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A Muñoz-Barrutia3, J Kybic4, R Marabini1, J M Carazo1 and
C Ortiz-de Solorzano3

1 Biocomputing Unit, National Centre for Biotechnology, CSIC, Darwin 3, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
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Abstract
We present a novel algorithm for the registration of 2D image sequences that
combines the principles of multiresolution B-spline-based elastic registration
and those of bidirectional consistent registration. In our method, consecutive
triples of images are iteratively registered to gradually extend the information
through the set of images of the entire sequence. The intermediate results
are reused for the registration of the following triple. We choose to
interpolate the images and model the deformation fields using B-spline
multiresolution pyramids. Novel boundary conditions are introduced to better
characterize the deformations at the boundaries. In the experimental section,
we quantitatively show that our method recovers from barrel/pincushion and
fish-eye deformations with subpixel error. Moreover, it is more robust against
outliers—occasional strong noise and large rotations—than the state-of-the-art
methods. Finally, we show that our method can be used to realign series of
histological serial sections, which are often heavily distorted due to folding and
tearing of the tissues.

1. Introduction

Registering two images consists in finding a deformation function that maps a given image
S onto a target image T. Finding an optimal deformation function requires maximizing a
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similarity criterion between the intensities of all pixels in both images and/or mapping selected
reference—landmark—points. In an ideal situation, the deformation function should be unique
and bijective. In other words, it should unequivocally link every pixel in the target image T
with a pixel in the source image S. It should also have biological meaning appropriate for the
particular image modality and source of misalignment. We refer to Zitová and Flusser (2003)
for a detailed survey of basic registration methods.

The problem of registering pairs of images can be extended to registering sets of spatially,
temporally or spectrally related images. The state-of-the-art approaches for this type of
registration are as follows: (i) register all images to a reference image or (ii) pairwise register
all the images starting from the first image of the sequence. In the first approach all the
images in the group are registered to a reference image, which can be a selected image of
the group (Marsland et al 2003, Malandain et al 2004), an average image (Bhatia et al 2004)
or an iteratively calculated image model (Twining et al 2005). This is commonly used to
locate an image in a normalized reference frame or coordinate system as part of the process of
generating anatomical atlases (Bhatia et al 2004, Twining et al 2004). In the second approach,
the images are registered as a sequence applying pairwise deformation functions. This is more
appropriate for sequences of images that change in time, space, wavelength, etc. It has been
used, for instance, for tracking cardiac motion in magnetic resonance images (MRI) (Radeva
et al 1997, Huang et al 1999, Rueckert et al 1999, Ledesma-Carbayo et al 2005), registering
blocks of histological tissue sections (Auer et al 2005, Wirtz et al 2005, Arganda-Carreras
et al 2006) or registering multispectral fluorescence microscope images (Matula et al 2004).

Both approaches bias the registration by assigning special relevance to one of the images
in the sequence. An alternative method consists of sequentially registering neighborhoods
of images—i.e. subgroups of consecutive images—in order to increase the robustness of the
registration and the smoothness of the deformations without assigning an arbitrary normative
value to any of the images. For instance, Wirtz et al (2004) unidirectionally registered
neighborhoods of three images. Yushkevich et al (2006) bidirectionally registered five-image
neighborhoods, after choosing a reference image and removing what they considered bad
slices in the sequence. Alternatively, Geng et al (2005) registered groups of three manifolds,
i.e. contours or surfaces.

A key element of any registration algorithm is the method used to model the transformation
between the source and target images. Some authors proposed using diffeomorphic
deformation functions, which are invertible, differentiable and bijective (Avants et al 2006,
Rueckert et al 2006, Cootes et al 2004, Grenander and Miller 1998). This method is fast,
efficient and very appropriate when the transformation satisfies the diffeomorphic properties.
However, this might not be the case for some large nonlinear transformations, such as the
ones that can be found in series of manually processed histological sections, which are often
heavily folded or torn. An alternative approach (Christensen and Johnson 2001, Thirion 1998)
consists in jointly estimating the direct (S onto T) and reverse (T onto S) deformations and
imposing as a constraint that one be as close as possible to the theoretical inverse of the other.
This method in some applications seems to result in a more robust or accurate registration.
Furthermore, while calculating the direct transformation gst it provides a deformation field
that is very similar to the ideal (gst )−1.

