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Construction of Biorthogonal Wavelets
Starting from Any Two Multiresolutions

Akram Aldroubi, Patrice Abry, and Michael Unser

Abstract—Starting from any two given multiresolution analyses of
LLL2, fVVV 1

jjj
gj 2j 2j 2Z

, and fV2

jjj
gj 2j 2j 2Z

, we construct biorthogonal wavelet
bases that are associated with this chosen pair of multiresolutions. Thus,
our construction method takes a point of view opposite to the one of
Cohen–Daubechies–Feauveau (CDF), which starts from a well-chosen
pair of biorthogonal discrete filters. In our construction, the necessary
and sufficient condition is the nonperpendicularity of the multiresolutions.

I. MOTIVATION

Our goal is to construct biorthogonal wavelets starting from
any two given multiresolutionsfV 1

j gj2Z and fV 2

j gj2Z instead of
the usual approach that starts from the specification of a pair of
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biorthogonal filters [7] or the more recent lifting scheme approach
of Sweldens [9]. For example, we may want to choose the analyzing
multiresolution (MR)fV 1

j gj2Z to be the Haar MR andfV 2

j gj2Z to
be a smoother spline MR. Using ideas similar to those in [1], [2],
and [6], it is possible to construct wavelets with a variety of desired
properties and/or time shape and to construct their biorthogonal duals.
In our method, even if both scaling functions�1 and�2 have compact
support, the analysis filters that implement the wavelet transform
(WT) need not be FIR. However, they can still be implemented
exactly using recursive filtering techniques, as in [10], or truncated,
as has been done in the original paper of Mallat [8].

II. BASIC WAVELETS

We choose two arbitrary anda priori independent MR’s

V
m
j =

k2Z

cj(k)�m(j; k)(t); cj 2 l2

where�m(j; k)(t) = 2�j=2�m(2�jt � k), andm = 1; 2. We use
the notation�m for �m(0; 0). The set �m(j; k) k2Z

is a Riesz basis
of V m

j , and we have

�m(t=2) = 2
k2Z

hm(k)�m(t� k): (1)

A pair of biorthogonal wavelets m, m = 1; 2 associated with the
MR’s fV m

j gj2Z must have the property that their translations and
dilations m(j; k) form Riesz bases of the spaces

Wm
j =

k2Z

dj(k) m(j; k)(t); dj 2 l2

that complement the spacesV m
j , i.e.,Wm

j +V m
j = V m

j�1 (m = 1; 2).
We have

 m
t

2
= 2

k2Z

gm(k)�m(t� k): (2)

The wavelet bases 1(j; k) and 2(j; k) must satisfy the biorthog-
onality conditionh 1(j; k);  2(m;n)i = �0(j �m)�0(k � n), where
�p(k) is the pulse sequence located atk = p. Our first goal is to
construct a pair of wavelet spacesfW 1

j gj2Z and fW 2
j gj2Z such

thatW 1
j ?V

2
j andW 2

j ?V
1
j 8 j 2 Z. The requirement thatW 1

j ?V
2
j

combined with the facts thatW 2
l+1 � V 2

l � V 2
j 8 l > j implies

that W 1
l ?W

2
j for l > j. Since switching the roles of the wavelet

spaces does not change the previous argument, we get the following
orthogonality between wavelet spaces:W 1

l ?W
2
j ; l 6= j. Since

W 1
1 � V 1

0 andW 2
1 � V 2

0 ,  b1(t=2) and b2(t=2) must satisfy (the
superscript “b” stands for “basic”)

 b1
t

2
=2

k2Z

g1(k)�1(t� k)

 b2(
t

2
) =2

k2Z

g2(k)�2(t� k) (3)

whereg1 andg2 are to be determined so thatW 1
1?V

2
1 andW 2

1?V
1
1 .

