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On the Linearity of Bayesian Interpolators for
Non-Gaussian Continuous-Time AR(1) Processes
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Abstract—Bayesian estimation problems involving Gaussian
distributions often result in linear estimation techniques. Nev-
ertheless, there are no general statements as to whether the
linearity of the Bayesian estimator is restricted to the Gaussian
case. The two common strategies for non-Gaussian models are
either finding the best linear estimator or numerically evaluating
the Bayesian estimator by Monte Carlo methods. In this paper,
we focus on Bayesian interpolation of non-Gaussian first-order
autoregressive (AR) processes where the driving innovation can
admit any symmetric infinitely divisible distribution characterized
by the Lévy–Khintchine representation theorem. We redefine the
Bayesian estimation problem in the Fourier domain with the
help of characteristic forms. By providing analytic expressions,
we show that the optimal interpolator is linear for all symmetric
-stable distributions. The Bayesian interpolator can be expressed
in a convolutive form where the kernel is described in terms of ex-
ponential splines. We also show that the limiting case of Lévy-type
AR(1) processes, the system of which has a pole at the origin,
always corresponds to a linear Bayesian interpolator made of a
piecewise linear spline, irrespective of the innovation distribution.
Finally, we show the two mentioned cases to be the only ones
within the family for which the Bayesian interpolator is linear.

Index Terms—Alpha-stable innovation, autoregressive,
Bayesian estimator, interpolation, Ornstein–Uhlenbeck process.

I. INTRODUCTION

A UTOREGRESSIVE (AR) processes are well-studied
models in statistics and signal processing. They are used

to model real-world signals such as speech [1], among others.
These processes can be generated by applying an all-pole filter
on white noise (innovation). The problem that is often studied
in signal processing and spectral estimation is to recover the
parameters of the model, for instance, the poles of the shaping
filter, based on a finite number of measurements [2]. The esti-
mated parameters can be used to further predict the process [3].
Conventional AR models are founded on Gaussian innova-

tions, and most of the results are obtained with this assump-
tion. However, there are cases in real-world applications, such
as stock-market data, where the asymptotic behavior is non-
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Gaussian [4], [5]. Early investigations of the non-Gaussian case
can be found in [6]; the research work in this field is still on-
going [7], [8].
In many applications, there is a need to estimate some un-

known values based on observations that contain related infor-
mation. In a Bayesian framework where we know the statistics
of the unknowns and observations, one may think of the pos-
terior mean (alternatively known as the regression of the un-
known on the observations) as the optimal estimator. In fact,
the posterior mean estimator, which is also referred to as the
Bayesian filter, minimizes the least mean-square error whenever
it is finite.
Bayesian filtering of AR processes is traditionally studied in

finite-dimensional state-space. In this approach, the main goal
is to estimate the state vector, which automatically yields the
desired information. The best-known example of this technique
is the Kalman filter, which is the Bayesian filter when the inno-
vation process is Gaussian. The Kalman filter also works under
noisy measurements, where the noise is additive and Gaussian.
Some extensions to non-Gaussian and heavy-tailed noises are
studied in [9] and [10]. In this paper, however, we exclusively
focus on the noiseless scenario and the derivation of closed-
form solutions for AR(1) interpolators.
The main difficulty for obtaining the Bayesian filter for non-

Gaussian innovations is that there are very few cases where an
explicit form for the posterior distribution exists. Indeed, early
works in the non-Gaussian case often started by approximating
the posterior distribution [11]. Among the notable methods one
can name the Gaussian sum filter [12] and the extended Kalman
filter [13]. Further extensions of the Bayesian filter in cases
where the process follows a dynamic generalized linear model
are investigated in [14].
Instead of evaluating the Bayesian filter for an approximate

posterior prior, which is usually a linear estimator, one can look
for the optimal linear estimator in the sense of the least-square
error. The corresponding methods are called linear least-square
estimators. The linear estimator is frequently expressed in terms
of the covariance function; the Wiener filter, used in denoising
applications, is a typical example. For the interpolation problem,
the link between interpolating splines and optimal linear esti-
mators for stochastic processes has been established in [15] and
[16].
More recent approaches toward achieving the Bayesian filter

rely on numerical techniques [17]. The Monte Carlo methods
are among the most successful candidates [18], [19].