Rogelj and Kovacic (2006) proposed an approach which does not impose consistency,
but achieves reasonable one by establishing a symmetric image interdependence. The key
idea of this method is to consider that images interact through forces. Information about the
image transformation is thus gathered from both sides as the image similarity is measured in
both registration directions. The experimental results seem to improve the correctness and
the consistency over those of unidirectional methods and is computationally lighter than other
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bidirectional methods since the computation of the inverse transformation is not required.
Although the registration of image sequences is suggested as a possible extension, the method
was only applied to the registration of image pairs.

In this work, we build upon and combine the concepts of neighborhood registration
(Geng et al 2005) and consistency (Christensen and Johnson 2001) in the context of the
registration of series of images (Csapo et al 2007). Namely, we use the general idea of
transitivity from computational anatomy suggested by Grenander and Miller (1998), but we
do not enforce the invertibility by definition of the anatomical transformations. Instead, we
enforce it by the approach proposed by Christensen and Johnson (2001). This way, we can
calculate and recover from complex non-invertible distortions, such as those commonly found
in histological sections (e.g. tissue folding and tearing). Then, looking for a computationally
reasonable compromise solution to the problem of registering image sequences, we use
(Geng et al 2005) a tri-wise registration concept—originally developed to register triples
of contours—apply it to triples of images and then extend it to register entire image sequences.
The propagation of the information through the entire sequence is ensured by the overlap
between the image triples and an iterative back-and-forth progression of the algorithm.
To register each image triple—which is the building block of the registration of the entire
sequence— we take advantage of the fact, proved by Csapo et al (2007), that the sequential
composition of two transformations is equivalent to the transformation between the first and
third member of the triple. This was used by Csapo et al (2007) to unidirectionally and
non-consistently register sequences of images, and we here extend its use to the bidirectional
and consistent registration of triples of images. In summary, we approach the problem of
registering series of images by bidirectionally registering consecutive triples of images, to find
a solution that minimizes the overall similarity and consistency errors while keeping acceptable
computational speed. The consistency is ensured locally through the registration of groups of
three images and globally by spreading the results backward and forward in the whole set of
images.

In our implementation we estimate the deformation function by minimizing a cost
functional made of two terms: a similarity term and a consistency term. We use an efficient
Marquardt–Levenberg optimization method with Hessian estimation (Press et al 1992). We
use B-splines to interpolate the images and model the deformation functions. B-splines are
computationally light, differentiable, have good approximation properties and can be used
to represent both linear and nonlinear transformations, providing close control of the level
of details of the transformation. Finally, we use a multiresolution (iterative coarse-to-fine)
implementation, which improves the convergence speed and robustness of the algorithm
(Unser 1999). Although this method can be applied to many registration problems, we show
in particular the benefit obtained by using it to register series of histological sections, which
are often affected by strong deformations.

The structure of the paper is as follows. First we describe the previous work in section 2.1,
and then we introduce the concept of consistent tri-wise registration in section 2.2. The two
terms of our cost functional are described in sections 2.3 and 2.4. The image and deformation
representations are presented in sections 2.5 and 2.6. Our optimization algorithm is then
described in section 2.7 while the multiresolution implementation is presented in section 2.8
and the main outline of our consistent sequential registration (CSR) method is introduced in
section 2.9. Next, we show experimental results, first with synthetic images in section 3.1, and
also with the real sequences of biological images in section 3.2. We finish with conclusions
in section 4.
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2. Methods

Given three consecutive images of a sequence, our algorithm finds the deformation fields that
relate them. This is done by minimizing an energy functional that has two terms: the similarity
error E

Ti

S between every triple Ti—local group of three consecutive images Ii, Ii+1, Ii+2—and
the consistency error of the corresponding partial deformations E

Ti

C . The energy functional
can be written as

E =
NS−2∑

i=1

(
wsE

Ti

S + wcE
Ti

C

)
, (1)

where NS is the number of images in the sequence and ws and wc are the specific weights
given to the similarity and consistency energy terms.

