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ABSTRACT 

We construct oblique multi-wavelets bases which encompass the orthogonal multi-wavelets and the biorthog- 
onal uni-wavelets of Cohen, Deaubechies and Feauveau. These oblique multi-wavelets preserve the advantages 
of orthogonal and biorthogonal wavelets and enhance the flexibility of wavelet theory to accommodate a wider 
variety of wavelet shapes and properties. Moreover, oblique multi-wavelets can be implemented with fast vector- 
filter-bank algorithms. We use the theory to derive a new construction of biorthogonal uni-wavelets. 

Keywords: multi-wavelet, multi-scaling function, oblique wavelet bases, biorthogonal wavelet, semi-orthogonal 
wavelet, perfect reconstruction filter bank, perfect resolving filter bank, vector filter bank 

1 INTRODUCTION 

Multiresolution-type wavelet bases (MRA-type wavelets) have the important property that the wavelets’ coeffi- 
cients can be obtained with fast-filtering algorithms. lo,’ Mallat has constructed MRA-type wavelets that form 
orthogonal bases. These wavelets do not have compact support, and for certain applications, their shapes and 
properties are not appropriate. To circumvent the problem of infinite support, Daubechies has constructed com- 
pactly supported orthogonal MRA-type wavelets. 6 However, these wavelets are not symmetrical and are still 
restricted in their shape and properties. Cohen, Daubechies and Feauveau have overcome the problem of the 
lack of symmetry through the introduction of biorthogonal wavelets. 5 The construction of biorthogonal wavelets 
does not completely alleviate the problems with respect to shape and restrictive properties. For this reason, 
semiorthogonal wavelet bases (also called nonorthogonal wavelets) have been introduced to overcome this lack of 
flexibility.11>3314>4 

By relaxing some of the constraints on the multiresolution and on the wavelets themselves, we have been able 
to find other multi-wavelet bases with fast-filtering implementation for their coefficients. We have constructed 
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Figure 1: The different types of wavelet bases. The orthogonal wavelet bases are characterized by: WilWj for 
i # j, and l&k(~), v&(x)) = &lrn. semiorthogonal wavelet bases are characterized simply by WilWj for i # j. 

In the biorthogonal case, there are two pairs of multiresolution and wavelet spaces that must satisfy Wi-L cj, 

l&i Ivj for all i # j, and ($,,k(~),$l.,,(~)) = Sjlclrn. The only difference between the biorthogonal case with 

arbitrary bases and the previous biorthogonal case is that we do not require the biorthogonality between the bases, 

but require only that Evil tj, ‘I$i -LVj for all i # j. In the oblique multi-wavelet case, there is only one underlying 
MRA with its wavelet spaces. However, the spaces Wi and PV’j are not necessarily orthogonal. The only condition 
is that Vi+1 + W,+i = Vj and that the wavelets, their shifts, and their dilates form an unconditional basis of Cz. 
The oblique multi-wavelet case also contain the special cases of orthogonal and biorthogonal multi-wavelets. 

oblique multi-wavelet bases. The theory underlying these bases encompasses the orthogonal theory of orthogonal 
multi-wavelets,7~8~13~15 and, generalizes the concept of biorthogonal wavelets of Cohen Daubechies and Feauveau” 
(See Figure 1). In particular, the biorthogonal wavelet theory of Cohen, Daubechies and Feauveau (CDF) requires 
a pair of multiresolutions and a pair of wavelet spaces. Here, we only require one set of multiresolution spaces and 
one set of wavelet spaces, similar to the orthogonal case. Still, we omit the requirement that the wavelet spaces 
be orthogonal to the multiresolution spaces. In so doing, we are able to build a more general wavelet theory in 
which the wavelet spaces are merely complementary to the multiresolution spaces. Moreover, the computation of 
the oblique wavelet transform can be calculated using fast filter-bank algorithms with a complexity of the order 
of O(N’) for a signal of length NT. 

This construction allows us more freedom in choosing the properties of the wavelet spaces. At the same time, 
we have enough control on the relationship between the multiresolution spaces and wavelet spaces to provide 
for fast-filtering algorithms and a reversible filter-bank. Hence, we have preserved some of the advantages of 
orthogonal and biorthogonal wavelet theory and yet enhanced the flexibility of wavelet theory to accommodate a 
wider variety of shapes and properties. 