A. Scope

In this paper, we focus on real-valued continuous-time AR
processes of order 1 with various innovation distributions and
investigate the problem of Bayesian interpolation between the
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measurements. More precisely, we are interested in estimating
, where is an AR(1) process from which we have ob-

served the samples with . We
assume to avoid extrapolation, and we use the
posterior mean estimator given by

The distinguishing property of this stochastic family is that
the AR(1) processes (not necessarily Gaussian), together with
the Lévy processes, form the set of all Markovian processes.
These processes are referred to in statistical finance as the Orn-
stein–Uhlenbeck processes when the distribution is Gaussian
[20], while there are non-Gaussian generalizations as well [21].
These processes are widely adopted models for interest rates
and currency exchange rates [20]. Among other applications,
one can name derivative securities [22], electricity pricing [23],
and pairs trading [24]. The interpolation problem is motivated
by the fact that, in some financial applications, such as hedging,
one needs to represent the available discrete-space data in the
form of smooth curves [25]. Besides, interpolation is also a
crucial operation in image processing, and its performance can
be improved substantially by tuning the basis functions to some
underlying AR model [26].
Due to the continuous-time definition of the process, we can

no longer apply the common finite-dimensional state-space ap-
proaches. We adopt instead the generalized-function approach
to stochastic processes presented in [27] which demonstrates
a link between spline theory and Gaussian/sparse stochastic
processes.

B. Contribution

The problem studied in this paper is to determine, for var-
ious innovation statistics, whether the Bayesian interpolator is a
linear function of the measurements. Our surprising conclusion
is that the linearity of the Bayesian interpolator is not limited
to Gaussian innovations. More precisely, we show that the esti-
mator is linear for all stable innovations. Furthermore, at each
point, it depends only on the two neighboring measurements.
We explicitly derive the expression of the optimal inter-

polator. For nonstable innovations, however, we show that
the Bayesian interpolator cannot be a linear function of the
measurements, with the exception of Lévy processes. In fact,
the optimal interpolator for Lévy processes is always the linear
B-spline, irrespective of the innovation. Although it is natural
to think of extending the results to AR( ), the tools used in this
paper only address the case of AR(1).

C. Outline

The rest of this paper is organized as follows. To provide the
stochastic framework upon which our results are based, we re-
visit the continuous-timeAR(1) processes in Section II, from the
perspective of generalized functions as in [27]. In Section III,
we summarize our contributions in the form of three theorems.
Next, we present fundamental properties of AR(1) processes
and their benefit in deriving the Bayesian interpolator in Sec-
tions IV and V, respectively. The proofs of the theorems stated
in Section III are provided in Section VI. We test the perfor-
mance of the interpolators for stable innovations in Section VII,

Fig. 1. Generation of the stochastic AR(1) process based on the excitation
white noise . The inverse linear operator includes the possible boundary
condition.

where we apply them to a few realizations. Finally, Section VIII
concludes the paper.

II. AR(1) MODEL

The model in this paper is a special case of [27] adapted for
AR(1) processes. The schematic diagram of the continuous-time
model is given in Fig. 1. The process of interest is formed by
the innovation as

(1)

where is a stationary white process, is a constant, and
the derivative operator is interpreted in the weak sense of gen-
eralized functions. Equation (1) suggests the filter as the
whitening operator , where and stand for the derivative
and identity operators, respectively. This whitening operator has
a 1-D null space spanned by the function . Therefore, the
shaping operator denoted by (inverse of the whitening op-
erator), which transforms the innovations into the main process,
is not uniquely defined.