2.1. Pairwise registration

Our work builds on our previous work and the work of others. Namely, we develop on the idea
of unidirectional pairwise registration (UPR) (Sorzano et al 2005, Kybic and Unser 2003) and
of consistent pairwise registration (CPR) (Christensen and Johnson 2001, Arganda-Carreras
et al 2006).

UPR can be formulated as finding the best deformation function g(x) : R2 → R2 that
transforms a source image Is into a target image It. Therefore, the deformed version of the
source image, Is(g(x)), should closely resemble the target image It (x).

CPR adds the idea of imposing a consistency constraint by simultaneously calculating the
transformations g and h such that g maps Is to It and h maps It to Is subject to the constraint
g # h−1. In CPR, the dimensionality of the nominal search space is twice as large as in
UPR, but the consistency constraint defines a smaller embedded search space than the one
corresponding to UPR. Consequently, it often allows for faster convergence in terms of the
number of iterations when compared to a non-consistent registration, as will be shown in
section 3.1.6.

2.2. Consistent tri-wise registration

We now extend the previous concepts—UPR and CPR—to the case of simultaneously
registering three images. We call it consistent tri-wise registration (CTR). Let I1, I2 and
I3 be the images to be registered. We aim at finding the deformation functions

gij (x) : R2 → R2, (2)

which map coordinates of Ii into coordinates of Ij. The explicit estimation of g13 and g31,
as described by Geng et al (2005), improves the consistency of the deformations at the
expense of increasing the complexity of the optimizer. Instead, looking for a compromise
between accuracy and computation time, we decided to use only pairwise transformations
(g12, g23, . . .) to move through the sequence. This was originally proposed by Csapo et al
(2007), who showed that the composition of the intermediate transformations g12 and g23 makes
g13 and g31 implicitly consistent. Therefore, only g12, g21, g23 and g32 need to be calculated,
since g13 and g31 are defined by composition, that is g13 = g23 ◦ g12 and g31 = g21 ◦ g32, i.e.
g13(x) = g23(g12(x)) and g31(x) = g21(g32(x)). See figure 1 for a graphical description of
the transformations involved.
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Figure 1. CTR scheme. The diagram shows a group of three images and their corresponding
transformations. For every pair of images (i and j with i, j = 1, 2, 3 and i %= j ) there are two
functions (gij , gji ) that map pixel coordinates from image i to image j and vice versa.

2.3. Similarity error term

We calculated the similarity between the images as the sum of squared image differences.
This is not a critical choice, and other similarity criteria can be used instead, such as mutual
information (Pluim et al 2003, Skouson et al 2001), cross-correlation (Andronache et al 2006),
etc.

The direct similarity error term E
ij
S between a source image Ii and a target image Ij is

defined as

E
ij
S = 1

#!ij

∑

x∈!ij

(Ij (x) − Ii(g
ij (x)))2, (3)

where !ij defines a set of relevant pixels common to the images Ii and Ij that can be defined
by masks, and where #!ij is the total number of pixels under the mask.

In the bidirectional case, the similarity error ES between two images Ii and Ij, is defined as
ES = E

ij
S +E

ji
S . Finally, the similarity error for CTR, ES, can be written as the sum of the direct,

EDS, and the inverse, EIS, similarity errors: ES = EDS + EIS where EDS = E12
S + E23

S + E13
S

and EIS = E21
S + E32

S + E31
S .

Since this similarity measure is sensitive to linear transformations of the image gray
values, we assume that all images use a common intensity range, e.g. 0–255.

2.4. Consistency term

The consistency error E
ij
C is the Euclidean distance between a point x of the source image Ii

and the same point after a forward and backward transformation gji(gij (x)). Therefore, the
consistency error EC between two images Ii and Ij is given by

EC = E
ij
C + E

ji
C , (4)

where

E
ij
C = 1

#!ij

∑

x∈!ij

‖x − gji(gij (x))‖2. (5)

The UPR energy functional does not have a consistency term.
We now extend the consistency term for groups of three images (CTR method). To this

end, we do not need to consider the consistency of g13 and g31, since they are defined by
composition (see section 2.2) and their consistency is ensured by that of the intermediate
deformations fields g12, g23, g21 and g32. Therefore, the total consistency term is then given by
E12

C + E23
C + E21

C + E32
C .