Organization of the paper. In Section 2, we introduce the notions of multi-scaling functions and multi- 
wavelets. We then show how to construct a multi-scaling function in 2.3. In Section 3, we define the concept of 
oblique multi-wavelets and show how to construct them. The implementation of the wavelet transform by vector- 
filter-banks is discussed in Section 4. The link with the new concept of perfect resolving vector-filter-banks is also 
discussed in this section. The special cases of biorthogonal and orthogonal multi-wavelets are then discussed in 
section 5. Finally in Section 6, as a special case of our theory, we derive a new construction of the biorthogonal 
wavelets of Cohen Deaubechies Feauveau, and an extension to those uni-wavelets. 
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Notation. In the following definitions, we will often use matrix-sequences, functions of matrices, and operators 
on matrices. However, these same definitions will be valid for vectors (1 x n matrices), and scalars (1 x 1 matrices). 
The signals that we consider belong to the finite energy space L,(R), and 12 will denote the discrete sequences 
of numbers with finite energy, while 15 will denote vector-sequences with finite energy. The symbol * stands for 
three different types of convolutions: 

If F(X) is an m  x T matrix whose entries F,,j(z) belong to &(R), and if G(z) is an T x n matrix whose entries 
G,,j(z) belong to L,(R), then the convolution H(z) = (F * G)(z) b e ween F(z) and G(z) is the m  x n matrix- t 
function H(z) whose entries HQ(x) are defined in terms of the convolution of the entries of F, and G as 

Hi&) := c/ Fi,l(5)G~,~(z - 5)dS = c (FQ * G&r) 0) 
1=1 R 1=1 

The convolution C(k) = (A*B)(k) b e t ween the m  x T matrix-sequence {A(k)} key and the r x n matrix-sequence 
{B(k)}kez is the m  x n matrix-sequence defined in terms of the convolution between the entries of A and B as 

l=r l=?- 

ci,j@ ) := x x Ai,df+Q(k - h) = c (AQ * Bl,j)(k) 
l=l h&z 1=1 

(2) 

The composite convolution G(z) = (A * F)(s) b e ween the m  x T matrix-sequence A(k) and the T x n matrix- t 
function F(z) is the m  x n matrix-function whose entries G,,j(z) are given by 

G&) := x x Ai,l W I& - k) (3) 
klkE2 

Since matrix multiplication does not commute, we define G(z) = (F * A)(z) as 

G&3 := c c &,dn: - k)&(k) 
klkE2 

The reflection of a matrix-function F(s) (resp., a sequence B(k)) is th e matrix-function F”(X) (resp., the sequence 
B”(k)) given by 

F”(z) := F(-z), z E R (5) 

B”(k) := B(-k), k E 2 (6) 

The alternation (or modulation) 6 of a matrix sequence B(k) is defined to be 

B(k) := (-l)“B(k), k E 2 (7) 

The downsampling (or decimation) operator J2 assigns to a matrix-sequence B(k), the sequence 42 [B] (k) that 
consists of the even samples of B only: 

J2 [B] (k) := B(2k) kf’lc E 2 (8) 

The upsampling operator 72 assigns to a sequence of matrices B(k) a sequence of matrices TQ [B] (k) in which a 
zero has been inserted between two successive samples: 

t2 [B] (2k) := B(k), V’lc E 2 (9) 
T2 [B](2k+l) := 0, ‘dk E 2 (10) 

17



2 MULTI-SCALING FUNCTIONS AND MULTI-WAVELETS 

2.1 Mult iresolut ions and multi-scaling functions 

A multi-scaling function is a row vector of functions + = ((P’(~),(P”(~),(P~(~), . . . . cp’(~)) that can be used to 
generate the multiresolution spaces 

vj := 
i 

f: x ci(k)2-i/2pi 
&l&2 

(~),;,i,i,)={~C!h)“:(r-2~~~;(:ji)til) (11) 

where C(lc) is the vector C = (c’(k), c2(k), . , c’(k)), T denotes transpose, and where the vector @j(x) is defined 
to be 