A. Shaping Operator

The system has a unique stable right inverse for
. The stable inverse, which we use as the shaping oper-

ator, is shift-invariant and corresponds to the impulse response
for , and for , where

denotes the characteristic function of the nonnegative
real numbers (step function). In either case, the impulse re-
sponse is represented by in the Fourier domain. The use of
a linear shift-invariant operator results in a stationary process .
The main difficulty for is that the corresponding

whitening operator is , whose shift-invariant inverse (respec-
tively, adjoint inverse operator) is not stable. Therefore, the
shaping operator cannot be a convolutive operator, which
implies that the resultant process will not be stationary [27].
Lévy processes are special cases associated with the shaping
operator . This choice imposes , which acts
as a boundary condition. More generally, we can consider the
form

(2)

where is an anticausal function that decreases rapidly and
in the sense of generalized functions.

The existence of in (2) allows for arbitrary but linear boundary
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conditions. The anticausal choice of shows that, for all ,
the random variable is statistically independent of

for . This will later help us in simplifying the esti-
mation procedure.
Since the innovation process is white and the impulse re-

sponse of the shaping operator for ( ) is the time-reversal of
the one for , we expect to obtain the interpolation results
of ( ) by time reversing the results for . This is, indeed, con-
firmed by the structure of the interpolation kernels in Theorem
1. Thus, without loss of generality, we shall assume in
the rest of this paper.

B. Innovation Process

To describe the family of white processes (innovations), we
need to use Gelfand’s theory of generalized random processes.
In this approach, the process is characterized by the statistics of
its inner products with a set of test functions. The set of accept-
able test functions is a function space which usually includes
a set of functions with finite support. Let be an arbitrary
test function and denote the continuous-time white process.
The inner product defines a random
variable for which we can compute the characteristic form. It
turns out that the mapping between test functions and charac-
teristic forms is key in defining the process in Gelfand’s theory.
The characteristic form of a process is defined as

P (3)

where stands for the expected-value operator. It is not hard
to check that P and P is a positive-definite func-
tional over . According to the Bochner–Minlos theorem, the
converse is also true: under suitable conditions1 on , any pos-

itive-definite functional P over such thatP de-
fines a unique probability measure on the dual space of (ex-
istence and uniqueness of the process). Thus, the characteristic
form is an alternative way of uniquely specifying the statistics
of a stochastic process.
For the particular case of white processes, Gelfand and

Vilenkin consider the generic form

P (4)

where is a scalar function. This function, which is usually
referred to as the Lévy exponent, is not arbitrary and should
satisfy some constraints. The Lévy–Khintchine representation
theorem states the necessary and sufficient conditions for the
function to define a valid characteristic form as [28]

(5)

1Precisely, the space needs to be nuclear. For instance, this condition is
satisfied by the Schwartz space of smooth and rapidly decreasing functions.

where for and 0 otherwise, are
constants, and (the Lévy measure) is a positive measure that
satisfies

(6)

Formulation (5) shows that . Moreover, the white
process is uniquely characterized by the triplet .
In this paper, we only consider innovation processes with a
symmetric distribution. This implies that and is a
symmetric measure in the sense that, for all measurable sets ,

. With this assumption, (5) simplifies to

(7)

Stable innovations are of particular interest to us. For these
processes, we have that , where is
the stability index and is the shape factor (which plays almost
the same role as the standard deviation in the Gaussian case).
The characterizing triplet associated with the -stable innova-
tion with is given by , where

. Although the function is continuous with
respect to , the characterizing triplet for (Gaussian in-
novation) does not follow the same structure as and
is given by .

C. Discrete Samples

The last thing to mention about the model is the discretization
procedure. We assume that the AR(1) process is sampled at
integers , which corresponds to a finite number
of uniform samples with a unit sampling period. For the sake
of simplicity, we use to denote the sample for

. The purpose of interpolation is to estimate
for a given based on the samples .