6220 I Arganda-Carreras et al

2.5. Image representation

The target image Ij is always evaluated at integer positions while the source image Ii has to
be evaluated generally at non-integer coordinates, gij (x). We opted for using cubic B-spline
interpolation, since it offers a good trade-off between accuracy and speed (Unser et al 1991).
Therefore, we represent the source image Ii as

Ii(x, y) =
∑

k,l∈Z2

ck,lβ
3
(x

h
− k

)
β3

(y

h
− l

)
, (6)

where β3 is a cubic B-spline, ck,l are the B-spline coefficients and h is a parameter that controls
the level of details of the representation.

2.6. Deformation representation

Taking advantage of the properties of the B-splines (Szeliski and Shum 1996) we also represent
the deformation fields as a linear combination of B-splines:

gij (x) = gij (x, y) =
(
g

ij
1 (x, y) g

ij
2 (x, y)

)

=
∑

k,l∈Z2

(
c
ij
1,k,l , c

ij
2,k,l

)
β3

(
x

sx

− k

)
β3

(
y

sy

− l

)
, (7)

where sx and sy are the sampling steps that control the degree of detail of the deformation field.

2.7. Optimization

To optimize the energy functional, we use a variation of the robust Levenberg–Marquardt
method (Thévenaz et al 1998). This method iteratively updates the deformation coefficients
c = cij

m,k,l so that c(n+1) = c(n) + #c(n), where #c is the solution of H̃#c(n+1) = ∇E(c(n)), n
is the iteration number; ∇E(cn) is the gradient of the energy with respect to the deformation
coefficients evaluated at c(n) and H̃ is a modified version of the Hessian matrix H with the
diagonal components H̃ calculated as [H̃ ]ii = (1+λ)[H ]ii . This algorithm achieves a gradual
transition between quasi-Newton and gradient descent steps, controlled by the parameter λ.
The parameter λ is adaptively modified according to the ability of c(n) to minimize the energy
functional. If the previous step succeeded to decrease the goal function, then the local model is
considered appropriate and more weight is given to the second-order information provided by
the Hessian. Consequently, the next iterative step of the optimization algorithm will be more
Newton-like. If the previous iterative step did not decrease the criterion, the local model is
considered inappropriate and the optimization algorithm will retry the last step, thus behaving
more like a gradient descent. We compute a Broyden–Fletcher–Goldfarb–Shanno (BFGS)
approximation of the Hessian (Press et al 1992) using the algorithm described by Sorzano
et al (2005). The BFGS approximates the Hessian as a semi-definite matrix, thus assuring
the stability of the quasi-Newton optimization algorithm. The Hessian estimated this way is
initialized by a diagonal approximation and is updated only on successful estimates c(n) and
when the positive definite quality of the estimated is assured.

Our optimizer makes extensive use of the derivatives of the different energy terms with
respect to the deformation coefficients. Since the images and the deformation fields are
expressed in B-splines basis, these derivatives can be computed explicitly and efficiently (see
appendices A.1 and A.2).
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(a) (b)

Figure 2. Example of symmetric (a) and anti-symmetric (b) boundary conditions for a quadratic
function. The vertical lines represent the boundaries.

2.8. Multiresolution

All images and deformations are represented using multiresolution pyramids (Unser et al
1993). The number of B-spline coefficients at the pyramid level L is 2L × 2L for L = 0,

1, 2, . . . . The algorithm starts using low-resolution versions of the images and deformations,
finds the minimum of the energy functional and then moves to the next pyramid level,
using the deformation obtained in the lower level as the starting point of the next—
upper—level. This is repeated until the highest resolution level of the pyramid is
reached.

To move between pyramid levels, customized reduction and expansion operators were
used (Unser et al 1993) (see appendix A.3 for a technical explanation), resolved at the image
and deformation borders using the appropriate boundary conditions. For the images we
used standard symmetric boundary conditions. For the deformation fields, symmetric mirror
conditions do not properly account for the deformation trend at the boundaries, and thus
we applied anti-symmetric boundary conditions (figure 2). See appendix B for a practical
justification of the choice of boundary conditions.

