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ABSTRACT 

Orthogonal, semiorthogonal and biorthogonal wavelet bases are special cases of oblique multiwavelet bases. 
One of the advantage of oblique multiwavelets is the flexibility they provide for constructing bases with certain 
desired shapes and/or properties. The decomposition of a signal in terms of oblique wavelet bases is still a perfect 
reconstruction filter bank. In this paper, we present several examples that show the similarity and differences 
between the oblique and other types of wavelet bases. We start with the Haar multiresolution to illustrate several 
examples of oblique wavelet bases, and then use the Cohen-Daubechies-Plonka multiscaling function to construct 
several oblique multiwavelets. 

Keywords: multiwavelet, multiscaling function, oblique wavelet bases, biorthogonal wavelet, semiorthogonal 
wavelet, perfect reconstruction filter bank, vector filter bank 

1 INTRODUCTION 

The goal of this paper is to show several examples of the oblique wavelet and multiwavelet bases described 
in. L2 These wavelet bases contain, as special cases, the orthogonal, semiorthogonal, and biorthogonal theory of 
multiwavelets.7~10~13~14~23 Th e main advantage of oblique wavelets is that they give more flexibility in choosing 
wavelet bases, without compromising the fast filter bank implementation algorithms. 

1.1 An oblique wavelet based on the Haar multiresolution 

This first example introduces the concept of oblique wavelets. Our starting point is a piecewise constant 
function fo(z) which belongs to the Haar multiresolution VO(X[~JI) = {~co(~)x~o,~~(cE - k); CO E 12} (see Fig. 
l), where X[a,b] is the characteristic function on the interval [a,b] (i.e., X[+](z) = l,Vx E [o,b], and X[a,b](x) = 
o,v’z $ [a, 4). .w e wish to approximate the function 

fo(x) = c co@)X[o,l](~ - kL (1) 

kc2 

in VO by a coarser function f~, (x) in VI. One way to do this is to simply downsample fo(x), and then to hold 
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Figure 1: To obtain the approximation fv,, The function fo is ignored in the intervals [2k - 1,2k], while its 
values on the intervals [2k, 2,k + l] are extended, The error fw, = f. - fv, is clearly a linear combination of the 
rectangular pulse $Pl and its shifts on the grid of even integers 22. 
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Figure 2: A function wi that belongs to VI must be a linear combination of {xlo,zl(x - 2k)) (left panel), while 
a function wi that belongs Wi must be a linear combination of {xli,sl(x - 2k)) (right panel). Thus, the only 
possible function that belongs to VI n Wi is the zero function wi = 0. 

the sample values for interval lengths of size two as shown in Fig. 1: 

fv, (xl = c co(wX[o,2] (x - 2k). 

The difference between the function fv, and the starting function fo(x) is given by 

fWI(X) = c (COP5 + 1) - CoPk)) X[1,2](X - 2k)T 

where the error function f~, belongs to the space WI, defined by 

Wl = c w4X(l,2](5 - 2k); 4 E 12 
kE2 

(2) 

(3) 

(4) 

It is not difficult to see that our original function fo(x) can be written as 

fo = fv, + fw, 

= c c0(2k)x[0,& - arc> + c (co(2k + 1) - COW)) X[1,2](X - 2k). 

kc2 kE2 

Clearly, VI c Vo and WI c VO. Thus, we can apply the same decomposition algorithm to fv, and fw,, now both 
viewed as elements of Vi. By inspection, we see that this procedure leaves fv, and fw, invariant. Moreover, 
we have that the intersection VI n WI = (0). To see this (see Figure 2), we simply note that if 201 E WI, then 
wi(2k + l/2) = 0 for any k E 2. On the other hand, if wi E VI, then wi(2k + l/2) = cl(k). Thus, cl(k) = 0 
for all k E 2, and therefore WI(X) = 0. Therefore, we conclude that fv, = Pv,,,w,~o is the oblique projection of 
fo in VI in a direction parallel to WI, and f w1 = Pw,,,~,fo is the oblique projection of fo in WI in a direction 
parallel to VI (see Figure 3). Moreover we have 

fo = %//w,.fo + PW,//VlfO. (5) 
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Figure 3: Schematic representation of the oblique projection of go on VI in a direction Schematic representation of the oblique projection of go on VI in a direction parallel to Wl. 

C, (k: 
+ C,(k) 

+ 

Figure 4: Perfect reconstruction filter-bank for computing a Haar oblique wavelet transform of order zero. The 
transfer functions of the filters are obtained by setting z = e--i2*f. 