III. MAIN RESULTS

Assume that for is a realization of a random
process from which we have only the samples
for . Now, the goal of interpolation is to estimate the
value for every given the samples . As
an example, for a bandlimited stationary process , the optimal
Bayesian interpolator is known to take the form [29]

(8)

where are constants expressed in terms of the
function and the point . An important point is that, though
these constants depend on and the statistics of the process,
they are independent of the samples. This is the reason why in-
terpolators of the form (8) are referred to as linear interpolators,
stressing their linearity with respect to the samples.
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When is not bandlimited, however, the conditional expecta-
tion in (8) does not necessarily result in a linear estimator. The
Gaussian processes are well-studied examples for which the op-
timal estimator is often linear. One of the distinguishing proper-
ties of the Gaussian distribution is that it is closed with respect
to linear combinations so that the weighted sum of twoGaussian
random variables is again a Gaussian random variable. Never-
theless, this property is not limited to Gaussian distributions. It
is generalizable to a family of distributions known as -stables
[30], where is an index with . The Gaussian distri-
bution corresponds to the extreme case . For the particular
case of AR(1) processes, we show in Theorem 1 that the lin-
earity of the Bayesian interpolator is not limited to the Gaussian
statistics; for all , innovations with an -stable dis-
tribution result in linear interpolators.
Theorem 1: For the AR(1) process associated with the

whitening operator for and a symmetric -stable
innovation, the Bayesian interpolator at the point is given by

(9)

where the interpolation kernel is given by

.
(10)

Theorem 1 suggests a convolutive form for the optimal in-
terpolator—see Appendix A for a discussion regarding the op-
timality of the Bayesian interpolator for fat-tailed distributions.
It depends both on the parameter in the whitening operator
and the stability index . Observe that, the interpolation kernel
in (9) is nonzero only for one data point on either side of .
For , the interpolation kernel is asymmetric, be-

cause of the term . The exclusion of the choice
in Theorem 1 is to ensure that the kernels are well-de-

fined. However, the kernels are convergent for either case of
and , since

(11)

Another property of the kernels is that

(12)

which again confirms that the limiting function for
should be symmetric. We illustrate in Fig. 2 some of the interpo-
lation kernels for ; the curves for can be achieved
by flipping the horizontal axis.
Remark 1: It is already known that if follow

a joint symmetric -stable law, then is linear with re-
spect to , while is not necessarily linear
with respect to any of [30]. What Theorem 1 re-
veals is that the joint distribution of the samples of AR(1) pro-
cesses are special cases of joint -stable laws that preserve the
linearity of posterior means for arbitrary dimensions.

Fig. 2. Interpolating kernel for some values of and . For the special
case , the kernel is independent of . Except when or , the
kernel is asymmetric.

Our next result shows that, for , the interpolation kernel
is the same as the limiting function . However,
the surprising result is that the statement is true for all innovation
statistics and not just -stables.
Theorem 2: The optimal interpolator for a Lévy-type process
associated with the whitening operator and a finite first-

order moment is linear. Moreover, it is a B-spline of degree 1,
meaning

(13)

where

.
(14)

Theorem 2 reveals that when the whitening operator is
with , the optimal interpolator is linear and does not de-
pend on the statistics. In other words, the linearity of the inter-
polator is not a property that is completely determined by the
statistics. As is reflected in Theorem 2, some of the mathemat-
ical tools exploited in this paper require that the distributions
have a finite first-order moment ( ).
It is possible to extend the results of Theorems 1 and 2 to

the case of nonuniform samples, as given in Proposition 1.
The proof is similar to that of Theorems 1 and 2 and therefore,
omitted.
Proposition 1: Assume that an AR(1) process associated with

the whitening operator is sampled at ,
and that we are interested in Bayesian interpolation of
with .
i) If and the process follows a symmetric -stable
law, then

(15)

ii) If , then

(16)
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Our last result in Theorem 3 completes the classification of
linear regimes by demonstrating that, except for those cases al-
ready covered in the previous theorems, we cannot expect the
linearity of the interpolator.
Theorem 3: For the AR(1) process associated with the

whitening operator for and a non- -stable
innovation that has finite first-order moment, the Bayesian
interpolator cannot be a linear function of the samples at all
points.

