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that complement the spack€s”, i.e., W;"+V™ = V2, (m =1, 2).
We have

Construction of Biorthogonal Wavelets Um <%) =2 Z Im (k) om (t — k). )
Starting from Any Two Multiresolutions kez

_ _ ) The wavelet bases(; 1) and(;, r) must satisfy the biorthog-
Akram Aldroubi, Patrice Abry, and Michael Unser onality condition(¢(;. x> Va(m, m)) = 0(j — m)do(k — n), where
5,(k) is the pulse sequence locatedfat= p. Our first goal is to
construct a pair of wavelet spacg¥V; };cz and {W?},cz such
L2, {V}}j ez and {V2}; ¢, we construct biorthogonal wavelet that 1V, LV? and W7 LV ¥ j €% The requirement thay;) LV}
bases that are associated with this chosen pair of multiresolutions. Thus, combined with the facts that’;y, C V" C Vi vi>y implies

our construction method takes a point of view opposite to the one of that W;' LW} for [ > j. Since switching the roles of the wavelet
Cohen-Daubechies—Feauveau (CDF), which starts from a well-chosenspaces does not change the previous argument, we get the following

pair of biorthogonal discrete filters. In our construction, the necessary orthogonality between wavelet spacéﬁllj_v[i}?’ 1 # j. Since
and sufficient condition is the nonperpendicularity of the multiresolutions. Wi cVandW? c V2 l#ﬁ?(t/2) and w-%(t/2) must satisfy (the

superscript “b” stands for “basic”)

Abstract—Starting from any two given multiresolution analyses of

. MOTIVATION L[t
Our goal is to construct biorthogonal wavelets starting from Y <§> :22 g1 (kK)o (t = k)
any two given multiresolution§V'} ez and {V?},cz instead of ) kez
the usual approach that starts from the specification of a pair of u»g(é) =2 Z g2(k)o2(t — k) (©)]
kez
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Fig. 1. Oblique projectionPy 1, = of vy € Vi onto Vi in a direction orthogonal td/2, and the projectionPyy 1 | = onto Wi in a direction
orthogonal to WZ.

where Theorem 1.1:Let V3 and Vi be two MR spaces such that the
|2 downsampling operator; angle between them satisfiess[6(Vg, V&) # 0, and construct
Vv  reflection operator/{} (k) = hy(—k)]; W/ W7, ¥}, and ¢} as described above. Then, we have the fol-
a2 sampled cross correlation function betweerit) and ¢ (¢): lowing.

azi (k) = [¢1(x = k)o2(x) dz = (62 % &7 ) (t)|1=k. 1) Wi NV} ={0}, andW} n v = {0}.
Again, ¢\ (t) = ¢1(—t). Using the fact tha{os (1), ¢ (t — 1)) = 2) Vi + Wi, =V}, and Vi, + Wi, = V7
271y (t/2), 61((t — 21)/2)), we get that 3) cos[d(Wy, Wg)] # 0.
4) The sets{u’)fu, 1 }iez and {'U/‘S(j, v }iez are Riesz bases of
az1 (k) = 2 |2 [ha * azy * hY](k). (5) W, and W7}, respectively.

5) For anyv, € V', we havev, = Pyayvevo + Pyagwevo
To SO"f for gi and g2, we use the well-known fact thatwhere P, 2 is the projection onVy' in a direction orthogonal
L2 [or x b N bj(k) = Ok Vk € Z, whereb(k) is any sequence, y, .2 anq whereP,,1 | 2 is the projection or¥; in a direction
and whereb™ (k) = (—1)"b(k). We immediately obtain solutions o, 171
orthogonal toWW; (see Fig. 1).
s VA L (B — b xat % (A)E. 6 The proof of this theorem is given in the Appendix. As a corollary
g =bux ()T ()7, g2 = 8ixay x (hi) © {5 Theorem 1.1, we immediately obtain the following corollary.
. 71 72 H
The functions’? and«? in (3) are indeed wavelets generating the Coro!llaryfg.z. If ~the angle 6(Vo, Vy ). s such that
S 1172 = . cos[0(Vy, Vi7)] # 0, then we have the following.
wavelet space$W; } ez and{W; };cz, as shown below. Here, itis
important to note that although the wavelets andv’ generate the 1) For anyu € L., we have

desired wavelet spaces, they do not necessarily form a biorthogonal J oo

pair. Moreover,y»" and ¢4 depend on the simultaneous choice of U= P‘,,}U,Jzu + E Pyriyeu = E Pyt e
- - . J J . J J