2.9. Consistent sequential registration

We have further extended the idea of CTR to do CSR. To this end, at each resolution
level, triples of images are iteratively CTR-registered forward and backward—with a two-
image overlap with respect to the previous iteration—until either the desired degree of
accuracy or a maximum number of iterations is reached. Registering backward and
forward iteratively refines the intermediate results incorporating contributions of all the
members of the sequence to the registration process. See algorithm 1 for a formal
description.
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Algorithm 1. Consistent Sequential Registration CSR method
Require: S ← A sequence of images Ii , i = 1, . . . , NS

1: Initial transformations: gi,i+1, gi+1,i ← Identity ∀i ∈ [1, NS − 2]
2: Auxiliary transformations: g12, g21, g23, g32 ← Identity
3: for all pyramid level do
4: while not (convergence or max number of iterations) do
5: for i := 0 to NS − 2 do {Forward Registration}
6: g12 ← gi+1,i+2, g21 ← gi+2,i+1, g23 ← gi+2,i+3, g32 ← gi+3,i+2

7: Do tri-wise registration of Ii, Ii+1, I i+2 with initial transformations
g12, g21, g23, g32

8: Save gi,i+1, gi+1,i , gi+1,i+2, gi+2,i+1

9: end for
10: for i := NS − 3 down to 0 do {Backward Registration}
11: g12 ← gi+1,i+2, g21 ← gi+2,i+1, g23 ← gi+2,i+3, g32 ← gi+3,i+2

12: Do tri-wise registration of Ii, Ii+1, I i+2 with initial transformations
g12, g21, g23, g32

13: Save gi,i+1, gi+1,i , gi+1,i+2, gi+2,i+1

14: end for
15: end while
16: end for

3. Experimental results

3.1. Validation of the method using synthetic images

3.1.1. Selection of consistency and similarity weights. Since the terms of the energy function
have different units, the choice of the weights plays an important role on the algorithm. The
similarity term represents the mean squared error (MSE) of pixel intensities (0–255 for our
8-bit test images). Moreover, the consistency term relates to the mean geometrical distance (in
pixels) between the forward and backward transformations. In our experiments, the similarity
error usually lies around the hundreds, while the consistency error is in the order of the tens.
To study the sensitivity of the registration results to the values of the weights, we performed
the following experiment (see figure 3): we used the first three images from a sequence of
consecutive coronal slices of Macaca fascicularis stained with cholinesterase. The images
were grayscale, 300 × 282 pixel size. We then fixed the similarity weight to 1.0 and observed
the evolution of both errors when registering the triplet using gradually increasing values of
the consistency weight. For low consistency values—up to 10.0—both errors decrease at a
similar rate. Then, the consistency error starts to decrease while the similarity error increases,
indicating that a too strong consistency constraint was used. This experiment led us to use
1.0 similarity and around 10.0 consistency weights in all the registration of all sequences
described in the rest of the paper.

3.1.2. Accuracy. We first tested the performance of our CSR algorithm using synthetic image
sets. To this end, we applied 20 known deformations g∗ to an image and then performed the
registration of the image and all its warped versions. Figure 4 shows the image used, a
standard histology section of human breast epithelium stained with hematoxylin and eosin
(H&E), captured at 40× magnification.
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Figure 3. Evolution of the similarity and consistency error with increasing values of the consistency
weight. These error values correspond to the registration of the first image triple used in
section 3.1.3.

Figure 4. H&E stained section of human breast epithelium.

To deform the images, we used the barrel/pincushion distortion, which is characteristic of
image acquisition and displaying devices such as cameras and monitors. Note that this choice
does not favor the use of B-splines, since these distortions cannot be exactly represented in
a B-spline space. Zero-mean Gaussian noise with standard deviation 0.05 to k1 and k2 was
added to the images. To register the images we used a four-level deformation pyramid and
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(a) (b)

Figure 5. Example of fish-eye transformation on (a) a grid image and (b) the histological section.

a five-level image pyramid, i.e. a grid of 8 × 8 B-spline coefficients in the maximum detail
level of the deformation pyramid and 16 × 16 B-spline coefficients in the highest resolution
level of the image pyramid. We used 1.0 as a similarity weight ws and 20.0 as a consistency
weight wc.

