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Abstract—Motivated by the analog nature of real-world sig-
nals, we investigate continuous-time random processes. For
this purpose, we consider the stochastic processes that can
be whitened by linear transformations and we show that the
distribution of their samples is necessarily infinitely divisible. As
a consequence, such a modeling rules out the Bernoulli-Gaussian
distribution since we are able to show in this paper that it is not
infinitely divisible. In other words, while the Bernoulli-Gaussian
distribution is among the most studied priors for modeling
sparse signals, it cannot be associated with any continuous-time
stochastic process. Instead, we propose to adapt the priors that
correspond to the increments of compound Poisson processes,
which are both sparse and infinitely divisible.

I. INTRODUCTION

For decades, the Gaussian distributions have been the domi-
nant priors in many fields of research such as signal processing
and machine learning. One of the strong arguments in favor
of Gaussian models is the Central Limit Theorem (CLT)
which states that the sum of a large number of independent
and identically distributed (i.i.d.) random variables with finite
variance converges to the Gaussian distribution. This is in
fact compatible with many physical phenomena where the
macroscopic behavior is governed by the interaction of a
large number of small constituents. Moreover, the Gaussianity
of random vectors is preserved when they are transformed
linearly. Besides the physical motivation, Gaussian models
have many practical advantages such as succinct parameter-
ization, simplicity of statistical analysis, and links with linear
regression.

One of the shortcomings of Gaussian priors is their poor fit
for modeling compressible data such as multimedia signals.
The existence of sparse (or almost sparse) representations of
such signals allows for their efficient compression or acquisi-
tion. However, it is known that the compressibility of realiza-
tions of Gaussian models is very limited [1]. To accommodate
sparsity while still benefiting from the advantages of Gaussian
distributions, one might think of Bernoulli-Gaussian priors.
The latter distribution is formed by adding a mass probability
at point x = 0 to the conventional Gaussian density function.
This means that random variables with such a distribution
take the value 0 with some non-zero probability p, while the
non-zero portion (with global probability (1 − p)) follows a
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Gaussian distribution. Thus, an i.i.d. sequence following a
Bernoulli-Gaussian distribution will contain a fixed fraction
of zero terms, which explains the sparse part of the prior.

In this paper, we investigate the fundamental question of
knowing whether a non-Gaussian prior can naturally appear
in the observations of a physical phenomenon. Since the
observations are limited to a finite, or at most a countable,
number of measurements, there are two approaches for the
statistical modeling of the observations: 1) the direct adoption
of discrete-time stochastic models and 2) the adoption of
continuous-time stochastic models for the physical phenom-
ena, along with their discretization to obtain the observation
model. In this paper, we choose the second approach, with
the extra assumption that the continuous-time process can be
whitened with a linear operator. In other words, we assume an
innovation-based model for continuous-time physical phenom-
ena where the innovation model is not necessarily Gaussian.

Although the discrete and discretized models look the same
at first glance, they are inherently different. In particular, we
demonstrate that, unlike the discrete-time models where no
restriction applies to the choice of priors, there is a funda-
mental constraint in the discretized models, namely, infinite-
divisibility.

Definition 1. The distribution of a random variable X is
said to be infinitely divisible if, for all n ∈ N∗, X can be
written as the sum of n i.i.d. random variables (not necessarily
distributed as X).

It is known that not every distribution is infinitely divisible;
for instance, distributions corresponding to density functions
with finite support, such as uniform distributions, are not
infinitely divisible [2], [3]. The major contribution of this
paper is to show that the Bernoulli-Gaussian distribution is
not infinitely divisible and therefore does not appear naturally
in the observations of physical phenomena following any
continuous-time stochastic model that would admit whitening.
However, this issue could be resolved by slightly changing
the distribution. For example, Bernoulli-Laplace can be used
instead of Bernoulli-Gaussian.

In the following, we first explain the continuous-time
stochastic model in Section II. The consequences of the
process admitting whitening are described in Section III. We
present the negative result regarding Bernoulli-Gaussian priors
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Fig. 1. Innovation-based definition of the stochastic model.

in Section IV, where we also propose alternatives.

