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Compressibility of Deterministic and
Random Infinite Sequences

Arash Amini, Michael Unser, Fellow, IEEE, and Farokh Marvasti, Senior Member, IEEE

Abstract—We introduce a definition of the notion of compress-
ibility for infinite deterministic and i.i.d. random sequences which
is based on the asymptotic behavior of truncated subsequences. For
this purpose, we use asymptotic results regarding the distribution
of order statistics for heavy-tail distributions and their link with
-stable laws for . In many cases, our proposed defi-
nition of compressibility coincides with intuition. In particular, we
prove that heavy-tail (polynomial decaying) distributions fulfill the
requirements of compressibility. On the other hand, exponential
decaying distributions like Laplace and Gaussian do not. The re-
sults are such that two compressible distributions can be compared
with each other in terms of their degree of compressibility.

Index Terms—Compressible prior, heavy-tail distribution, order
statistics, stable law.

I. INTRODUCTION

T HE emerging field of compressed sensing investigates
the problem of sampling and reconstructing signals

(often finite-dimensional) that have sparse or compressible
(almost sparse) representations in an orthonormal basis [1]–[3].
For instance, the so-called basis-pursuit method, which is
based on the minimization, can stably recover compressible
vectors from their linear projections onto subspaces of much
lower dimensions when the projection operator satisfies some
constraints.
By definition, an vector (a finite sequence) is called

“sparse”, more precisely, -sparse, when it contains at most
nonzero elements. In this case, a -term representation of the
vector exactly describes the vector, which is of special relevance
when . By extension, a vector is called “compressible”
when its -term representation is not exact, but only an approx-
imation in some sense.
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In the context of infinite sequences, finite-term approxima-
tions are classically studied for wavelet coefficients of the de-
terministic signals in Besov spaces [4] where the sequence of
coefficients is in for some and the energy ( -norm) of the
-term approximation error decays like for some positive
. In more recent definitions, the sequence is called
“compressible” in the sense of weak- norm if it be-
longs to the weak- space [5], [6]. More precisely, for some
we should have

(1)

Clearly, the above definition imposes a certain rate of decay on
compressible sequences.
Introducing a stochastic model for a specific class of signals

is a common approach in signal processing and it usually done
by assuming an innovations domain. Typically, the signal is as-
sumed to be independently and identically distributed in a trans-
form domain. Now, to check the compressibility of stochastic
signals, we should investigate the compressibility of their in-
novation sequence which is usually a sequence of i.i.d. random
variables. Unfortunately, the definition of compressibility based
on (1) is not applicable because sequences of i.i.d. random vari-
ables are excluded from . Moreover, they are not even de-
caying at all—except for some degenerate distributions. This
fact suggests that a new definition for the compressibility of in-
finite sequences and i.i.d. sequences should be introduced. The
main benefit of studying compressible priors is to provide the
foundations for stochastic modeling of sparse/compressible pro-
cesses. Most of the conventional stochastic signal models are
based on Gaussian processes which are definitely not sparse. In
the past five years, significant progress has been achieved in the
relatively new field of sparse signal processing using a predom-
inantly deterministic formulation. The investigation of sparse
stochastic models may lead to new and efficient algorithms for
reconstruction or denoising of the sparse signals.
The first attempts of identifying a compressible prior were

based on the Bayesian interpretation of the successful basis-pur-
suit method. It was found that minimization technique coin-
cides with the maximum a posteriori (MAP) estimator [7], [8]
when the observations of a Laplace-distributed signal having
independent and identically distributed coefficients in the in-
novations domain are perturbed by Gaussian noise. However,
several authors have pointed out that this choice does not meet
the expectations from a compressible prior [9]–[11]. Employing
quantile approximations of the expected order statistics, Cevher
is the precursor for defining and identifying compressible dis-
tributions [9]. He proposed the following definition.
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Definition 1: For a random variable with parameters , let
be the probability density function of and

denote the respective cumulative probability distribution. Also,
for a given sequence length , let denote
the order statistics of the i.i.d. random variables . The
distribution of is called compressible if there exist positive
constants and such that

(2)

where indicates expectation and means “less than or ap-
proximately equal to.”
A few distributions, including the Generalized Pareto and