ej(x) =2-i’2 (qYl($) ,p2 (2) ,-+Lq$)) (12) 
If we use the upsampling operator and the composite convolution (see definitions 3, 9), then the definition 11 can 
be rewritten into the simpler form 

vj = {72.? [C] * a;; c E la} (13) 

where the upsampling by a factor 2j is denoted by r2,i= (Ts)‘. Th e s p aces Vj have to satisfy all the properties of 
multiresolutions. In particular, they must be closed and nested: .. . I4 c VI c Vi c V-1 c V-2 c ., and they 
must also satisfy u2Vj = Cs, and n2Vj = (0). Fr om this nestedness property, it follows that the multi-scaling 

function must satisfy the vector two-scale equation 

&CC (;) = c *(x - k)H~(k) = G * HI 
kc2 

where HI(~) is an r x r matrix sequence called the generating sequence. 

2.2 Wavelet spaces and multi-wavelets 

The wavelet spaces {Wj}?e2 are complementary to the spaces Vj: Vj+l + Wj+l = Vj. We do not require 
orthogonality between the spaces Vj and Wj, so the spaces Wj are not necessarily orthogonal to each other, 
either. What is important to us is that the complementary wavelet spaces are generated by shifts and dilates of 
T wavelets 9(z) = (~‘(~),lcl”(~),...,~~(~)): 

Wj = {t2i [D] * 9;; D E 1;) (15) 

where 
xPkj(z) := 2-i’2* (;) (16) 

The foregoing requirements on the wavelet spaces imply that the multi-wavelet must be a linear combination of 
shifts and dilates of the scaling function. Therefore, we are led to the relation 

XPl=S1*fD*G (17) 

where G = G(lc) is a matrix-sequence and where Sr serves to shift a sequence one term to the right, that is, 
(S1 * B)(k) = B(k - 1). 0 ur requirements also imply that the set {2-i/2#(2-i, - Ic), i = 1, . . , r; (j, Ic) E Z”} 
form an unconditional Riesz basis of C2. Thus, any function g E La(R) can be decomposed as 

g = c 12.7 [Di] * *:(x) (18) 

A final requirement that we impose is that the coefficients Di should be computable from g by a fast filter-bank 
algorithm, which consists of the repetitive application of a single procedure. 
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2.3 Construction of multi-scaling functions 

If we take the Fourier transform of 14, we see that the Fourier transform 6(f) of the multi-scaling function 
a(~) and the Fourier transform fir(f) of the generating sequence Hr(k) are related by 

&(2f) = 2-14(f)&(f) (19) 

From repeated applications of this relation, we obtain 

Z(f) = lim 1,2-i/2tir 
3-00 

(A) . ..a (;)& (;) 

where 1, is the vector (l,l,..., 1). 

We can start from an appropriate sequence Hi (lc) an d construct a multi-scaling function 6(f) from the infinite 
product above. However, for the infinite product to converge, the following condition is necessary: 

iurrnm 2-1/211r f 
( > 2 

= 2-1/2&@) = I (21) 

Thus, we will always require that 2-1/21%r(0) = I . F or regularity purposes, we also require that 

I&(1/2) = 0 (22) 

To ensure that the multi-scaling function and its shifts and dilates generate unconditional Riesz bases 
{2-~‘2pi(2-~~ - k), i = 1, ...T}kE2 for the spaces Vi, we need to impose additional conditions. For example, 

we require that kgZ IIHr(lc)ll llcl < 00, and that IIirl(f)l/2 + Ilfil (f + 4) 11’ 5 2. These conditions, together with 

condition 21, also ensure that the multi-scaling function defined by the infinite product 20 is continuous and is 
an element of L;(R). 

3 Construction of oblique multi-wavelet bases 

Whether we have arrived at a multiresolution by starting from a multi-scaling function or we have constructed 
it from a generating sequence, our next step in the construction of the multi-wavelet is to take the Fourier 
transform hi(f) of the generating sequence. We then find a matrix sequence Gr(k) whose Fourier transform n 
Gr(f) renders the matrix 

[ 
a(f) f%(f) 

& (f - ;> 4 (f - ;> I 
(23) 

invertible for almost all f. Having completed this construction, we are able to prove the following theorem: 

THEOREM 3.1. IfGr(lc) h as c osen so that 23 is invertible for almost all f, then the function *l(x) defined 
by 

ql(x) = 2-1/29 (;) = tT1 * Cp * G1 (24) 

is a multi-wavelet associated with the MRA generated by the multi-scaling function @(xc) whose two-scale sequence 
is HI(k). 