These cross-orthogonality requirements are satisfied if and only if the
bases of the wavelet spacesW 1

1 andW 2
1 are orthogonal to the bases

of the spacesV 2
1 andV 1

1 , respectively:h b1(1; 0)(�); �2(1; k)(�)iL =

0; h b2(1; 0)(�); �1(1; k)(�)iL = 0; 8 k 2 Z. Using (3), a simple
calculation shows that the two equations above can be written as

#2 [g1 � h
_

2 � a_21] = 0; #2 [g2 � h
_

1 � a21] = 0 (4)
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Fig. 1. Oblique projectionPV ?V of v0 2 V 1
0 onto V 1

1 in a direction orthogonal toV 2
1 , and the projectionPW ?W onto W 1

1 in a direction

orthogonal toW 2
1 .

where

#2 downsampling operator;
_ reflection operator [h_1 (k) = h1(�k)];
a21 sampled cross correlation function between�1(t) and�2(t):

a21(k) = �1(x � k)�2(x)dx = (�2 � �
_
1 )(t)jt=k.

Again, �_1 (t) = �1(�t). Using the fact thath�2(t); �1(t � l)i =
2�1h�2(t=2); �1((t � 2l)=2)i, we get that

a21(k) = 2 #2 [h2 � a21 � h
_
1 ](k): (5)

To solve for g1 and g2, we use the well-known fact that
#2 [�1 � b

� � b](k) = 0 8 k 2 Z, where b(k) is any sequence,
and whereb�(k) = (�1)kb(k). We immediately obtain solutions

g1 = �1 � (a_21)
� � (h_2 )

�; g2 = �1 � a
�
21 � (h_1 )

�: (6)

The functions b
1 and b

2 in (3) are indeed wavelets generating the
wavelet spacesfW 1

j gj2Z andfW 2
j gj2Z, as shown below. Here, it is

important to note that although the wavelets b
1 and b

2 generate the
desired wavelet spaces, they do not necessarily form a biorthogonal
pair. Moreover, b

1 and  b
2 depend on the simultaneous choice of

fV 1
j gj2Z and fV 2

j gj2Z.
Theorem 1.1 below relies on the notion of angle�(V 1

0 ; V
2
0 )

between the two MR spacesV 1
0 andV 2

0 , which is defined using the
orthogonal projection operatorPV on the spaceV 1

0 (see [4], [11])

cos[�(V 1
0 ; V

2
0 )] = inf PV v

L
; v 2 V 2

0 ; kvkL = 1

= ess-inff2[0; 1]
jâ21(f)j

[â11(f)â22(f)]1=2
(7)

where, for all practical purposes, the ess-inf of a function is its
minimum, and wherêaij(f); i = 1; 2; j = 1; 2 are the Fourier
transforms of the sampled correlation functionsaij(k) = (�i��

_
j )(k)

[the Fourier transform of a sequenceb(k) is by definition b̂(f) =

k b(k)z
�kjz=e ]. We have the following theorem.

Theorem 1.1: Let V 1
0 and V 2

0 be two MR spaces such that the
angle between them satisfiescos[�(V 1

0 ; V
2
0 )] 6= 0, and construct

W 1
j ,W 2

j ,  b
1, and  b

2 as described above. Then, we have the fol-
lowing.

1) W 1
j \ V 1

j = f0g, andW 2
j \ V 2

j = f0g.
2) V 1

j+1 +W 1
j+1 = V 1

j , andV 2
j+1 +W 2

j+1 = V 2
j .

3) cos[�(W 1
0 ; W

2
0 )] 6= 0.

4) The setsf b
1(j; k)gj2Z and f b

2(j; k)gj2Z are Riesz bases of
W 1

j andW 2
j , respectively.

5) For anyv0 2 V 1
0 , we havev0 = PV ?V v0 + PW ?W v0

wherePV ?V is the projection onV 1
1 in a direction orthogonal

to V 2
1 , and wherePW ?W is the projection onW 1

1 in a direction

orthogonal toW 2
1 (see Fig. 1).

The proof of this theorem is given in the Appendix. As a corollary
to Theorem 1.1, we immediately obtain the following corollary.

Corollary 1.2: If the angle �(V 1
0 ; V

2
0 ) is such that

cos[�(V 1
0 ; V

2
0 )] 6= 0, then we have the following.

1) For anyu 2 L2, we have

u = PV ?V u+

J

j=�1

PW ?W u =

1

j=�1

PW ?W u:

2) The setsf b1(j; k)g(j; k)2Z and f b2(j; k)g(j; k)2Z are Riesz
bases ofL2(R).