{.['/jl}JEZ and {‘/jz}jez- j=—o0 j=—oo

Theorem 1.1 below relies on the notion of anglélVy', Vi)
between the two MR spac@§' and Vi, which is defined using the
orthogonal projection operatd?vol on the spacéd’y (see [4], [11])

2) The sets{y}(; 1} meze and {¢3; 1}, pezz are Riesz
bases ofL2(R).

I1l. DUAL WAVELETS, SCALING

cos[8(Vy, Vi)] = inf {HPVOLU I eV, lvllr, = 1} FUNCTIONS, AND GENERATING SEQUENCES
’ a1 (£)] The conditiorcos[# (V3 , V)] # 0 in Theorem 1.1 implies thaty
=ess-inf¢po, 1 m (7)  does not contain vectors that are orthogondffoand vice versa and

that the projectiodj\,/ouvozu =Y ez Co(k)o1(t — k) of a function
where, for all practical purposes, the ess-inf of a function is its € L2 onto the spacd/y in a direction orthogonal td’ is a
minimum, and wherei;;(f), i = 1,2, j = 1, 2 are the Fourier well-defined operation [4, Th. 3.2] (see Fig. 1). Thus, the difference
transforms of the sampled correlation functionsg(k) = (¢;x0) ) (k) € = u — P‘,blh,,bzu must be orthogonal to all the basis functions
[the Fourier transform of a sequen&&k) is by definitionb(f) = {é2(t—k)Yrez of Vi ((u— Py1 you)(+), o2(-—k)) =0 VEk€
> b(k)z7"|,_.i2=s]. We have the following theorem. Z. A simple calculation using this ﬁroperty shows that the projection
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i~s given by Pya, veu = 3 pez (ul), Ga(- = k))é1 (t — k), where Basic in V} Basic in V3 Dual in V3
»2 € Vi is given in terms of the convolution inverges:)™" of a2 _
N 3
G2(t) = (as1) (k) (t — k) ®) E
kEZ —_
5
[2r]

where the convolution inverse of a sequends the sequencg:) *
satisfying[(a)™" * a](k) = 60(k). We note tha11(121)_1 exists. To
see why, we simply observe that dbs[d(Vy', V)] # 0, then (7)
implies thatd»1 (f) is nonzero forf, a.e. Thus{agl(f)]*1 is well
defined, and its inverse Fourier transform is precisely the sequence

(a21)'. Itis not difficult to check thatds(-), ¢1(- — k)) = b0 (k). 2

Because of this relationg,(t) € Vi is the biorthogonal dual )

with respect toVy’ of ¢1(t) € V. Since the space$V;'} ez = 0

are copies of each other at different scales, it follows that for _

any fixed j, we have (ds¢; 0)(+)s i(; 1 (")) = do(k) Yk € -1 ) 5 P

Z. Calculations similar to those for computing,, Gy yield Time

Pyiiweu = = D rez (ul). DE(- — k)L (t — k), whered € W3 Fig. 2. V! and Vg are the spline of order 3 and of order 1 MR’s. First row

is g|ven by of plots shows scaling functions and second row shows wavelets obtained as

summarized in Section VI. From left to right we have basid/}h, basic in
D) =271 (Lo [g2 #az + gy DT (WS — k). (9) Ve and dual inl§ of basic inVy.
kEZ
V. RELATION WITH COHEN-DAUBECHIES-FEAUVEAU

The functiony$(t) € Vi satisfies(v5(-), 2 (- — k)Y, = bo(k) BIORTHOGONAL WAVELETS
and is the biorthogonal dual gf}. From this property and the fact that