IV. PRELIMINARIES

We prefer to use the same framework for and .
However, due to the existence of the boundary condition in
, the process is nonstationary, which complicates our anal-
ysis. Hence, we work with the generalized-increment process
defined as

(17)

where is a positive real. To further simplify the notations, let

(18)

Also, we denote by and the Fourier and inverse
Fourier transforms, respectively, defined as

(19)

Since most of the proofs in this paper involve properties of
the generalized-increment process, we have summarized them
in Lemma 1.
Lemma 1: Let be nonnegative and be positive

real numbers. For the generalized increment processes and
, we have that
i) and are stationary processes;
ii) if , then the random variables

and are independent;
iii) if , then and are

independent;
iv) if represents the probability density function of

, then we have that

(20)

where is the Lévy exponent of the innovations.
Proof:
i) First, we express the generalized increments in terms of
the innovation process. To this end, note that

(21)

To proceed further, we study the cases and
separately.
1) For , we rewrite (21) as

(22)

where and the dot

notation in stands for the variable over
which the inner product is defined (here, ).

2) For , the application of on can
be seen as the convolution (in the sense of gen-
eralized functions) of the innovation with the
impulse response , or, alternatively,

. This shows that

(23)

Both (22) and (23) indicate the same result, which is that

(24)

for all . One can verify that (24) is valid even when there
exists a boundary condition for . Equation (24) re-
veals that the generalized-increment process is generated
by applying a linear shift-invariant filter on the innova-
tions. Thus, the process is stationary.

ii) According to (18), the support of is limited to the in-
terval . Thus, the support intervals of
and are and ,
respectively. The condition guar-
antees that the supports of the functions and

are disjoint. Therefore, their inner products
with a white process are independent by definition.

iii) According to the definition of in Section II-A,
consists of up to two constituents.
1) The integral of the innovation process from to

for , or from 0 to for . This term is
statistically independent of for .

2) A boundary-condition term ( ) formed by
observing the innovations through an anti-causal
window . This term is statistically independent of

for .
In summary, is independent of for

. On the other hand, recalling (24), we
know that depends on for .
Hence, the condition guaran-
tees that and depend on disjoint intervals
of the white process and are consequently independent.
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iv) The Fourier transform of the pdf , known as the char-
acteristic function and represented as , is given by

P

(25)

Corollary 1: When the innovation process follows a sym-
metric -stable distribution with , by using
Lemma 1-(iv), we have that

.
(26)

Corollary 2: Since the characteristic functions are Fourier
transforms of probability density functions which are absolutely
integrable, they are uniformly continuous. Similarly, if the inno-
vation is such that has a finite first-order moment, the deriva-
tive of the characteristic form is uniformly continuous, too.
Corollary 3: For , by change of variables, we rewrite

the equation for the characteristic function of in (25) as

(27)

Thus

(28)
This shows that, for , the characteristic function is always
differentiable at .

V. BAYESIAN INTERPOLATION

The Bayesian filter is usually considered as the optimal esti-
mator because it minimizes the mean-square error whenever it
is finite. However, there are cases where the posterior mean ex-
ists while the mean-square error is unbounded. Therefore, it is
no longer possible to speak about the optimality of the Bayesian
estimator with respect to the mean-square criterion. Estimation
problems involving heavy-tail distributions such as -stables
with are usually among these cases. A brief dis-
cussion about the optimality of the Bayesian interpolator is pro-
vided in Appendix A. In particular, we show the optimality for
given realizations.
In this section, we show how to benefit from the notion of

generalized increments in the interpolation problem. In general,
the Bayesian interpolator (or the posterior mean estimator at the
desired point) depends on all the samples , which sug-
gests the use of -dimensional joint distributions. Never-
theless, Lemma 2 shows that we can efficiently reduce the size
of the sufficient statistics by using generalized increments.