II. CONTINUOUS-TIME STOCHASTIC MODEL

The stochastic models studied in this paper are continuous-
time random processes that can be whitened through linear
operators. We denote the stochastic process by s and the
associated whitening operator by L. Therefore, w = Ls defines
the white innovation process. We further assume that L is
either invertible or its kernel is of finite dimension. Thus, L has
a linear right inverse L−1, which we call the shaping operator.
In cases where L has a nonempty but finite-dimensional
null-space (e.g., differential operators), the definition of L−1

usually involves boundary conditions. We show in Figure 1
the schematic diagram of the stochastic model.

We adopt Gelfand’s approach of generalized stochastic
processes [4]. Hence, instead of the conventional point-wise
definition of processes, we focus on the statistics of the inner
products of the process with test functions. Let ϕ be a given
test function. The inner product of the random process s with
the test function ϕ, which we denote as Xϕ = 〈s, ϕ〉, defines
a random variable.

Definition 2. The characteristic form of the process s is
defined by

P̂s(ϕ) = E
{

e j〈s,ϕ〉}, (1)

where E{·} is the expectation operator.

The role of the characteristic form P̂s for the random
process s is essentially the same as the role of the characteristic
function for a random variable. The main difference is that the
characteristic form is indexed by the test function rather than
the frequency parameter. The domain from which ϕ is chosen
should be a function space, so that linear combinations of test
functions are valid test functions. It is common to initially use
the Schwartz space of rapidly decreasing functions and extend
it to larger sets whenever possible.

Let ϕ1, . . . , ϕn be a finite number of valid test functions. As
a result, any linear combination of them is again a valid test
function. Particularly, for scalars ω1, · · · , ωn, we know that

P̂s

( n∑
i=1

ωiϕi
)

= E
{

e j〈s,∑n
i=1 ωiϕi〉

}
= E

{
e j

∑n
i=1 ωiXϕi

}
. (2)

The expectation in (2) can be written in integration form as∫
Rn

e j
∑n
i=1 ωixipXϕ1

,...,Xϕn
(x1, . . . , xn)dx1 · · · dxn

= F
{
pXϕ1

,...,Xϕn
(x1, . . . , xn)

}
(ω1, . . . , ωn), (3)

where pXϕ1 ,...,Xϕn
is the joint probability density function

of the random variables Xϕ1
, · · · , Xϕn and F{·} stands for

the Fourier transform F{f}(ω) =
∫
R f(x)ejxωdx. Hence, we

observe that the characteristic form implicitly contains all the
finite-dimensional probability density functions of the process.
In analogy with characteristic functions, characteristic forms
are also positive-definite functionals [4].

In the setting shown in Figure 1, we are dealing with two
characteristic forms, namely, P̂w and P̂s. However, since
each process can produce the other one by applying either
the shaping or the whitening operator, their statistics are not
independent. In [5], [6], and [7] the link between the two
characteristic forms is established in terms of the adjoint
operators{

〈s, ϕ〉 = 〈L−1w,ϕ〉 = 〈w,L−1∗ϕ〉,
〈w,ϕ〉 = 〈Ls, ϕ〉 = 〈s,L∗ϕ〉, (4)

where L−1∗ and L∗ are the adjoint operators of the linear
operators L−1 and L, respectively. Thus, we have that{

P̂s(ϕ) = P̂w(L−1∗ϕ),

P̂w(ϕ) = P̂s(L
∗ϕ).

(5)

Equation (5) reveals the fact that we require the character-
istic form of only one of s and w to determine the other one.
Due to the additional whiteness property of the innovation
process, in practice, it is easier to characterize P̂w.

III. WHITE INNOVATION PROCESS

The distinguishing property of the white innovation process
is that it is formed of independent and identical infinitesimal
contributions. This can be mathematically described as

1) If ϕ1 and ϕ2 are two test functions with non-overlapping
supports (i.e., ϕ1(x)ϕ2(x) ≡ 0), then, the random vari-
ables 〈w,ϕ1〉 and 〈w,ϕ2〉 are statistically independent.