It is easy to see that the set {&k(x) = 2-1/2xl~,zl(x - 25); k E 2} is an orthogonal basis of VI, and that 

(?h,k(x) = X[1,2](X - 2k); k E 2} is an orthogonal basis of WI. Moreover, it can be shown that the set 

{$l,k(~>, $‘l,k(x); k E 2, 

forms a Riesz basis for the space of piecewise constants with integer knot-points V0.l 

If we now repeat the decomposition procedure, we obtain a series of coarser approximation of fo(t) and a 
series of error functions as shown in Fig. 1. The decomposition algorithm consists of the repetitive application 
of the perfect reconstruction filter algorithm shown in Figure 4. Therefore, for any function f E L2, we can 
choose a sufficiently small value 52 so that the orthogonal projection fJ, = PvJ, f of f into the space of piecewise 
constants VJ, is arbitrarily close to f. Then, we can repeatedly apply the decomposition algorithm in (5) to 
obtain 

fJ, = pV,,//W.,,fJz + 5 pW,/fV,fJz. (6) 
j=Jzfl 

It follows that the set { $j,k(x) = 2-9xli,z1(2-jx - Z/C); (j, k) E 2”> is a basis of La. However, this set is not a 
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Riesz basis of L2, but simply a countable basis of L 2. This means that any finite number of members in this set 
are linearly independent, and that finite linear combinations of this set are dense in La. What is interesting is that 
we still have a fast and stable computational algorithm for calculating the expansion in terms of this countable 
basis. 

we call the set 
‘l 

$j,k = 2-3$7(2 ix - k); (j, k) E 2”> an oblique wavelet basis of La, and we call the spaces Wj 

that are generated by the Riesz bases 

(&‘,, = 22+(2jx - k); k E 2} 

oblique wavelet spaces. Unlike other wavelets, the function G(x) = 2~xli/z,il does not have an average of zero. 
Thus, it is not an orthogonal, semiorthogonal, or biorthogonal wavelet. 4Jg In contrast with biorthogonal wavelets, 
this Haar oblique wavelet has neither an associated dual wavelet spaces, nor a dual wavelet basis. What is 
remarkable is that this transform is faster than the classical Haar transform. Moreover, the support of the 
wavelet (in this case the function ~l;,~l) is half the support of the orthogonal Haar wavelet. 

2 MULTISCALING FUNCTIONS AND MULTIWAVELET 
BASES 

2.1 Mult iscaling functions 

If the multiresolution spaces {Vj}jEz 

. . . vz c Vl c v, c v-1 c v-2 c . . . 

are generated by the translations and dilations of T > 1 functions 4l(x), . . . . $J~(x), then the vector function 

Q, = W(x), “‘? Y-(x)) T is called a multiscaling function (Here, ()’ denote the matrix transpose operator). Thus, 
we have that 

&~c;(k)2-j/2@($.-k);~;E12, i=l,...,r 
i=l kE2 

= c CjT(k)$(x - 2jk); Cj(k) E 1; 
kE2 

where Cj(k) is the vector Cj = (cj(k), c;(k), . . . , c;(k))T, 15 = 12 x . . . x 12, and the vector @j(x) is defined to be 

@j(X) = (~~(X,,~~(X,,.~.,~~(X,)’ 

= 2-jj2 (f$’ ($) ,p ($) )‘.. ,qY- (;))T. 

In particular, a function fo E Vo is given by 

fo = c c;(k)@(x - k) + . + c;(k)f(x - k) 
kE2 

= c C;f@(x - k). 
kE2 
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2.2 Multiwavelets 

If the spaces {Wj}jEZ that complement the multiresolution spaces {Vj}je:z (i.e., VI+1 + Wj+l = Vj) are 

generated by a set of r functions #(x),$“(z),.~. ,V(X), then the vector Q’(X) = ($~(z),$J~(s), ... ,Gr(x))’ is 
called a multiwavelet, as long as the set 

forms a Riesz basis of 

Wj = 2 c di(k~)2-j/~@ (z -k) ;di E 12, i = l,...,r. 
i=l k&Z 

= 
i 

c D~(k)~j(~ - 2tk);Dj(k) E 1; , 
kEZ 1 

where *j(x) is defined to be 
Q&EC) := 2-jj2xP (5) . (7) 

Note that we do not require orthogonality between the spaces Vj and Wj. Therefore, the spaces Wj are not 
necessarily orthogonal to each other. 

2.3 Classification of wavelet bases 

According to the angles between the spaces {Wj}jEz and the choice of bases for these spaces, wavelets and 
multiwavelets can be classified into several categories: 

l Orthogonal wavelet and multiwavelet bases 8~10@~17~21: For this case, there are two conditions that must be 
satisfied: 

1. The wavelet spaces must be orthogonal to each other: 

WjlWl, Yj # 1. 

2. The set $j,k; k E 2, i = l,...,r. 
> 

must be an orthogonal basis of Wj. 

l Semiorthogonal wavelet and multiwavelet bases, 3~5~g~20~22: For these bases, the only requirement is that 
WjJ-Wl, Yj # 1. In this case, 

-t 
$j,,; k E 2, i = 1,. . ,r. 