III. D UAL WAVELETS, SCALING

FUNCTIONS, AND GENERATING SEQUENCES

The conditioncos[�(V 1
0 ; V

2
0 )] 6= 0 in Theorem 1.1 implies thatV 1

0

does not contain vectors that are orthogonal toV 2
0 and vice versa and

that the projectionPV ?V u =
k2Z

c0(k)�1(t� k) of a function

u 2 L2 onto the spaceV 1
0 in a direction orthogonal toV 2

0 is a
well-defined operation [4, Th. 3.2] (see Fig. 1). Thus, the difference
e = u � PV ?V u must be orthogonal to all the basis functions

f�2(t�k)gk2Z of V 2
0 : h(u�PV ?V u)(�); �2(��k)i = 0 8 k 2

Z. A simple calculation using this property shows that the projection
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is given byPV ?V u =
k2Z

hu(�); ~�2(� � k)i�1(t � k), where
~�2 2 V

2
0 is given in terms of the convolution inverse(a21)�1 of a21

~�2(t) =
k2Z

(a21)
�1(k)�2(t� k) (8)

where the convolution inverse of a sequencea is the sequence(a)�1

satisfying [(a)�1 � a](k) = �0(k). We note that(a21)�1 exists. To
see why, we simply observe that ifcos[�(V 1

0 ; V
2
0 )] 6= 0, then (7)

implies thatâ21(f) is nonzero forf , a.e. Thus,[â21(f)]�1 is well
defined, and its inverse Fourier transform is precisely the sequence
(a21)

�1. It is not difficult to check thath~�2(�); �1(� � k)i = �0(k).
Because of this relation,~�2(t) 2 V 2

0 is the biorthogonal dual
with respect toV 2

0 of �1(t) 2 V 1
0 . Since the spacesfV 1

j gj2Z
are copies of each other at different scales, it follows that for
any fixed j, we have h~�2(j; 0)(�); �1(j; k)(�)i = �0(k) 8 k 2
Z. Calculations similar to those for computingPV ?V u yield

PW ?W u =
k2Z

hu(�); ~ b2(� � k)i b1(t � k), where ~ b2 2 W 2
0

is given by

~ b2(t) = 2�1

k2Z

(#2 [g2 � a21 � g
_
1 ])

�1(k) b2(t� k): (9)

The function ~ b2(t) 2 V 2
0 satisfiesh ~ b2(�);  

b
1(� � k)iL = �0(k)

and is the biorthogonal dual of b1. From this property and the fact that
W 2

j ?W
1
l for j 6= l, we also deduce thath ~ b2(j; k)(�);  

b
1(m;n)(�)i =

�0(j � m)�0(k � n). This property means that the two sets
f b1(j; k)g(j; k)2Z andf ~ b2(j; k)g(j; k)2Z form two biorthogonal (or
dual) Riesz bases ofL2. Here, we would like to emphasize that it is
the pairf ~ b2;  

b
1g that constitutes the biorthogonal wavelets and not

the pairf b2;  
b
1g that we constructed in Section II. Since (8) states

that ~�2 is a linear combination of�2, we conclude that~�2 2 V 2
0 . In

a similar fashion, from (9), we can deduce that~ b2 2W
2
0 . Therefore,

9 ~h2(k) such that~�2(t=2) = 2
k2Z

~h2(k)~�2(t�k), and similarly,
9 ~g2(k) such that ~ b2(t=2) = 2

k2Z
~g2(k)~�2(t � k). Using (5),

(8), and (9), we get

~h2 = "2 [(a21)
�1] � a21 � h2

~g2 = �1� "2 [a�121 ] � h
_�
1 = 2�1 "2 [(#2 [g_1 � a21 � g2])

�1]

� a21 � g2: (10)

From our construction, we note that~�2(t) is another scaling
function for the spacesfV 2

j gj2Z and that ~ b2(t) is another wavelet
generating the spacesfW 2

j gj2Z.