2) If ϕ2(x) = ϕ1(x− T ) for some T , which is equivalent
to say that ϕ1 and ϕ2 are equal except for a shift, then
the random variables 〈w,ϕ1〉 and 〈w,ϕ2〉 have identical
distributions but are not necessarily independent.

To characterize the white innovation process, we start by
considering the test function ϕ(x) = rect(x), where rect(x)
denotes the unit rectangular causal function taking the value
1 for x ∈ [0, 1) and 0 otherwise.

Lemma 1. For the white innovation process w, the distribution
of the random variable 〈w, rect〉 is infinitely divisible.

Proof. The rectangular test function is treated separately in
our analysis because its refinement equation is

∀n ∈ N∗ : rect(x) =

n−1∑
i=0

rect(nx− i). (6)
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Hence, we can write

〈w, rect〉︸ ︷︷ ︸
X

=

n−1∑
i=0

〈w, rect(n · −i)〉︸ ︷︷ ︸
Xi

. (7)

Note that, for i 6= j, the functions rect(nx− i) and rect(nx−
j) have disjoint supports, while they are equal up to a shift
operation. Thus, the random variables Xi for i = 0, . . . , n−1
are independently and identically distributed. In other words,
the random variable X can be represented as the sum of n
i.i.d. random variables for arbitrary n. �

Infinite divisibility (id) restricts the choice of the distribution
in the sense that there exist non-id distributions. For instance,
every stable law, such as the Gaussian distribution, is infinitely
divisible, while the binomial and uniform distributions are
excluded from the id family.

A. Characterization of Infinitely Divisible Distributions

The concept of infinite divisibility is a well-studied subject
in probability theory since late 1920s. Interestingly, a complete
characterization of the whole family is known as the Lévy-
Khintchine representation theorem [2].

Theorem 1. The distribution of a random variable X is
infinitely divisible if and only if its characteristic function
p̂X(ω) is of the form e f(ω) with

f(ω) = jb1ω − b22ω2

+

∫
R\{0}

(
e jaω − 1− jaω1|a|<1

)
V (da), (8)

where b1, b2 are real-valued constants, the notation 1|a|<1 is
the indicator function for |a| < 1, and V is a positive measure
known as Lévy measure that satisfies∫

R\{0}
min(1, a2)V (da) <∞. (9)

The function f(ω) is usually referred to as the Lévy
exponent. For V ≡ 0, the Lévy exponent would be a concave
quadratic function which is the well-known form for the
characteristic function of a normal distribution. When V is a
non-zero finite measure, the resulting distribution corresponds
to the increments of a compound Poisson process.

B. Characteristic Form

Up to this point we have characterized only the inner prod-
uct of the white innovation process with rectangular functions.
Gelfand and Vilenkin consider a natural way of extending this
result to other test functions by sequentially approximating
them with narrow and non-overlapping rectangular functions
(zero-order hold approximation) [4]. This leads to

ϕ(x) = lim
n→∞

∑
i∈Z

ϕ
( i
n

)
rect(nx− i)

⇒ 〈w,ϕ〉 = lim
n→∞

∑
i∈Z

ϕ
( i
n

)
〈w, rect(n · −i)〉. (10)

It can be verified that this approach results in

P̂w(ϕ) = exp

(∫
R
f
(
ϕ(τ)

)
dτ

)
. (11)

The following theorem by Gelfand and Vilenkin guarantees
that this extension is acceptable [4]:

Theorem 2. The functional P̂w in (11) is a valid white
characteristic form if and only if f is a valid Lévy exponent .

C. Infinite Divisibility

We have a complete representation of the white innovation
process by (11) and Theorem 2, where the Lévy exponent f(ω)
is defined through (8). We next prove that, for all bounded test
functions ϕ with finite support, the random variable 〈w,ϕ〉 is
infinitely divisible. In other words, we show that the infinite
divisibility of Lemma 1 is a general property and is not limited
to the case where ϕ = rect.

Theorem 3. If Xϕ = 〈w,ϕ〉, where ϕ is a bounded test
function with finite support, then Xϕ is infinitely divisible.

