrete multiresolution E2 s2n, for which these algorithms
give the best 12 approximation of a sequence s(k) in E [33]. These are also the
analysis/synthesis algorithms for the L2 multiresolution wavelet V()/W(), corre-
sponding to the function associated with o. However, is not a spline function.
Moreover, this algorithm does not correspond to the same analog multiresolution

Y(h) (see the previous remark, (iv)). For the interpretation of (75) and (76) we
refer to 3, Remark 1 in 5.1, and Theorem 8.

6. Experiments. Although the filters used in (65), (67), and (75) have an in-
finite impulse response, they can still be implemented exactly using the recursive

algorithm described in [41]. An alternative approach is to use a standard finite im-
pulse response (FIR) implementation with truncated filters. In the latter case, the
computation is approximate, but the error is easily controlled by choosing an appro-
priate number of coefficients. Table 1 gives those filter coefficients for the cases n 1
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DISCRETE SPLINE FILTERS 1427

TABLE 1
Filters’ coefficients for n 1 and n 3.

k 0 0.707107
I, -I 0.292893
2, -2 -0.12132
3, -3 -0.0502525
4, -4 0.0208153
5, -5 0.00862197
6, -6 -0.00357134
7, -7
8,-8
9, -9

10, --10
11, --11
12, --12
13, -13
14, -14
15, --15
16, -16
17, -17
18, --18

--0.0014793
0.000612745

1 0,596797
0.5 0.313287
0 -0.082769
0
0 0.0540288
0 0.0436996
0 -0.0302508
0 -010225552
0 0.0162251
0 0.0118738
0 -0.00861788
0 -0.00627964
0 0.00456713’
0 0.0033264’
0 ’-0.’00241916
0
0
0 0.000932349
0

0.600481
0

-0:0921993 -0.127405
0

0.034138
0

-0.00914725

0.002451
0

-0.000656743

-0.00176059
0.00128128

-0.000678643

and n 3. In our experiments, we used the first of these approaches. To avoid bor-
der effects and discontinuities, we have used the common practice of extending the
signals/images at the boundaries by taking their mirror images.

We have performed three experiments on a test image, the MRI image. First we
compared different approximations of the image by varying the parameters n and m
in the approximation spaces Sn. To assess the appropriateness of the approximation
we used the signal-to-noise ratio [23] associated with the approximation Sa, as defined
by

(77) SNR 2O log ( sup(s) inf(s)l )
Table 2 gives the measurements of the SNR for values of m 2,..., 8 and n 1, 3.
These measurements show that for fixed value of m, the SNR for n 3 is higher than
for n 1. The improvement seems to saturate quickly, and we anticipate no significant
gain for values of n larger than 5. This conclusion is consistent with the convergence
results given in Theorem 6, which indicate that the approximation process tends to an
ideal filtering process for increasing values of n. As a consequence, higher orders of n
will, in general, improve the SNR for images with a predominance of lower frequency
components.

Our second experiment was a comparison of the two multiresolution representa-
tions OP and SOP. Table 3 gives the values of the SNR for a multiresolution repre-
sentation of the MRI obtained by the optimal algorithm (67) for the case p 2, j
1, 2, 3, and n 1, 3. Obviously, the two algorithms are equivalent for the determina-
tion of level 1. As predicted, the SNR measured for the approximations obtained using
the optimal algorithm OP are higher than those obtained form the stepwise optimal
algorithm SOP. However, as predicted by Theorem 8, the difference between the two
SNRs are small, particularly for the largest value of n 3. Indeed, these differences
(which are of the order of 0.01 dB) are very small if compared to the degradation of
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1428 AKRAM ALDROUBI, MURRAY EDEN, AND MICHAEL UNSER

TABLE 2
Approximation error (in dB) evaluated for m 1, 2 ,8 and n 1, 3 in terms of the signal-

to-noise ratio for the MRI image.

n=l n=3
m 2 32.65 35.39
"m 3 27.84 29.08
m 4 24.95 -25’58
"m 5 23.22 23.73
m 6 22.30 22.68
m 7’ 21.22 21.62
m ’S... 20.54 20.85

TABLE 3
Comparison between the optimal pyramid and the stepwise optimal pyramid representations in

term of the signal-to-noise ratio (in dB) for the MRI image.

evel-
Level-2
Level-3’

n=-I n 3
oP -soP oP soP
32.65 32.65 35.39 35.39
24.95 24.93 25.’58 25.57
20.54 20.50 20.85 20.83

the SNR between two successive levels, which is of the order of 5dB-10 dB. In fact,
the SNR differences in our experiment are negligible, and the results are much better
than we had expected.

We compared our multiresolution representation given by the SOP algorithm (67)
to the Laplacian pyramid LP which was developed for compact image coding [6]. Each
level in the difference-image pyramid consists of the difference between the image at
one level and its interpolated version at the next lower level. In other words, each
layer of such a pyranid represents the loss of information between a level and its
approximation at the coarser level. For this experiment we chose the value n 3,
p 2, and j 1, 2, 3 in the SOP algorithm. Fig. 3 shows the difference images for
the two representations, with the same intensity scaling to facilitate comparison. For
the initial LP, there is significant information at each level, and the initial image is
still easily recognizable. In the case of the SOP, the energy in the difference is reduced
drastically, and only very high-frequency details are visible. This improvement can be
applied advantageously to progressive image transmission. For lossless image coding,
the number of bits per pixel (bit-rate) necessary to transmit the bottom of the pyramid
up to level j is approximately

(78)

where Hi denotes the entropy at the ith level of the Laplacian pyramid, and N is the
depth of the pyramid. The correspo.ding rate-distortion curves for our test image
are given in Fig. 4. The customary measure of distortion that is used for this type
of experiment is tim relative mean square error in percent of the total signal energy,
as measured on the finer scale. Clearly, the SOP achieves the best performance at
all resolution levels. Tlms, for the comparable compression factor, we can gain image
quality when the SOP is used instead of the LP representation.

Finally, Fig. 5 displays an equivalent SWP representation of the same MRI image.
This decom.position was obtained by successive processing along the rows and columns

D
ow

nl
oa

de
d 

06
/0

3/
19

 to
 1

28
.1

78
.4

8.
12

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



DISCRETE SPLINE FILTERS 1429

FiG. 3. E’rror images between two consecutive levels of the SOP pyramid and the Laplacian
pyramid LP for the MRI image O. (A1-A3) evr//difference images o.f the Laplacian pyramid.
(B1-B3) er’ror/difference images of the SOP pyumid (n 3).
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1430 AKRAM ALDROUBI, MURRAY EDEN, AND MICHAEL UNSER

"MRI" image

BIT RATE (bits/pixel)

FIG. 4, Rate distortion (MSE) as a function of the number of bits per pixel needed for lossless
transmission up to level i: SOP (circle) and LP (triangle).

FIG. 5. The stepwise wavelet representation of the MRI image with a level depth 2 (i.e.,
m 2J, j 1,2) with n 3.
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of the data, following the separable technique first described by Vetterli in [42]. We
note that the three quadrants bl, cl, and dl provide a compressed representation of the
difference at level 1 in the SOP (image A1). Likewise, the difference at level 2 (image
A2) is represented by the wavelet components b2, c2, and d2. The component in a2
is precisely the SOP approximation after two iterations (level 2). The decomposition
is clearly nonredundant; and, as expected, we have experimentally tested that the
original image can be fully recovered from the stepwise pyramid without error. This
wavelet decomposition can be used for both image compression and for coding, as
described in [12], [16], and [42].
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