Student’s , are introduced as compressible priors that fulfill
Definition 1. Nonetheless, this definition is somewhat impre-
cise. Moreover, the distributions should be examined on a
case-by-case basis. For each distribution, those samples of
required in (2) should be evaluated first, and then, one should
check if such and exist.
In this paper, we introduce a comprehensive definition of

compressibility (strong compressibility or simply s-compress-
ibility) for infinite sequences which ultimately leads to some
simple practical classification criteria.1 The main advantage
is that this new definition is not based on the decay of the
sequence. This enables us to generalize it to i.i.d. random
sequences. Furthermore, we provide theorems to distinguish
compressible priors for the given definition of compressibility.
Using asymptotic results regarding the order statistics, we show
that the s-compressibility of a prior closely depends on the
decay of the probability density function. We demonstrate the
s-compressibility of heavy-tail (polynomial decaying) distribu-
tions such as the Generalized Pareto and Student’s , while we
prove that exponentially decaying distributions such as those
from Laplace and Gauss are not s-compressible. Our definition
appears to be compatible with Definition 1.

II. COMPRESSIBLE INFINITE SEQUENCES

The first idea that comes to mind for defining compressibility
for an infinite sequence is to consider (1). Unfortunately, (1)
is too restrictive since it prevents any i.i.d. random sequence
to be called compressible, by lack of decay. To overcome this
shortcoming, we define the compressibility of an infinite se-
quence using the asymptotic behavior of its truncated finite sub-
sequences. Intuitively, an s-compressible infinite sequence is
such that the energy of its truncated finite subsequences is con-
centrated in only a small fraction of the samples, and this frac-
tion vanishes as the length of the subsequence increases. In order
to put this insight into a rigorous mathematical form, we need
to introduce some notations.

A. Definitions and Notations

Definition 2: Let be a finite scalar sequence and let
be the ordered sequence according to nonincreasing

1While this paper was under review, we were informed of a paper submission
with similar ideas by Gribonval, Cevher and Davis [12].

modulus values . For and ,
define

(3)

In other words, is the -(semi)norm
of the best -term approximation of . (Note that

is the -norm of the sequence.)
Definition 3: For a finite scalar sequence (not all

equal to zero) and real numbers and , define

(4)

In fact, provides theminimum number of terms required
to preserve the given fraction of the total energy of the se-
quence in the sense. Finally, we define the s-compressibility
of infinite sequences based on the asymptotic behavior of their
truncated subsequences.

B. Definition 4

We call the sequence of real (or complex) numbers
“ -compressible” if

(5)

In addition, the sequence is called s-compressible if it
is -compressible for some .
Definition 4 implies that, in order to capture almost all the en-

ergy of the truncated subsequences (with a large-enough number
of terms) of a s-compressible infinite sequence, one only needs
a negligible fraction of the terms. Note that we focus on the en-
ergy distribution among the elements, without imposing a decay
on the sequence.
To illustrate Definition 4, let us consider the sequence
for . For any and , let

. Then, for the -term approximation of any sub-
sequence of length , we observe that

(6)

which means

(7)

Therefore, since can be increased independently of , the
limit of when would be zero, and
the sequence is -compressible for all . The above arguments
rely on the fact that the whole sequence has a finite energy and
that one only needs a finite number of elements to preserve any
given fraction of the total energy. This argument can be gen-
eralized to all sequences, so that a sequence in is also
-compressible.
To show that the converse argument is not necessarily true,

consider . Although this sequence is not in , we show
that it is -compressible. For a given , we choose
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and we set . Using
, we get

(8)

Thus,

(9)

which yields

(10)

Hence, the sequence fulfills the requirements of -compress-
ibility. The two examples above were decaying sequences. In
Section IV, we shall consider some nondecaying examples as
well.