Proof. By using Theorem 2 and an argument similar to (2),
we obtain the characteristic function of Xϕ as

p̂Xϕ(ω) = P̂w(ωϕ) = exp

(∫
R
f
(
ω ϕ(τ)

)
dτ

)
. (12)

In order to show the infinite divisibility of Xϕ, we need to
show that

∫
R f
(
ω ϕ(τ)

)
dτ can be represented in the same

way as (8). First, let us define the modified Lévy measure for
Xϕ as

V̄ (da) =

∫
Πϕ

V

(
da

ϕ(τ)

)
dτ, (13)

where Πϕ denotes the support set of ϕ. Similar to V , V̄ is
also a positive measure. Furthermore,

∫
R\{0}

min(1, a2)V̄ (da)

=

∫
Πϕ

∫
R\{0}

min(1, a2)V

(
da

ϕ(τ)

)
dτ

=

∫
Πϕ

∫
R\{0}

min
(
1, ã2ϕ2(τ)

)
V (dã)dτ

≤
∫
R\{0}

min
(
1, ã2)V (dã)︸ ︷︷ ︸

<∞

∫
Πϕ

(
1 + ϕ2(τ)

)
dτ︸ ︷︷ ︸

<∞

. (14)

Hence, V̄ is a valid Lévy measure. We still need another
simplification before showing the claim. It is given by∫

R
∫
R\{0}

(
ejaωϕ(τ) − 1− jaωϕ(τ)1|a|<1

)
V (da)dτ

=
∫
R\{0}

(
ejāω − 1− jāω1|ā|<1

)
V̄ (dā)

+jω

(∫
R\{0}

ā
(
1|ā|<1 −

∫
Πϕ

1|ā|<|ϕ(τ)|dτ
)
V̄ (dā)

)
︸ ︷︷ ︸

b∗

.(15)
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We can finally conclude that∫
R
f
(
ωϕ(τ)

)
dτ

= jω
(
b∗ + b1

∫
R
ϕ(τ)dτ

)
︸ ︷︷ ︸

b̄1

−jω2 b22

∫
R
ϕ2(τ)dτ︸ ︷︷ ︸
b̄22

+

∫
R\{0}

(
ejāω − 1− jāω1|ā|<1

)
V̄ (dā)dτ. (16)

Therefore, the distribution of Xϕ belongs to the infinite-
divisible family. �

IV. REVISITING BERNOULLI-GAUSSIAN PRIORS

Let us assume that we have a continuous-time stochastic
model from which we obtain linear measurements. More
precisely, if s represents the random process of interest, the
measurement model is given by 〈s, ϕ〉, where ϕ corresponds
to the generalized sampling kernel. Assuming the innovation-
based model of Figure 1, we can write that

〈s, ϕ〉 = 〈L−1w,ϕ〉 = 〈w,L−1∗ϕ︸ ︷︷ ︸
ϕ̄

〉. (17)

As a result, the distribution of the linear measurement 〈w, ϕ̄〉
is infinitely divisible. This is the main distinction between
discretizing a continuous-time model and directly assuming
a discrete-time model. When L−1 (or L−1∗) is a smoothing
operator (e.g., an integrator), even a delta function is an
admissible test function ϕ. The resulting ϕ̄ would still be
bounded.

Next, we show that the popular Bernoulli-Gaussian sparse
prior is not infinitely divisible. Thus, it cannot represent the
distribution of a discretized continuous-time process.

We make use of Theorem 4 proved in [2] (Theorem 26.1).

Theorem 4. Let X be an id random variable corresponding
to the Lévy measure V . Define

c = inf
{
a > 0 : SV ⊂ {x : |x| ≤ a}

}
, (18)

where SV denotes the support set of the Lévy measure V . The
parameter c is permitted to take the values 0 and ∞. Then,
for the super-exponential moments we have that{

0 < α < 1
c : EX

{
eα|x| ln |x|

}
< ∞,

1
c < α : EX

{
eα|x| ln |x|

}
= ∞. (19)

Now consider the Gaussian-Bernoulli prior. Since the tail of
the distribution is essentially the same as that of the Gaussian
distribution, it decays in proportion to e−