Let g be the transformation function obtained using the CSR algorithm. We measured the
accuracy of the registration using the standard warping index (Thévenaz et al 1998) defined
as

% =
√

1
‖R‖

∑

x∈R

‖g(x) − g∗(x)‖2, (8)

where ‖R‖ is the number of image pixels. The warping index measures the geometric error—
in pixels—between the deformation applied to the image and the transformation calculated by
our algorithm, averaged out for all the triplets of the sequence. The original average warping
index of the unregistered images was 4.50 ± 3.50 pixel. The average warping index of the 20
images after our sequential registration was 0.07 ± 0.05 pixel, i.e. the error was reduced to
subpixel level.

The barrel/pincushion deformations affect mainly the border of the images. However, in
practice, boundary features may be of less interest than central features. To test the performance
of the algorithm in center-based distortions, we used 20 concatenated and randomly located
fish-eye transformations of 60 pixel diameter and 3.0 magnification on the same histology
image as the previous experiment. For an example of fish-eye transformation see figure 5(a)
for a grid image and figure 5(b) for the histological section. The original average warping
index of the unregistered images was 3.15 ± 0.11 pixel. The average warping index after
applying CSR with the same parameters as before was 0.58 ± 0.37 pixel, i.e. the error was
also reduced to subpixel level.

3.1.3. Registration of cyclical data. The iterative, bidirectional—forward and backward—
way our CSR algorithm aims at the optimum registration transformation allows information
from the whole set of images to be used in the registration process. This makes the algorithm
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Figure 6. Visual estimation of registration accuracy of UPR (left), CPR (middle) and CSR (middle).
A cyclical sequence—18 rotations of 20◦—of a M. fascicularis brain section was registered using
the three methods. The original image is shown in green and the final transformed image is in
red. Therefore, the yellowish areas are regions of perfect overlap while the red and green areas
represent incorrect alignment.

Table 1. Mean squared error (MSE), standard deviation (Std), minimum (Min) and maximum
(Max) intensity difference between the original and the result after the combined rotations from
the experiment described in section 3.1.5 for the new algorithm (CSR) and the previous methods
(UPR and CPR).

UPR CPR CSR

MSE 1494.38 1264.22 715.24
Std 2745.29 2559.83 1499.46
Min 0 0 0
Max 31684 29929 22201

suitable for registering sequences of images, especially if they are cyclical. In order to test this,
we used a M. fascicularis brain section stained with cholinesterase. We applied 18 rotations
to the image at 20◦ intervals, the last image of the sequence therefore being equal to the first
one. Then we evaluated the results of the UPR, CPR and CSR algorithms by registering all
18 images and comparing the first and last images. We used ws = 1.0 and wc = 10.0. As
expected, our sequential CSR method was more efficient for this type of sequences than the
two other algorithms (table 1). Note that the MSE and the standard deviation (STD) obtained
using CSR are half the ones obtained using either UPR or CPR. Furthermore, the CSR
maximum intensity difference (MAX) is almost one fourth of the values obtained using UPR
or CPR. Figure 6 shows the registration error visually for all three methods. We calculated
and compared the percentage of correctly aligned pixels. For this, we converted the RGB
images to HSV and set an acceptance threshold value of ± π

25 that corresponds to a yellow hue
value. CSR outperformed the other two methods: CSR produced 79.28% overlap compared
to 55.99% (UPR) and 67.30% (CPR).

In figure 7, we show the MSE for each method and rotation angle. A neperian logarithmic
scale was used in the graph. It can be observed that the CSR error remains consistently low
throughout all angles by virtue of reusing sequence information. UPR causes high error values
in all angles and CPR gets trapped in local minima for some of the angles, thus affecting the
global registration.
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Figure 7. Error committed by each registration method on every angle of rotation in the cyclical
experiment. A neperian logarithmic scale is used to facilitate the visualization of the error.

Table 2. Average and standard deviation of the MSE for the direct/inverse similarity (DSE/ISE)
for the synthetic experiment of non-consistent sequential registration (non-CSR) versus CSR.