IV. BIORTHOGONAL WAVELET

DECOMPOSITION AND RECONSTRUCTION

By combining Corollary 1.2 and the biorthogonality relations
h~�2(j; 0)(�); �1(j; k)(�)i = �0(k) and h ~ b2(j; k)(�);  

b
1(m;n)(�)i =

�0(j�m)�0(k�n), we are able to decompose any vectoru 2 L2 as

u(t) =
k2Z

hu(t); ~�2(J; k)(t)i�1(J; k)(t)

+

J

j=�1 k2Z

hu(t); ~ b2(j; k)(t)i 
b
1(j; k)(t)

=
j; k

hu(t); ~ b2(j; k)(t)iL  b1(j; k)(t)

=

(j; k)2Z

dj(k) 
b
1(j; k)(t): (11)

By interchanging b1(j; k)(t) and ~ b2(j; k)(t) in (11), we also get
u(t) =

j; k
hu(t);  b1(j; k)(t)iL

~ b2(j; k)(t).

Fig. 2. V 1
0 andV 2

0 are the spline of order 3 and of order 1 MR’s. First row
of plots shows scaling functions and second row shows wavelets obtained as
summarized in Section VI. From left to right we have basic inV 1

0 , basic in
V 2
0 , and dual inV 2

0 of basic inV 1
0 .

V. RELATION WITH COHEN–DAUBECHIES–FEAUVEAU

BIORTHOGONAL WAVELETS

The setsf�1(t � k)gk2Z and f~�2(t � k)gk2Z are Riesz bases
of V 1

0 and V 2
0 , respectively. A simple calculation shows that

2 #2 [h1 � ~h_2 ] = 2
k
h1(k)~h2(k � 2n) = �0(n), which is

the starting point for the construction of the biorthogonal wavelets
of Cohen–Daubechies–Feauveau (CDF) [7]. Moreover, with the
appropriate choice of multiresolutions, the function~ b2(t) and the
function b1(t) will be the biorthogonal compactly supported wavelets
of CDF [7]. In the present context,~ b2(t) and the function b1(t)
are not necessarily compactly supported since we have chosen the
spacesfV 1

j gj2Z and fV 2
j gj2Z arbitrarily.

VI. I MPLEMENTATION AND EXAMPLE

Let h1 andh2 be defined as in (1). The procedure to obtain the
wavelets and associated filter banks is as follows.

1) Computea21 from (5).
2) Check the nonperpendicularity condition froma21 (7) and

Theorem 1.1.
3) Using (6), computeg1 andg2, thus defining the basic wavelets

(3).
4) Using (10), compute~h2 and~g2, thus defining the dual scaling

function and wavelet [(8) and (9)].

To compute the WT with the designed wavelet, we can use the filter
bank algorithm with filters~h2 and ~g2 for the analysis andh1 and
g1 for the synthesis. Fig. 2 shows an example where the two starting
MR’s are the spline of order 3 and spline of order 1 MR’s.

VII. CONCLUSION

We developed a construction of biorthogonal wavelets that starts
from any two multiresolution analyzes. Our approach is geometric
and can be used to construct biorthogonal wavelets with desired
properties and/or time shape that can be implemented using fast filter
bank algorithms.

APPENDIX

PROOF OF THEOREM 1.1

Part 1: By construction,W 1
1?V

2
1 . Therefore, ifg1 2W 1

1 \ V 1
1 ,

then g1 2 V 1
1 , and g1?V

2
1 , but this contradicts the fact that

cos[�(V 1
0 ; V

2
0 )] 6= 0 [see Definition (7)] unlessg1 = 0.
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Part 3: Using (3) and (6), the sampled cross correlation function
X21(k) between b1 and b2 is

X21(k) = 2 #2 [(h_1 )
� � (a21)

� � (h2)
� � (a21)

� � a21]: (12)

We use (5) and the fact that[(a21)� � a21](2k) = 0 to rewrite
(12) asX21 =#2 [(a21)

� � a21] � (a21)
�. By taking the Fourier

transform of this last equation, we obtain̂X21(f) = [â21[(f �
1)=2]â21(f=2)]â21[f � (1=2)]. Sincecos[�(V 1

0 ; V
2
0 )] 6= 0, 9A > 0

s.t. jâ21(f)j � A 8 f [see (7)]. Thus,9Const > 0 s.t. jX̂21(f)j �
Const a.e.f: Therefore, from (7), we getcos[�(W 1

0 ; W
2
0 )] 6= 0.