Our construction shows that there are infinitely many wavelet spaces associated with a given MRA, as de- 
picted schematically in Figure 2. These multi-wavelets are not necessarily orthogonal, i.e., although the set 
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Figure 2: Schematic representation of two different wavelet spaces for a given MRA. if VI is represented by 
the horizontal line R, and V, by the plane R2, then the slanted line WI complements VI to give Vo. Another 
complement is Wf , which is different from Wo, and is depicted by a dashed line. 

Figure 3: Schematic representation of two different bases for the same space. There are many bases that can 
generate a fixed wavelet space Wi depicted here schematically by the plane 7X2. Left panel represents an orthogonal 
basis. Right panel represents a nonorthogonal basis of the same space. 

{ 2-j’%p(2-cIY - k), i = 1,. . . ) T}(j k)EZ2 forms a basis of La(R), it is not necessarily an orthonormal one (see 
Figure 3). This is because we have not imposed any “Quadrature Mirror Filter”-type constraints. In fact, our 
multi-wavelets are not semiorthogonal either, in general (i.e., Wi is not orthogonal to Vi, see Fig. 1). Finally, 
unlike the Cohen-Daubechies-Feauveau biorthogonal wavelets, our construction is not necessarily associated with 
a pair of multiresolutions and wavelets. Thus, our construction produces all the well-known wavelet types as 
special cases, and it creates a new type of wavelet bases that we will call oblique wavelets. These wavelet bases 
are still associated with fast filter-banks algorithms as will be discussed in section 4. 

Once a wavelet space has been found by the method described above, it is then possible to find other equivalent 
multi-wavelets by appropriate “linear combination”. For example, if we choose a matrix-sequence L(k) such that 
both, L(k) and L-‘(h), satisfy the condition of Theorem 2.2 of,2 then 

qP=@*L (25) 

is an equivalent multi-wavelet generating the same wavelet spaces. This means that the both sets 

-t 
($,b)i,k(x), i = 1, . . . r 

> kER and { ($“)i,k(x)T i = 1,. r},,, form unconditional bases for the same space Wi. 

The matrix-sequence L(k) can be chosen to obtain a desired multi-wavelet $” with some desired properties. This 
type of basis modification has been used to create semiorthogonal wavelet bases (also known as nonorthogonal 
wavelets4114). 

To prove Theorem 3.1, we need to show that for any vector g = Co * * T in VO, there are vectors v in VI and 
w in WI such that v + w = g (here Vj and Wi are the spaces that are generated from a(~) and \k(z) as in 13 and 
15, respectively). For this purpose, we introduce the following two operators Pv, : VO ---f VI and Pwl : VO + WI 
that act on functions g = Co * @T in VO, and are defined by 

Pv,g :=T212 [Co * Hz1 * *;r (26) 

Pwlg :=t2J2 [S-I + Co * G21* *T (27) 
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Figure 4: Perfect reconstruction filter-bank for computing the oblique multi-wavelet transform. 

where Hz(k) and G2(k) are defined in terms of Hr(lc) and Gr(lc) by the invertible system of equations 

[ 
J%(f) Mf) 

& (f - $) 4 (f - f) 
] [ t;;;; ] = [ “0’ ] (28) 

and where I is the r x r identity matrix, and 0 is the r x r zero matrix. We have the following theorem: 

THEOREM 3.2. The operators Pv, and Pw, are projectors (not necessarily orthogonal projectors); moreover, 
for any function g E VO, the following decomposition holds: 

9 = pv*g + PWlS. (29) 

Theorems 3.1 and 3.2 provide the constructive approach for creating oblique multi-wavelets and for expanding 
any element g E &(R) in terms of the oblique multi-wavelet basis. 