C. Results

An interesting property of Definition 4 is the embedding of
-compressible sequences with different s. By using the fol-

lowing lemma, we show that an -compressible sequence is
also -compressible for :
Lemma 1: For a sequence and arbitrary integers ,

the ratio is an increasing function of .
Proof: Let . For indices , we have that

(11)

Now, by summing these inequalities for all and
, we get

(12)

which completes the proof.
A direct consequence of Lemma 1 is that is a

decreasing function of . Hence, when the limit in Definition 4
vanishes for some , it will also vanish for all ,
meaning that a sequence is either s-incompressible or -com-
pressible for larger than a threshold. The minimum (or in-
fimum) of the positive values for which a sequence is -com-
pressible can be regarded as a measure of how compressible the
sequence is: the lower the infimum value, the more compress-
ible the sequence.

III. COMPRESSIBLE I.I.D. RANDOM SEQUENCES

In order to generalize the s-compressibility definition to
i.i.d. random sequences, we need to modify Definition 3 to

take statistic aspects into account. Since the sequence is now
random, we can only guarantee that the best -term approxi-
mation of a subsequence preserves the given fraction of the
energy with probability at least .

A. Definitions and Notations

Definition 5: Let be an i.i.d. sequence of random
variables2 with probability density . For given
and , we define

(13)
Thus, is almost equivalent to with the addition of

the probability measure. Note that there are two lower-bounds in
Definition 5: one for the energy fraction and one for the proba-
bility . Now, similarly to Definition 4, we can define the s-com-
pressibility of random sequences. Because the s-compressibility
only depends on the distribution instead of the sequence, we
define the s-compressibility in terms of the distribution.
Definition 6: The probability density is called “ -com-

pressible” if the sequence of i.i.d. realizations of this distribu-
tion is almost surely -compressible, in the sense that

(14)

Similarly, the probability density is called s-compressible if
it is -compressible for some .
Although we focus on the above definition in this paper, we

also propose the following distinction between sparsity (exact
representation) and compressibility (approximation):
Definition 7: The probability density is called “ -sparse”

if it is -compressible and if, for finite but long-enough se-
quences of i.i.d. realizations of , the whole energy (in any
sense) is almost surely concentrated in a fraction of the terms

(15)

The only difference between s-compressible and sparse dis-
tributions lies in the fact that the choice of is excluded
for s-compressible distributions. One can easily verify that none
of our mentioned s-compressible examples (deterministic) is
sparse. The additional condition in the definition of sparsity im-
plies that some of the elements of a sparse i.i.d. realization nec-
essarily vanish. This in turn implies that -sparse distributions
always contain a mass probability at . Conversely, when

, the whole energy of an i.i.d. sequence of
length is contained with high probability in only ele-
ments. Therefore, the limit in Definition 7 is less than one. This
means that sparse distributions are those s-compressible distri-
butions that contain a mass probability at . To generate
a sparse i.i.d. sequence, one can select with probability
values drawn from a s-compressible distribution, and select with
probability the value 0.
2In this paper, we use the lower-case letter exclusively to represent the

probability density function of a random variable.
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Compared to [9], Definition 6 explains the concept of com-
pressibility more intuitively. Moreover, we are going to show
that Definition 6 leads naturally to the derivation of simple tools
for examining the s-compressibility of distributions.
In the rest of the paper, we study distributions from the point

of view of their -compressibility. There are two main contri-
butions: We first exclude a large class of distributions, namely,
those with exponential decay. The well-studied Laplace distri-
bution is a member of this non -compressible class. Then, we
introduce heavy-tail distributions (polynomial decay) as pos-
sible s-compressible candidates.
Lemma 1 allowed us to identify an embedding property of

sequences, likewise, there is a similar embedding for s-com-
pressible (sparse) distributions: An -compressible ( -sparse)
distribution is also -compressible ( -sparse) for all .
Moreover, it is noteworthy to mention the following link be-
tween the -compressible distributions with different s.
Lemma 2: The distribution of the random variable is
-compressible if and only if the distribution of the random

variable is -compressible.
Proof: The statement follows from the fact that -norm

of a sequence of s to the power is equal to -norm of the
corresponding sequence of s.