Lemma 2: Let , where is an integer
and is a real number. Then, the Bayesian interpo-
lator of the AR(1) process at the point , given the samples

, is given by

(29)

Proof: We start by the definition of the Bayesian interpo-
lator (posterior mean)

(30)

Since there is a bijection between the sets and
, the condition in the expectation of (30) can be re-

placed according to

(31)

where the validity of the second equality comes from the fact
that is statistically independent of and for

(Lemma 1).
Up to this point, we have simplified the general form of the

Bayesian interpolator. However, the main challenge is that our
statistical information of the model is given in the form of char-
acteristic functions. Since the probability density functions are
related to the characteristic functions by means of Fourier trans-
forms, we need to reformulate the Bayesian interpolator in the
Fourier domain.
Lemma 3: Let be the Lévy exponent of the innovation

process and be a random variable with as its charac-
teristic function. If is such that either
i) the white innovation has a finite first-order moment

, or
ii) and the pdf of is continuous, with

being bounded for some ,
then we have that

(32)

where stands for the characteristic function of the random
variable (Fourier transform of its pdf) and denotes its
derivative in the Fourier domain.
The proof of Lemma 3 is provided in Appendix B. The sig-

nificance of this lemma is the establishment of a link between
the conditional expectation involved in the Bayesian interpo-
lator and the characteristic functions of the generalized incre-
ments. Lemma 1-(iv) allows us to relate the characteristic func-
tions to the Lévy exponent of the innovation process.
In Lemma 4, we summarize the results of this section.

Again, for fluidity of the paper, we have postponed the proof to
Appendix C.
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Lemma 4: Let be an integer and be a
real number. If the white innovation satisfies at least one of the
conditions in Lemma 3, then

(33)

where and

(34)

in which is the derivative of the Lévy exponent of the inno-
vation process.

VI. PROOFS

A. Proof of Theorem 1

A symmetric -stable innovation corresponds to the Lévy
exponent . The density functions are known
to be continuous and asymptotically decaying proportionally to

[30]. This implies that is bounded for
, where is an -stable pdf. In order to apply

Lemma 4 for stable laws, we evaluate from (34) as

(35)

Hence, the expression in Lemma 4 for the Bayesian interpolator
at the point , where and (integral
and fractional parts of , respectively), simplifies to

(36)

which, by substituting with , yields

(37)

Furthermore, the interpolator at the point depends on the
two neighboring samples, which is consistent with the support
interval of . Finally, when , the Bayesian interpolator
trivially reproduces the sample. This is also confirmed by the
interpolation formula as and for

.

B. Proof of Theorem 2

The choice reduces the whitening operator to the dif-
ferential operator . This corresponds to the second case of Def-
inition (34) and leads to

(38)

which, by using Lemma 4, results in

(39)

This, in fact, completes the proof.

C. Proof of Theorem 3

We prove here the contrapositive of the statement of Theorem
3. In other words, we assume the linearity of the interpolator
and conclude the stability of innovations. Because of technical
details involved in the proof, we divide it into a sequence of
claims.
Claim 1: The linearity of the Bayesian interpolator happens

only if there exists a continuous function such that for all
and

(40)

Proof: Suppose the Bayesian interpolator is a linear func-
tion of the samples. Then, bymultiplying the samples by a scalar
constant, we expect the interpolated values to get scaled by the
same constant. Equivalently, the terms multiplied by the sam-
ples in the formulation of Lemma 4 should be independent of
the sample values. Consequently

can only depend on and not on . This implies that

(41)

By moving the denominator to the right-hand side and taking
the Fourier transform of both sides with respect to , we further
simplify the condition to

(42)
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or

(43)

since . In addition, because of the continuity of , the
function is also continuous. By replacing with , (43)
transforms into (40).
Claim 2: Using previous assumptions and terminology, for

all and , we have that

(44)

where is a positive constant.
Proof: We apply Claim 1 on two instances of and to

evaluate and as

(45)

Again applying Claim 1, we can relate the three values ,
, and as

(46)

which yields

(47)

by replacing the values of and from (45).
The left-hand side of (47) can only be a function of , while
the right-hand side can only vary with . Thus, the fractions are
equal to a constant which we denote by . The fraction in (47)
becomes a square for , which shows that is positive.
Note that, results in being a constant function for

which is not admissible.
Claim 3: If is such that the estimator is linear, then the

following is valid for all and :

(48)

Proof: A direct consequence of Claim 2 is that

(49)

where is a positive integer. With a similar argument, one can
show that (49) is also valid for nonpositive values of . We con-
sider two cases.