Parts 2 and 5: For v0 = k2Z c0(k)�1(t� k) 2 V 1
0 , we use

(3), (10), and (11) to writev� = PV ?V v0 + PW ?W v0 in the

basis ofV 1
0 asv� = k2Z c

�
0 (k)�1(t� k), wherec�0 = 2 "2 [#2

(c0 � ~g_2 )] � g1 + 2 "2 [#2 (c0 � ~h_2 )] � h1: Taking theZ transform
of the previous equation, we obtain

C�0 (z) =C0(z)[ ~G2(z
�1)G1(z) + ~H2(z

�1)H1(z)]

+C0(�z)[ ~G2(�z
�1)G1(�z) + ~H2(�z

�1)H1(�z)]:

Using theZ transform of (5),A21(z) = H2(z
1=2)H1(z

�1=2)
A21(z

1=2) +H2(�z
1=2)H1(�z

�1=2)A21(�z
1=2), in the last equa-

tion together with theZ transforms of (6) and (10), we get that
C�0 (z) = C0(z). Thus, we have proven (2) and (5).

Part 4: It is necessary and sufficient to show that the Fourier
transformâ(f) of the sampled autocorrelationa(k) of  b1 is bounded
for f a.e. by two positive constantsC2 � C1 > 0 [5, Th. 2]. Using
the fact thath b1(t);  

b
1(t� l)i = 2�1h b1(t=2);  

b
1((t� 2l)=2)iL ,

and (3), we obtaina = 2 #2 [h2 � h
_
2 � a11 � a21 � a

_
21]. We do not

change the last identity if we convolve it witha22 � a�1
22 to obtain

a = 2 #2 [h2�h
_
2 �a11�a21�a

_
21�a22�a

�1
22 ]. Becausef�m(0; k)gk2Z

are Riesz bases forV m
0 and becausecos[�(V 1

0 ; V
2
0 )) 6= 0, the

Fourier transformŝaij(f) of all the sequencesaij that appear in the
expression ofa are bounded above and below by positive constants
0 < �1 � âij(f) � �2 < 1 for f a.e. Using this fact and the fact
that a22 = 2 #2 [h2 � h

_
2 � a22], we deduce that̂a(f) is bounded

above and below almost everywhere, which completes the proof. A
different proof can also be obtained using [3, Th. 3.3].
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Sampling Approximation of Smooth
Functions via Generalized Coiflets

Dong Wei and Alan C. Bovik

Abstract—We present the sampling approximation power of a newly
constructed class of compactly supported orthonormal wavelets called
generalized coiflets. We study the accuracy of generalized coiflets-based
sampling approximation of smooth functions by developing convergence
rates for the pointwise approximation error as well as its LLLppp-norm.
We show i) that the LLL222-error due to the approximation of expansion
coefficients by function samples is asymptotically negligible compared
with that due to projection and ii) that generalized coiflets can achieve
asymptotically better approximation than the original coiflets.

Index Terms—Approximation methods, signal reconstruction, signal
sampling wavelet transforms.

I. INTRODUCTION

During the past decade, the theory of wavelets and multiresolution
analysis has established itself firmly as one of the most successful
methods for a broad range of signal processing applications. We first
review some fundamentals from wavelet theory on which this paper
is based. For a more detailed discussion, see related literature (e.g.,
[1]–[3]).

Let h: ! IR be the impulse response of the lowpass filter
associated with an orthonormal wavelet : IR ! IR. The scaling
function �: IR ! IR is recursively defined by thedilation equation
(or refinement equation)

�̂(!) = H(ej!=2)�̂(!=2) (1)

where �̂(!) =
IR
�(t)e�j!t dt and H(z) = n2 h(n)z�n.

The scaled and translated versions of the waveletf (2it � k)gi; k
constitute an orthonormal basis ofLLL2(IR). Most families of wavelet
bases are indexed by the number ofvanishing momentsfor wavelets
(e.g., [4]–[6]).

An important problem in wavelet-based multiresolution approxi-
mation theory is to measure the decay of the approximation error
as resolution increases, given somea priori knowledge on the
smoothness of the function being approximated [7]–[13]. Letf be
a smoothLLL2 function in the sense thatf (L) is square integrable,
and let� be anLth-order orthonormal scaling function. DefinePif
to be the approximation off at resolution2�i, i.e., the orthogonal
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