B. Main Results

The statement in Lemma 2 shows that we only need to iden-
tify -compressible distributions in order to identify the whole
class. Hence, from now on, we only study the -compressibility
condition.
Theorem 1: If the probability density is such that, for some
, the expectation exists, then the distribution is

not -compressible.
Proof: Let be an i.i.d. sequence of random variables

with distribution and let . Obviously, the s form an
i.i.d. sequencewith distribution ,
where is the Heaviside (unit) step function. Also, let
and be the mean and variance of a random variable with
distribution . The existence of implies the existence
of and .Moreover, let be a large-enough positive integer
such that , where is the positive
value for which is finite, and where is
an arbitrary ratio. To simplify the notations, let us define the
following events:

(16)

which yields

(17)

The independence of the s results in

(18)

Therefore, by applying Chebychev’s inequality we obtain

(19)

Furthermore, is generated by one of the
possible ways of selecting elements. Therefore, we get

(20)

Note that, since , the probability of the event
is in fact a tail probability

for large . The exponential decay of this tail probability is
given by

(21)

where the first inequality is obtained by Markov’s inequality.
Thus, using and the results in (20) and (21), we
have

(22)

which, in combination with (17) and (19), yields

(23)

It is easy to check that, for fixed , the latter upperbound
vanishes as . Hence, to keep the probability greater than
a pre-specified value , we require to keep more than terms
among the total of , so that

(24)

where depends only on and not . Consequently, the prob-
ability density is not -compressible.
Theorem 1 reveals that distributions with exponential decay

such as Laplace, Gamma, andGaussian are not -compressible.
Our next step is to show that a class of heavy-tail distributions
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fulfills the requirements of Definition 6. However, we need to
review a few preliminaries first.
According to the Central Limit Theorem, if is a se-

quence of i.i.d. random variables such that the distribution has
finite mean and variance , then the distribution of the nor-
malized sum is a zero-mean Gaussian
with variance in the limit. In addition, the sum of two inde-
pendent Gaussian random variables is again a Gaussian random
variable: the Gaussian distribution is stable under the summa-
tion operation.
In fact, the class of stable distributions is not limited to the

Gaussian case; there is a class of distributions indexed by the
parameter with the name -stable, which includes
the Gaussian distribution for the special case . Except for
Gaussians, an -stable distribution decays like and
has finite moments only for orders less than . None of them
has finite variance [13]. Similar to the Gaussian case, the dis-
tribution of the normalized sum of i.i.d. random variables (for
some distributions) tends to an -stable law in the limit. For this
to happen, the normalization factor must be set to . These
distributions are said to be in the attraction domain of a stable
law with index . For instance, the attraction domain for
contains all the distributions with finite variance.
To classify the attraction domain for , let be a

random variable and define and . It is
known that is in the domain of attraction of a stable law with
index if and only if [14]
1) the function varies slowly3 as ; and
2) the limit exists.
Because of their polynomial decay, the distributions that are

in the attraction domain of stable laws are suitable candidates
for s-compressible distributions. As discussed earlier, we need
to study order statistics to inspect the -term approximation of
i.i.d. sequences. The following theorem by Lepage, Woodroofe,
and Zinn demonstrates the asymptotic order statistics of the dis-
tributions in the attraction domain of stable laws [15].
Theorem 2: Let be an i.i.d. sequence with standard ex-

ponential distribution, ( is the Heaviside
step function), and define . For the i.i.d. sequence

for which the distribution is in the attraction domain of an
-stable law, we have that

(25)

where denotes the convergence in distribution (convergence
of all finite-dimensional distributions), represents the
ordered sequence of , and

(26)

The importance of Theorem 2 is to enable us to study the
asymptotic order statistics of a large class of distributions by in-
vestigating the i.i.d. sequence of standard exponential distribu-
tions.We have now the required tools to establish a link between
3The function is said to vary slowly at if

for all .

the s-compressible distributions and the attraction domain of
stable laws.
Theorem 3: If the random variable with the distribution

is in the domain of attraction of a stable law with index ,
then is -compressible.