> 
is not necessarily an orthogonal basis of Wj. 

l &orthogonal wavelet base#: This case consists of a pair of wavelet bases { $J;,~; Ic E 2, i = 1, . . . , r. > and 

{ 
7jj,,; k E 2, i = l,...,r. 

1 
generating a pair of wavelet spaces Wj and Wj, and satisfying the biorthogo- 

nality condition 

($$,k,$&)L, = bO(j - m)6O(k - n)bO(i - 1). (8) 

l Oblique wavelet and multiwavelet bases 2: In this case, we require only that the set { $i,k; k E 2, i = 1, . ’ . , r. > 
be a Riesz basis of Wj. We do not require orthogonality between the wavelet spaces, as in the orthogonal 
and semiorthogonal cases; and unlike the biorthogonal case, we do not require the associated wavelet spaces 
Wj or the existence of a biorthogonal wavelet. 
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The first orthogonal multiwavelet bases were introduced by Donovan, Geronimo, Hardin, and Massopust.” 
These bases have the remarkable properties of being orthogonal, regular, compactly supported, and symmetrical. 
It was not possible to construct wavelet bases (r = 1) satisfying these four properties before.* Other orthogonal 
multiwavelet bases have also been found. 21 Semiorthogonal constructions of multiwavelets were first introduced 
in. 13J2 The first biorthogonal multiwavelet constructions of which we are aware has been introduced in.” These 
multiwavelets are special cases of oblique multiwavelets. 2 In fact, the theory underlying oblique multiwavelet 
bases encompasses the theories of orthogonal, semiorthogonal, and biorthogonal multiwavelets. 

2.4 Two-scale equations 

Since VI c VO and WI c VO, both @ ($) and Q ($) must be linear combination of the basis of VO. Therefore, 
we must have the two-scale relations 

a (;) = 2 c Hl(k)@(z - IC), 
ke2 

where Hi(k) is an r x r matrix-sequence called the generating sequence, and 

9 (;) = 2 c (61 * ‘&)(W’(z - k), 
kc2 

where Gr(k) is a matrix-sequence; Si(lc) is the unit impulse sequence located at Ic = i, and the generalized 
convolution “9’ is an operator that acts on sequences of matrices. Specifically, the convolution C(k) = (A * B) (Ic) 
between the m x r matrix-sequence {A(k)} kez and the r x n matrix-sequence {B(k)}&2 is the m X n matrix- 
sequence, defined in terms of the convolution between the entries of A and B as 

C,,j(k) := x x &,l(h)Bl,j(k - h). 
1=1 hE2 

(11) 

From this definition, it follows that the unit impulse Si(lc) in (10) is used to shift the sequence Gi(lc), i.e., 
(S1 * G1)(k) = Gl(k - 1). 

As an example of two-scale relation, the Cohen-Daubechies-Plonka multiscaling function7 consists of a pair of 
functions (a(~) = (4’(x), $“(x))~ th a t are characterized by the Fourier transform of their 2 x 2 two-scale sequence 

az)I . z,e-i2nf’ 

&(f) = ; 
2 + 2z2 + z3 (Z - 223 + 25)/2 

l/32 z 
(12) 

3 CONSTRUCTION OF OBLIQUE WAVELET AND 
MUTLIWAVELET BASES 

The main result for finding the oblique multiwavelets relies on a construction in the Fourier domain. Specifi- 
cally, we use the r x r matrix-function l%i(f) (which is usually known) to construct a 2r x 2r invertible matrix 
function 

[ 
W f> W(f) G(f) = 

I lp(f-4) -q(f-+) . (13) 
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The main goal is to choose the r x r matrix-function G?(f) appropriately so that (s,)(f))-’ exits. Then, the 
inverse Fourier transform Gi (k) of G:(f) g’ ives rise to an oblique wavelet by the formula (lo).‘?” The main result 
can be stated as follows’: 

THEOREM 3.1. Ifg;'(f) exists for almost all f, and if the matrix-norms ofg,(f) and g;‘(f) are uniformly 
bounded, i.e., if there exist two constants m > 0 and A4 > 0 independent of f such that 11$i (f) 11 2 A4 and 

Il$‘(f)/ I m, then 
Ql(x) = 2-49 (;) = 29 c (S1 * G1) (k)@(x - k) (14 

kE2 

is an oblique multiwavelet. It is associated with the multiresolution generated by the multiscaling function Q(x), 
whose two-scale sequence is Hi(k). The set 

{$j,k(x); k E 2, i = l,...,r.} 

is a Riesz basis of Wj; the set 
{$;,k(x); (j,k) E 22, i = +,r.) 