σ2x2

2 for some σ.
Thus, the super-exponential moments are all finite, with

∀ α > 0 : EX
{

eα|x| ln |x|
}
<∞. (20)

According to Theorem 4, this happens for an id distribution
only if 1

c = ∞, or c = 0. This implies that the support
set of the corresponding Lévy measure is at most limited
to the origin. Nevertheless, the origin is always excluded in
the integrals involving the Lévy measure. This implies that

V ≡ 0. However, we have already mentioned that V ≡ 0
corresponds to the Gaussian distributions, which excludes the
Bernoulli-Gaussian prior. A similar argument shows that all
non-Gaussian priors that decay at least as fast as a Gaussian
law cannot be infinitely divisible.

The exclusion of the Bernoulli-Gaussian prior from the id
family is due to its tail, which decays too fast. It is now inter-
esting to examine whether there exists an infinitely divisible
prior with a slower decay rate but still a mass probability at
x = 0. The answer is positive. In fact, the distribution of
the increments of any compound Poisson process has a mass
probability and is infinitely divisible.

Let A be a random variable with a bounded and symmetric
pdf pA(a), and let λ ≥ 0 be an arbitrary nonnegative real
number. Define the id random variable X by the characteristic
function (8) with b1 = b2 = 0 and V (da) = λpA(a)da. Next,
we show that the pdf of X contains a mass probability at
X = 0. First, due to the symmetry of pA(a) (V , respectively),
we have that

p̂X(ω) = exp

(
λ

∫ (
ejaω − 1

)
pA(a)da

)
= e−λeλp̂A(ω) = e−λ

(
1 +

∞∑
k=1

λkp̂kA(ω)

k!

)
.(21)

Therefore, by applying the inverse Fourier operator on both
sides with respect to ω, we obtain

pX(x) = e−λδ(x) + e−λ
∞∑
k=1

λk

k!

(
pA ∗ · · · ∗ pA︸ ︷︷ ︸

k−times

)
(x). (22)

It is not hard to verify that the infinite sum in (22) is convergent
and finite when pA is bounded. This confirms that X is an id
random variable that has the mass probability e−λ at x = 0.
Due to the finiteness of the Lévy measure V , the random
variable X is associated with the increments of a compound
Poisson process. The jump distribution of such a process is
determined by A.

Remark 1. The distribution of the increments of a com-
pound Poisson process with Gaussian jumps is not Bernoulli-
Gaussian. Although the infinite sum in (22) is composed of
weighted Gaussian functions, the decay of the final result is
much slower than that of a Gaussian.

Remark 2. By setting

pA(a) =
exp

(
− q|a|

)
− exp

(
− qeλ2 |a|

)
λ|a|

in (21), where q and λ are nonnegative real numbers, one can
check that

pX(x) = e−λδ(x) + (1− e−λ)
qe−q|x|

2
,

which is a Bernoulli-Laplace distribution. In other words,
unlike the Bernoulli-Gaussian prior, the Bernoulli-Laplace is
infinitely divisible, while it enjoys having a mass probability
at the origin.

2012 IEEE Information Theory Workshop

690



In summary, the Bernoulli-Laplace prior seems to be an
appropriate infinitely divisible substitute for the inappropriate
Bernoulli-Gaussian.

V. CONCLUSION

We adopted a statistical point of view to study the differ-
ence between the discrete-time models and the discretized
continuous-time models. Although there is almost no re-
striction in discrete-time models, the probability distributions
extracted from the continuous-time models are limited to the
family of infinitely divisible distributions. Although this family
is still large enough to include most of the conventional
models, it excludes many distributions with fast decay. In
particular, we showed that the common sparsity prior of
Bernoulli-Gaussian is one of the excluded cases. To obtain
a more realistic sparse prior, we propose to adapt the decay
rate such that the prior becomes infinitely divisible. A simple
example would be the Bernoulli-Laplace prior. Although this
substitution does not greatly affect the conventional sparsity-
based results such as those in compressed sensing, it might
tighten the gap between the physical measurements and sim-
ulations on synthetic data.
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