Proof: To prove the s-compressibility, we start by
considering the probability involved in Definition 5. Since

, where , we have
that

(27)

The s-compressibility definition deals with the asymptotic be-
havior of the above probability; therefore, based on Theorem 2,
replacing with does not change the probability in
the asymptotic case . Thus, we can write

(28)

Note that the relation

(29)

implies that

(30)

The last result is obtained by applying Markov’s inequality.
In the remainder of the proof we show that both and

vanish as .
To show the vanishing property of , we first state a

lemma which is proved in Appendix A.
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Lemma 3: Let be a sequence of i.i.d. random vari-
ables with standard exponential distribution and let be ar-
bitrary positive real numbers. We have that

(31)

Having stated this Lemma B, we now recall the definition of
, i.e.,

(32)

Now, the following upper-bound is derived from Lemma 3:

(33)

Therefore, it stands that

(34)

Since , it is clear that .
To show the vanishing property of , we employ the

following lemma (see Appendix B for the proof):
Lemma 4: Let be a sequence of i.i.d. random vari-

ables with standard exponential distribution and let and
be arbitrary numbers. We have the following identity:

(35)

Before we prove the vanishing property of with the
help of Lemma 4, it is interesting to point out the link between
this lemma and the Riemann zeta function: In Lemma 4, for
the simple case , we are interested in finding the expected
value of where are random variables such
that and . In the extreme case where
the variance of all s are zero (removing the randomness), we
have that , and, therefore, the expected value of the
summation is . This can be identified with the
value of the zeta function at . Hence, the summation in (35),
can be regarded as the randomized version of the zeta function.
Similar to the zeta function, this randomized version is also con-
verges when and contains a pole at .
Now we get back to , which has

(36)

as expectation. Using Lemma 4 we can write

(37)

which leads to

(38)

Again, since , the upperbound in the above inequality
vanishes as . Thus, we have that .
Along with (30), this implies that

(39)

Note that the upper bounds for in (34) and
in (38), respectively, do not depend on and vanish as grows.
Hence, for a lower bound (arbitrary ) on the
probability in (39), it is sufficient to choose . On the other
hand, Theorem 2 states that for this fixed (which depends
on ) and for large-enough values of (above a threshold), the
difference between the two probabilities in (28) would be less
than . Hence, for this fixed and for large-enough values of
, we conclude that

(40)

Obviously, when grows we have that , which com-
pletes the proof.
Theorem 3 roughly states that a heavy-tail distribution

that decays as for is -compressible. At first
glance, it seems that this theorem is of no use when the decay
is faster than , particularly for those distributions in the
attraction domain of stable laws with , or even
for those heavy-tail distributions in the attraction domain of
Gaussian distribution that decay faster than and have a
finite variance. However, since the distribution of is

, if decays as , then

will decay as ; hence, according to Lemma 2, is
-compressible for .
In summary, the main results in this section are as follows:
1) if the distribution of a random variable is such that

is finite for some , then the distribution is
not -compressible for ; and

2) if the distribution of a random variable decays as
, then it is -compressible for .



AMINI et al.: COMPRESSIBILITY OF DETERMINISTIC AND RANDOM INFINITE SEQUENCES 5199

TABLE I
SOME EXAMPLES OF HEAVY-TAIL DISTRIBUTIONS

IV. DISCUSSION

We proposed in Section II a definition of the compressibility
of infinite sequences (called s-compressibility) that was not
based on the decay of the sequence; however, all of our ex-
amples so far were decaying sequences. Here, we analyze our
definition in more details and introduce nondecaying s-com-
pressible sequences.
Assume that we have a monotonically decreasing sequence of

positive numbers which is s-compressible. Whenever we trun-
cate the sequence, the best -term approximation of this finite
sequence is, in fact, the first elements. Note that only the en-
ergy of the best terms plays a role in Definition 4 and not their
location: The s-compressibility status of the sequence would
not have changed if these significant elements would have
been located at the end of the truncated subsequence. Conse-
quently, a monotonically increasing sequence of numbers where
the increasing rate is similar to the decreasing rate of a decaying
s-compressible sequence is also compressible.

A. An Exponentially Increasing S-Compressible Sequence

We show that the exponentially increasing sequence of
is -compressible for any . The approach is similar to the

one presented for . Let and be
arbitrary numbers and set . For we
have that

(41)

Similarly to the arguments used for , this sequence is
also -compressible for all .