is a basis of La; and for any J2 E 2, the set 

{ (p$k(x)T$j,k(x); k E 2, Ja + 1 5 j < J1, i = 1,. . . ,r.} 

is a Riesz basis of VJ,. Moreover, for any g E VJ,, we have the decomposition 

Jl 
9 = %,/w.,,9 + c pw,//v,s, 

j=Jz+l 

4 EXAMPLES OF OBLIQUE WAVELET AND 
MULTIWAVELET BASES 

4.1 The Haar oblique wavelets 

We start by reviewing our example in Section 1.1 using the results of Theorem 3.1. For this case, r=l, and 
HI(k) = 2-‘(So(k) + C%(k)). For Gl(k), we first choose Gl(k) = 2-~&(k). The 2 x 2 matrix function &(f) is 
given by 

a,(f)-[ 7 -;I]. (16) 

where z = ei2rf. We have that det(&(f)) = -2-a for all f; thus, s,(f) h as an inverse. Moreover, it is easy to 
see that the conditions of Theorem 3.1 on the norms of gi( f) and its inverse are satisfied. Therefore, Equation 
(14) gives us the oblique wavelet $,(x/2) = ~l~,~l(x). The filter bank implementing the decomposition and 
reconstruction algorithms is depicted in Figure 4. 

If, instead of the previous choice for Gi, we set Gl(k) = 2-‘(6-,(k) - 60(k)), we obtain the well-known 
orthogonal Haar wavelet. It is easy to check that, in this case, s,(f) is given by 
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and that det(si(f)) = 1 f or all f. As expected, the wavelet function given by (14) is precisely the orthogonal 
Haar wavelet. 

Another choice for 61 (f) is to take the trigonometric polynomial given by &l(f) = (z - 1)“. For n = 0, 1, we 
get the previous two cases. For n = 2 we get that det(si(f)) = -3 - e-i2rrf, which is nonzero for all f. Hence, 
we again obtain oblique wavelets, but now with two vanishing moments. 

4.2 Multiwavelets based on the Cohen-Daubechies-Plonka multiscaling function 

The Cohen-Daubechies-Plonka multiscaling function described in7 has the 2 x 2 generating sequence given by 
(12) We select sequences G;” of the form 6?(f) = (z - l)nI 2, where 12 is the 2 x 2 identity matrix. For n = 0, 
we easily check that the determinant of 9: (f) is zero for all f. Therefore, !$(f) is not invertible and we cannot 
find a multiwavelet for this choice. For n = 1, the determinant of S:(Z) is given by 

det (g:(z)) = & (63.~~ + 194z2 - 1)) (18) 

which is nonzero for .Z = e- izxf. We conclude that the inverse s;(f) exists, and its entries are ratios of trigonomet- 
ric polynomials. It follows that the conditions of Theorem 3.1 are satisfied. Therefore, the choice 6:(f) = (.z- 1)12 
gives rise to an oblique multiwavelet. It should be noted that this multiwavelet has its moments of order 1 equal 
to zero. It can be shown that n = 3,5,7 also gives rise to multiwavelets. 

For n = 2, and in fact for any even integer n = 2m, a simple calculation shows that @-(&a) is singular. 
Since sfm(f) is continuous in f, the matrix-norm of the inverse of g;“(f) cannot be bounded for almost all f. 
Thus, it is not possible to construct oblique multiwavelets using sequences of the form e:-(f) = (z - 1)2m12. 

5 FAST FILTER-BANK ALGORITHMS 

Oblique wavelet and multiwavelet transforms can be implemented using perfect reconstruction filter banks.2y1 
Any function g E L2(R) can be decomposed into a low resolution approximation gJ E VJ and the sum of the 
error terms in the spaces {Wj}j2 J 

g =T2.~ [CJ] * @T + F 1‘2.i @iI * $ (19) 
j=J 

In practice, g(x) belongs to a multiresolution space, e.g., g = Cc * @ T. In this case, the procedure for finding the 
coefficients CJ(k) and {Dj(k)}j,J,.,.,l from the coefficients Co(k) can be obtained by a fast vector-filter-bank 
algorithm depicted in the left part of Figure 5. 

Similarly, the procedure for finding the coefficients Co(k) from the knowledge of CJ(k) and {Dj(k)}j=J,,,,,l 
can be obtained by a vector-filter-bank algorithm depicted in the right part of Figure 5. The filters HI, Hz, Gl, 
and Gz of Figure 5 are the filters defined in the previous section and are associated with the oblique wavelets. The 
decomposition and reconstruction filter-banks constitute together the perfect reconstruction filter-bank structure. 

Acknowledgments: I wish to thank Phillipe Thevenaz and Patrick Brigger for their editorial help. 
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Figure 5: Perfect reconstruction filter-bank for computing the oblique multiwavelet transform. The coefficients 
Cc are decomposed into two sequences Ci and Di (left filter-bank pair). The two sequences Ci and Di can then 
be combined by the right pair of filters to reconstruct CO. 
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