1) : From (49) and for , we know that

(50)

When , the left-hand side of (50) remains
bounded, which suggests that . Moreover,
since is continuous, for the limiting case of ,
we can write that

(51)

2) : From (49) and for , we know that

(52)

When , the left-hand side of (52) remains
bounded, which suggests that . Moreover, since
is continuous, for the limiting case of , we can
write that

(53)

We excluded the possibility in our argu-
ment because it would force to be a constant function (Claim
1) which, in conjunction with the condition , would
result in the trivial solution .
We see from (51) and (53) that the final result turns out to be

(54)

Since (54) is valid for all , it is easy to conclude the claim by
induction.
Claim 4: If the innovation model results in a linear estimator,

then for all , we have that

(55)

Proof: We can rewrite the statement in Claim 1 by em-
ploying Claim 3 as

(56)
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When are such that , we can write

(57)

Hence, for all such that , we have that

(58)

Due to the continuity of inherited from , we conclude that

(59)

where and is a positive constant. This can be
interpreted as . We can check that is the
only possibility that satisfies (44). Thus, in (56),
which proves the claim.
We are now equipped to resume the proof of Theorem 3. Let
be an arbitrary real number and assume , where

and are the integral and fractional parts of , respectively. For
any and by applying Claims 3 and 4, we readily obtain

(60)

Now, for , we have that

(61)

where

(62)

Note that, due to the symmetry of , we have that
. This value is also nonpositive because of the general

fact that, for all , we have that [28]. Since
admits only real values in our case, we conclude that

.

VII. SIMULATIONS

To test the performance of our interpolator for stable inno-
vations, we have applied it to MATLAB simulated data. Since
we are limited to discrete signals in computer simulations, we
have used a fine grid to represent the continuous-time stochastic
process. We present in Figs. 3 and 4 the realizations of two
-stable AR(1) processes with and , respec-
tively, and their interpolated versions using samples at integer
points.
As is most evident in Fig. 3, the curves connecting the points

deviate from straight lines and are not even piecewise mono-
tonic (e.g., the part corresponding to the interval ). In fact,
the statistics of the model show that, for each pair of adjacent

Fig. 3. Realization of an AR(1) process with and , and the
function interpolated from samples at the integer points.

Fig. 4. Realization of an AR(1) process with and , and the
function interpolated from samples at the integer points.

samples, the distribution of the values between them is biased
in favor of zero. It can be verified that the and values used
in Fig. 3 define an interpolation kernel which is dominated
by the linear interpolator . Thus, the interpolated curve con-
necting two adjacent samples deviates from the straight line to-
ward the horizontal axis. Remark 2 proved in Appendix D, ex-
plains the tendency toward zero in more generality.
Remark 2: For , let us define the average error between

the interpolation kernel and the linear B-spline as

(63)

Then, has the same sign as .
To clarify the message of Remark 2, let us consider that all

the obtained samples are equal. Thus, by interpolating the sam-
ples using the linear B-spline, we obtain a horizontal line. For

(respectively, ), Remark 2 implies that the inter-
polated curve using the Bayesian kernel, compared to the hori-
zontal line of the linear B-spline, is biased toward (respectively,
away from) the horizontal axis. Although the value of the bias
depends on the parameter , its sign is fully determined by .
From Fig. 3, it is understood that the optimal interpolator

takes advantage of knowing the system parameters and better
follows the process than the uninformed outcome that would be
provided by a first-degree (i.e., linear) B-spline.
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It is shown in [31] that -stable priors become more com-
pressible as decreases. This means that, in the realization of an
-stable process, the intervals with large amplitudes are few and
narrow. As decreases, these intervals become even smaller
while the range of amplitudes increases. Therefore, at small ,
it is likely that the samples miss these large-amplitude intervals.
This explains why a decrease from in Fig. 3 to
in Fig. 4 results in a degradation of the quality of the interpo-
lated signal.