4 Fast filter-bank algorithms 

4.1 Perfect reconstruction filter-banks and perfect resolving filter-banks 

From our construction of oblique wavelets, we know that any function g E 132(R) can be decomposed into a 
low resolution approximation gJ E VJ and the sum of the error terms in the spaces {Wi}ilJ- 

g =T~.J [CJ] * i@F + F T2.i [Di] * *T (30) 
j=J 

In practice, g(x) belongs to a multiresolution space, e.g., g = CO * +T. In this case, the procedure for finding the 
coefficients CJ(~) and {Di(Ic)}j,J,,,,,i from the coefficients Co(k) can be obtained by a fast vector-filter-bank 
algorithm depicted in the left part of Figure 4. Similarly, the procedure for finding the coefficients Co(k) from 
the knowledge of CJ(~) and {Dj(lc)}j=J,~,,,l can be obtained by a vector-filter-bank algorithm depicted in the 
right part of Figure 4. The filters Hi, Hz, Gr, and G2 of Figure 4 are the filters defined in the previous section 
and that are associated with the oblique wavelets. The difference between these vector-filter-banks and those used 

21



in the usual uni-wavelet algorithms is that the vector filter-banks have r > 1 inputs and r > 1 outputs instead of 
only one (compare Figures 4 and 7). The decomposition and reconstruction filter-banks together constitute the 
perfect reconstruction filter-bank structure. 

4.2 Perfect resolving filter-bank 

Another important filter-bank structure that we now introduce is the the dual filter-bank that we will call 
the perfect resolving filter-bank depicted in Figure 5. We can prove that a perfect reconstruction filter-bank can 
be built from a perfect resolving filter-bank, and vice versa. In particular, the filters in a perfect reconstruction 
filter-bank must satisfy the matrix equation 

[ 
G,(f) Wf) 

fi2(f-i) -e2(f-;) 
] [ dft;; ] = [ “0’ ] (31) 

From 28, we can show that the system of equations above is satisfied by the filters used in the construction of 
the oblique multi-wavelets. This system of equations together with the duality between the reconstruction and 
resolving filter-banks, allows us to prove that the system 31 is equivalent to the following system of equations: 

FIT(f)~2(j)+~T(f-~)~2(f-~) =21 

e~(~)e2(n+e~(i-~)~2(r-~) =21 

e:.(S)B,(S)-~~(i-~)~,(,-~) =o 

BT(S)B,(F)-BT(S-~)8,(f-~) =o 

This equivalence between the two systems of equations is well-known in the case of uni-wavelets,12114 and has been 
obtained by algebraic manipulations. Because matrix multiplication does not commute in general, it is difficult 
to show this equivalence by algebraic manipulations in the multi-wavelet case. However, the filter-bank duality 
principle allows us to prove the equivalence between the two systems of equations in the multi-wavelet case. 
This equivalence is important in the construction of biorthogonal wavelets of Cohen, Deaubechies and Feauveau. 
Implicitly, it is the second system of equations that they used in their construction of biorthogonal wavelets. We 
will return to this issue in section 6. 

5 biort hogonal and orthogonal mult i-wavelet s bases 

A special case of oblique multi-wavelets is that of biorthogonal multi-wavelets. Biorthogonal multi-wavelets 
are the generalization of the biorthogonal wavelets of Cohen, Daubechies and Feauveau” (see next section). In 
the biorthogonal multi-wavelet case, the oblique projections Pv, and P w1 are defined with respect to another 

pair of multiresolution and wavelet spaces {$j}jez and {*j}je~ that are generated by multi-scaling and multi- 

wavelets 6(x) and g(x), respectively. In particular, Pv, = P 
&I+, 

is the projection on the space VI in a direction 

orthogonal to ci, and Pw, = P 
0 

WllSl 
is the projection on the space Wi in a direction orthogonal to Wi (see 

Figure 6) . The orthogonal case is then simply the case in which cj = I$ and $j = Wj. If g,(x) is a multi-scaling 

function for bc, and if G(Z) is a multi-wavelet for I$ 0, then the oblique projections P v Id g =Tz [Cd* %, and 1 1 
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c;,(k) c’,,(k) 0 c:,,(k) d;+,(k) d:+,(k) 
Figure 5: Perfect resolving filter-bank. Two transposed vector-sequences Cj+r = (c++r(lc), . . . , c$+r(lc)) 
and Dj+r = (djl+r(k),... , d;+r(k) are mixed together to form a single transposed vector-sequence (Cj = 
cgc), . . . ,$(k)) (left filter-bank pairs). The two sequences Cj+r and Dj+r can then be resolved from Cj by 
the right pair of filter-banks. The whole structure is the perfect resolving filter-bank. 