WZ2LW} for j # 1, we also deduce thaths ; (), ¥f(,. () =
o (; — m)éo(k — n). This property means that the two set
L‘%l(; 1, kyez? and{tp)(] 1) 1, kyez2 form two biorthogonal (or
dual) Riesz bases df.. Here, we would like to emphasize that it is
the paw{wb ¥t} that constitutes the biorthogonal wavelets and n&®
the pair{¢ 5, 4t} that we constructed in Section Il. Since (8) state
that ¢ is a linear combination af., we conclude that, € V. In

a similar fashion, from (9), we can deduce thidte W¢. Therefore,

3 ho(k) such thaw, (t/2) = 23", ., ha(k)oa(t—k), and similarly,

3 §2(k) such thatd}(t/2) = 23, ., G2(k)é2(t — k). Using (5),
(8), and (9), we get

The sets{@l(f — k)}rez and {@a(t — k)}rez are Riesz bases

sof Vg and VO, respectively. A simple calculation shows that

2 l) [h1 * hz] = 22;\ hq (l\)hz(lx — 277,) = (g()(?'l) which is

the starting point for the construction of the biorthogonal wavelets
f Cohen-Daubechies—Feauveau (CDF) [7]. Moreover, with the

gppropnate choice of multiresolutions, the functu;&b(t) and the
nctionyy (t) will be the biorthogonal compactly supported wavelets

of CDF [7]. In the present context;5(¢) and the functiony?(t)

are not necessarily compactly supported since we have chosen the

spaces{V'} ez and {V?} ez arbitrarily.

VI. |MPLEMENTATION AND EXAMPLE

hy = Ty [(as1) ™' % azy * hy Let 2, and h, be defined as in (1). The procedure to obtain the
go = 61% T2 [ag ]+ YE =271 12 [(L2 [ * as1 * g2]) '] wavelets and associated filter banks is as follows.
% o1 * go. (10) 1) Computeas; from (5).
2) Check the nonperpendicularity condition from, (7) and
From our construction, we note that:(#) is another scaling Theorem 1.1.
function for the space$V};cz and thatlfbé)(t) is another wavelet  3) Using (6), computg; andg., thus defining the basic wavelets
generating the spacedV;};cz. 3).

4) Using (10), computé. andg., thus defining the dual scaling
IV. BIORTHOGONAL WAVELET function and wavelet [(8) and (9)].
DECOMPOSITION AND RECONSTRUCTION To compute the WT with the designed wavelet, we can use the filter

bank algorithm with filtersh, and §. for the analysis and.; and
By combining Corollary 1.2 and the biorthogonality relatlonsl for the synthesis. Fig. 2 shows an example where the two starting

(925,00 (): 1,1 () = do(k) and (D55 5y () Ui (1) =
§0(j —m)8o(k—n), we are able to decompose any Veatae Ls as MR’s are the spline of order 3 and spline of order 1 MR’s.
u(t) = Z<“(t) Bo(a 1y (1)) D1(s 1y (1) VII. CONCLUSION
keZ We developed a construction of biorthogonal wavelets that starts
) . from any two multiresolution analyzes. Our approach is geometric
+ Z Z (ult), Vags, k) ()1, (1) and can be used to construct biorthogonal wavelets with desired
J=—oo kEZ properties and/or time shape that can be implemented using fast filter
= Z(u(t), 'Yl’g(]" k) (t)>L2u>ll)(j’ ) (2") bank algorithms.
Ik
= > (R ®). (11) APPENDIX

PROOF OF THEOREM 1.1
) Part 1: By construction ¥ LV;2. Therefore, ifg; € Wit n V1,
: sob b ; 1 2 ; ;
By interchangingyy; 1,(t) and v5(; 4)(t) in (11), we also get then g¢ € V{', and gLV}, but this contradicts the fact that
u(t) = 3 o (ult), 076G 0 L5, 1 (1), cos[8(Vy', V)] # 0 [see Definition (7)] unlesg, = 0.