VIII. CONCLUSION

In this paper, we studied the interpolation of the first-order
autoregressive processes generated from stable innovations, in-
cluding non-Gaussian ones. We introduced the minimum con-
ditional mean-square error (MCMSE) criterion for stable laws,
which relaxes the hypothesis of a finite variance.We applied this
criterion to derive the optimal interpolator in a general setting
and found that it is linear with respect to the samples. More-
over, it depends on the stability index that characterizes stable
innovations. In particular, for a suitable value of this index, our
analysis encompasses the classical Gaussian case. Finally, we
have extended to general stable innovations the link between
exponential-spline interpolators and the Gaussian case.

APPENDIX A
OPTIMALITY OF BAYESIAN INTERPOLATOR

Assume that are dependent random variables.
We want to estimate the unobserved value of based on the
measurements . The minimum mean-
square error estimator is the function that
minimizes

(64)

It is well known that (i.e., the
posterior mean estimator) is the desired minimizer when the
mean-square error is finite. In the following, we discuss cases
where the mean-square error is infinite, while the posterior dis-
tribution has finite variance.
The posterior-mean estimator also minimizes the conditional

mean-square error, for which the error is equal to the posterior
variance. Hence, in cases where the posterior variance is finite,
the Bayesian estimator (posterior mean) is optimal for each set
of measurements (i.e., ), while the average error over all
possible sets of measurements may be unbounded.
For the interpolation problem, as explained in Section V, the

posterior distribution of ( integer and ) is
given by

(65)

where . The second-order moment of
the posterior distribution is in turn given by

(66)

For heavy-tail innovations, the algebraic-decay orders of
and are equal. Thus, if for
some , the expression in (66) and, consequently, the poste-
rior variance, is bounded. The -stable innovations for
are examples of these cases.
In summary, the Bayesian estimator results in an unbounded

mean-square error for some heavy-tail innovation distributions,
but the estimator might still be optimal for given realizations
according to the MCMSE criterion.

APPENDIX B
PROOF OF LEMMA 3

First, note that the boundedness of the first-order moment in
the case is to guarantee the existence of (see
Corollary 2). Then, recalling the definition of generalized in-
crements in (17), we have that

(67)

Moreover, Lemma 1 implies that and
are independent. Thus

(68)

where we use to denote probability density functions. By em-
ploying (67), the desired conditional expectation is rewritten as

(69)

where we used Parseval’s theorem to obtain the second equality.
To prove the validity of Parseval’s theorem in our case, note
that and are absolutely summable
functions. For the case of Condition (i) in Lemma 3, the bound-
edness of the first-order moment guarantees that is also
absolutely integrable, and therefore, both Fourier transforms are
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uniformly continuous functions and the proof is complete. Al-
though Condition (ii) is weaker in the sense that is not con-
tinuous and has a singularity at , it still implies that

is finite, which is again
a sufficient condition [32].

APPENDIX C
PROOF OF LEMMA 4

By using Lemmas 2 and 3, we only need to prove

(70)

To this end, we focus on the derivative of the characteristic func-
tion . For , Corollary 3 implies

(71)

When , Lemma 1 suggests that .
Hence

(72)

which is the same as (71) for . In fact, the function
is defined in such a way that it satisfies (71) for all .
From (71), it is easy to verify

(73)

Therefore

(74)

Our next step is to rewrite the denominator of the fraction in the
left-hand side of (70) as

(75)

By combining (74) and (75) into (70), one can easily deduce the
claim of the Lemma.

APPENDIX D
PROOF OF REMARK 2

The interpolation kernel can be expressed as weighted
sum of exponential functions. This helps us in finding the
closed-form expression for as

(76)

Note that . Let and be the minimum and
maximum of the set , respectively. Then, we
have that , where reflects the sign of .
This enables us to rewrite (76) as

(77)

Consider the function . Since
and , the function is

nonnegative for . Thus

(78)

This confirms that is positive when . For , let
us consider the function . Since

and (Taylor series of ), is
an increasing function. Therefore

(79)

Similarly, this confirms that is negative for . It is
also easy to verify from (76) that .
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