” 
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\ 
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Figure 6: Schematic representation of oblique projections in the biorthogonal case. 

P 
W~ll+~ g =Tz [Dr] * +T of a function g = Cc * +T(z) are given by2 

Cl =12 [Co * H21 (36) 

DI =-/2 [al * Co * G21 (37) 
where the two matrix filters HZ(k) and Gz(lc) are given in terms of the cross-correlation matrix sequence Xi,? = 

((~“(4, ‘p+ - k)), an d in terms of the generating sequences l%,(k), and Gr(k) of g(z) and G(z), respectively : 

H2 = X * fir* T2 [X-l] (38) 

G2 = L1 * X * &;* T2 
[ 

(12 [Hy * X * &y -’ 1) 1 (39) 
where we have used the notation Art to denote the convolution inverse of A(rF). Specifically, A-l(k) is the 

inverse Fourier transform of (A(f)) . 
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6 A new construction for the Cohen-Daubechies-Feauveau (CDF) 
biorthogonal wavelets 

The theory of CDF is a viewed as a special case of of biorthogonal multi-wavelets. However, because we are 
dealing with scalar equations instead of equations in which the variables are matrices, we get some simplifications. 
For example, we can start from two arbitrarily chosen multiresolutions {Vj}jEz and {?j}jez, and construct 
biorthogonal wavelets. This works because, unlike the multi-wavelet case, all products and convolution products 
commute in the scalar case. In particular, Let 4(z) and G(z) b e t wo scaling functions generating the spaces Vj and 

3,, respectively. We do not require the scaling functions to be orthogonal, i.e., the sets {2-j/24(2jz - Ic), lc E Z} 

and {2-j/2&2jzr - k), lc E Z} are bases of Vj and ?j respectively, although they are not necessarily orthogonal. 

Moreover, we do not require the basis of Vj to be biorthogonal to the basis of ?,, i.e., we do not require 

(4(x), &x - k)) # 6(k). For th’ IS case, as long as the “angle” between the two spaces is not 7r/2, it is always 

possible to find wavelets that generate the associated wavelet spaces {Wj}jez and {$j}jez such that any function 
g E VO can be decomposed as 

g=P 
Vl? g+PwlG g (40) 1 1 1 1 

In particular, we can choose the two basic wavelets $b(x) and G”(X) defined by 

$,4‘ = d* $0 , 4; = 5% *60 
with -v 

91 = s1*g*i1 

5% 
-V (42) 

= S1 *g” * hl 

where x = ($0 * G:)(k) is the sampled cross-correlation function between 4 and 4, the symbol - denotes the 
alternation operator (see definition 7), and where hl and ii are the two-scale generating sequences for 4 and 4, 
respectively. The perfect reconstruction filter-bank that is associated with this system of biorthogonal wavelets 
is depicted in Figure 7. 

Clearly, the basic wavelets obtained by our construction do not satisfy the biorthogonality condition between 
the bases, i.e., (@,k(X), G;,,(x)) # Qdm. However, if we define the equivalent wavelet G”““(X) := x-l * G”, 
then we have a system of biorthogonal wavelets 

($jb,k (xl, $yF (x,) = 4klm 
and we recover the CDF biorthogonal wavelets. 

This last modification, however, is not necessary for the theory of wavelets. Instead, any other equivalent 
wavelet GE = p * tib can be constructed by an appropriate admissible sequence p(k)491 that suits our needs. 
In all cases, the multiresolution and wavelet spaces are not modified. Therefore, the projections Pv 16 g and 

P w 1G g are also unchanged. Only the coefficients cj(Ic) are affected by these changes, because they hep&d on 

thelchoien basis. This is reflected in the filters of the filter-bank structure, which depends on the wavelet basis 
that is chosen. 
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- hz 
-o- J2 C&l - hl 

C, c, 
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- g2 
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J, d,+, -8) gl 

J 
Figure 7: Perfect reconstruction filter-bank for computing the biorthogonal wavelet transform. 
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