(5, k)eZ?
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Part 3: Using (3) and (6), the sampled cross correlation functioft0] M. Unser, A. Aldroubi, and M. Eden, “Fast B-spline transforms for
Xo1(k) betweeny! and % is continuous image representation and interpolatithi?E Trans. Pattern
Anal. Machine Intell.vol. 13, pp. 277-285, 1991.
Xoi(k) =2 L2 [(hY)F % (a2)® % (h2)T * (a21)T % az1].  (12) [11] M. Unser and A. Aldroubi, “A general sampling theory for non-
ideal acquisition devicesEEE Trans. Signal Processingpl. 42, pp.

We use (5) and the fact thfitao; ) * a21](2k) = 0 to rewrite 2915-2925, Nov. 1994.
(12) as X1 =[5 [(a21)® % asi] * (a21)*. By taking the Fourier
transform of this last equation, we obtaki>: (f) = [a21[(f —

1)/2]az1 (f/2))as1[f — (1/2)]. Sincecos[8(Vy', Vi) # 0,34 > 0
s.t. |2 (f)| > AV f [see (7)]. Thus3 Const > 0 s.t. | Xo1 ()] > _ o
Const a.ef. Therefore, from (7), we getos[f(Wg, W)] # 0. Sampling Approximation of Smooth

Parts 2 and 5: For vo = 3,4 co(k)éi(t — k) € Vi, we use Functions via Generalized Coiflets
(3), (10), and (11) to write)™ = Pyajvevo + Pyiiwevo in the
basis of V' asv™ =3, ., 5 (k)¢1(t — k), wherec§’ =2 12 [|2

(co % 3)] ¥t 2 12 [_12 (co hg)]_* h. Taking theZ transform — ppgiace e present the sampling approximation power of a newly
of the previous equation, we obtain constructed class of compactly supported orthonormal wavelets called
CF (5 = CuloOa=~)G() + Hate L) generalzed sl sy e securay of generlae cofeshase
+ Co(—2)[Ga(=2 NG (=2) + Ho(—2 HH (—2))]. rates for the pointwise approximation error as well as its LP-norm.
We show i) that the L2-error due to the approximation of expansion
Using the Z transform of (5),A2i(z) = Ha(z'/?)H,(27'/?) coefficients by function samples is asymptotically negligible compared
Am(zl/?) + HQ(_ZI/Z)HL(_271/2)J421(_Zl/2), in the last equa- With that due to projection and ii) that generalized coiflets can achieve
tion together with theZ transforms of (6) and (10), we get thatasymptotlcally better approximation than the original coiflets.
C&(2) = Co(2). Thus, we have proven (2) and (5). Index Terms—Approximation methods, signal reconstruction, signal
Part 4: It is necessary and sufficient to show that the Fourig@mpling wavelet transforms.
transforma( f) of the sampled autocorrelatiarik) of ©° is bounded
for f a.e. by two positive constanés, > Cy > 0 [5, Th. 2]. Using |
the fact that(uy (1), ¥i(t —1)) = 27 (&1 (t/2), ¥7((t = 20)/2))L., '
and (3), we obtaim = 2 | [hs % by * a1 * a1 * a3;]. We do not

Dong Wei and Alan C. Bovik

INTRODUCTION

During the past decade, the theory of wavelets and multiresolution
change the last identity if we convolve it with, * a5, to obtain analysis has established itself _firmly as one of the _mo_st succesgful
@ =2 | [ho*hY *ars kaz +ady kazs vaz,]. Becaused oo, k) Hrez me_thods for a broad range of signal processing appllca_ltlons._ We first
are Riesz bases fovy" and becauseos[f#(Vg, Vi) # 0, the review some fundamentals from wavelet theory on which this paper

Fourier transforms,, (f) of all the sequences;; that appear in the is based. For a more detailed discussion, see related literature (e.g.,
expression of: are bounded above and below by positive constank&l-{3)- ) ]

0 < a1 < ai(f) <ag < o for f a.e. Using this fact and the fact Let.h:Z - IR be the impulse response of the Iowpass: filter
thatagze = 2 |2 [ha = hY * ass], we deduce that(f) is bounded associated with an orthonormal waveletlR — IR. The scaling

above and below almost everywhere, which completes the proof.fignction ¢: IR — IR is recursively defined by thelilation equation
different proof can also be obtained using [3, Th. 3.3]. g (or refinement equatign
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