B. S-Compressible Distributions

In Section III we showed that heavy-tail distributions are in
some sense compressible. To show some examples, we have
listed a few polynomial-decaying distributions in Table I. In
fact, those are the compressible distributions introduced in [9].
It is easy to check that these distributions decay like
and therefore, they are -compressible for . To verify

Fig. 1. A realization of an i.i.d. sequence of random variables with Student’s
distribution .

the compressibility of these distributions based on Definition 1,
note that for , we have

(42)

which suggests and , as required
in (2).
In addition to the examples in Table I, all -stable distribu-

tions for (which include Cauchy and Lévy distribu-
tions) are -compressible for .

C. Realizations of an i.i.d. Sequence

We illustrate in Fig. 1, a realization of an i.i.d. sequence with
Student’s distribution ( ; decaying like ). In the
upper graph, we focus on the first terms, while we show
a broader view of the same sequence in the lower graph. We ob-
serve that the significant samples in the first 100 terms become
insignificant when 1000 terms are considered. In other words,
as increases, we observe larger peaks in the sequence, which
leads to dramatic changes in the energy of the truncated se-
quence depending on whether or not these peaks are considered.

D. Energy Fraction in Practice

To visualize the concept of s-compressibility in i.i.d. se-
quences, we have plotted the average curves of
for Gaussian, Laplace, Cauchy, and Student’s
distributions in Fig. 2. We set and averaged the
curves over 500 different realizations. Theorem 3 implies that
Student’s distribution with is compressible. In
Fig. 2, we observe that its energy fraction curve saturates at
very small values of . According to Theorem 3, the curve for
Student’s distribution will be a step function in the limiting
case of . Conversely, Gaussian and Laplace distribu-
tions are not compressible in any sense and we expect their
asymptotic curves to be close to the ones depicted
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Fig. 2. Average curve of with respect to when and
for i.i.d. realizations of the Gaussian, Laplace, Cauchy, and Student’s
distributions.

Fig. 3. Average curve of with respect to for and
with different sequence lengths when i.i.d. realizations of the Cauchy

distribution are considered.

in Fig. 2. Meanwhile, the fate of the Cauchy distribution is
as yet undecided; since it decays like , we know that it is
-compressible for ; however, our results are not enough

to decide for .

E. Effect of

To investigate the role of in s-compressibility of distribu-
tions, we have plotted the average energy fraction curves for
Cauchy distribution with and and ,
where . As predicted by Theorem 3, the curves
for approach the step function when increases. The
curves for seem to have a continuous limit.

F. Linear Transformations

It is interesting to mention that, since -stable distributions
satisfy a generalized form of the central-limit theorem, they are
closed under linear transformations. In other words, the stability
index of a stable law does not change whatever the linear-trans-
formationmay be. This suggests that the s-compressibility status

of a sequence can be determined in any domain. However, due
to the requirement of independence, the -term approximation
of the sequence should be carried out preferentially in the
innovation domain.

V. CONCLUSION
In this paper, we first proposed a definition for compress-

ibility of infinite sequences (s-compressibility) that is consistent
with the intuition and is mathematically exploitable. We then
defined compressibility and sparsity for i.i.d. random sequences.
Our definitions are based on the asymptotic distribution of the
energy among the elements in truncated subsequences. We
showed that some exponentially decaying probability density
such as the Laplace distribution are not proper candidates for
a s-compressible prior. This arises because they distribute the
energy in the sequence rather uniformly. On the other hand,
by using order statistics, we demonstrated the connection
between the s-compressibility of a heavy-tail distribution and
the stability index to which it is attracted.

APPENDIX A
PROOF OF LEMMA 3

Since and are non-negative, the left inequality is trivial.
Defining , we can write that

(43)

Since is a sum of i.i.d. random variables with unit mean,
we have . Thus, is a tail probability.
The following approach is a classical method to show the expo-
nential decay of the tail probability:

(44)

where the first inequality is obtained by applying Markov’s in-
equality.
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APPENDIX B
PROOF OF LEMMA 4

Similarly to the proof of Lemma 3, let . Since
s are i.i.d., the probability density function of is found by

convolving times the standard exponential distribution with
itself:

(45)

Thus, we have that

(46)

which yields

(47)
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