Non-CSR CSR

DSE 60.75 ± 143.50 32.48 ± 4.00
ISE 142.72 ± 255.78 33.72 ± 8.91

3.1.4. Use of neighbor information. Next we showed the benefits of using the consistency
information in the registration process versus not using it. To this end we used the same
sequence of monkey brain slices of the previous section and registered the sequence in
groups of three images, first without consistency and then using our complete CSR algorithm
(wc = 10.0). In both cases, we used a four-level multiresolution image pyramid and a three-
level deformation pyramid, with ws = 1.0. As can be seen in table 2, our method substantially
improved the registration results. To estimate the invertibility of the transformations calculated
by both methods, we computed the final (direct and inverse) consistency errors, being
2243.50 ± 7387.42 and 2421.08 ± 6678.07 respectively for the non-consistent method and
1.69 ± 1.39 and 1.58 ± 1.16 for our CSR method.

3.1.5. Robustness against outliers. To further proof the benefit of using CTR as the building
block of CSR, versus using UPR (Sorzano et al 2005) or CPR (Arganda-Carreras et al 2006)
we used groups of three images where one of the members had been heavily distorted. This
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Figure 8. Example of triple histology images used in the validation test. A significant amount of
random noise was added to the middle image.

way we showed the improvement obtained when combining consistency, bidirectionality and
groupwise—in this case tri-wise—registration.

First, we used seven triples of images from the sequence of 20 used in section 3.1.2 and
added random noise (with 50% of randomization, i.e. percentage of affected pixels) to one of
the images of each triple (see figure 8). Then we registered triples using UPR, CPR and CTR
with a four-level image pyramid and a five-level deformation pyramid. We used ws = 1.0 and
wc = 20.0. The average warping indexes obtained were 14.96 ± 18.72 (UPR), 5.12 ± 5.33
(CPR) and 3.67 ± 3.77 (CTR). This shows the improvement obtained by using a consistent
method compared to a non-consistent one, as well as the benefit of a tri-wise method over a
pairwise method when one of the elements in the series is heavily distorted.

Next, we tested the robustness of our algorithm against independent, non-correlated
rotations. This is an interesting problem from a practical point of view because it is very
common in sequences of manually processed histological sections. We used ten groups of
three images taken from a sequence of M. fascicularis brain sections stained with cholinesterase
(grayscale, 300 × 282 pixel size). We then rotated one of the images of the triple a random
number of degrees, uniformly distributed between 20 and 30. See figure 9 for an example.
We used ws = 1.0 and wc = 10.0. The registration results, shown in table 3, confirm
that CTR is more robust against outliers than UPR and CPR. Our CTR method achieves the
lowest similarity error values while keeping moderate consistency error levels. CPR gives
intermediate values for the similarity error while obtaining the best values for the consistency
error. This is explained by the fact that CTR jointly minimizes the similarity error of three
images (six dissimilarity measures) and the consistency error of two direct transformations
with their corresponding inverse in both directions (four consistency measures), while in the
two equivalent CPRs of the same images, the optimizer minimizes separately the dissimilarity
of both pairs of images (four dissimilarity measures) and their corresponding direct-inverse
transformations (four consistency measures).

3.1.6. Effect of the consistency term. Next, we have studied the behavior of the tri-wise
algorithm in terms of the similarity error and the impact of our consistency term compared to
using the previously described regularization term by Sorzano et al (2005). To this end, we
used the first triple of the sequence of images described in the previous section (monkey brain
section rotated 0, 20 and 40◦). We then applied a tri-wise image registration using a four-level
multiresolution image pyramid, a three-level deformation pyramid and either
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Figure 9. Example of a triple of M. fascicularis brain sections, stained with cholinesterase. The
third image of the trio was artificially rotated 25◦.

Table 3. Average and standard deviation of the MSE for the direct/inverse similarity (DSE/ISE)
and the direct/inverse consistency (DCE/ICE) for the synthetic rotation experiment described in
section 3.1.5 for the new algorithm (CTR) and the previous methods (UPR and CPR).

UPR CPR CTR

DSE 543.21 ± 23.10 497.23 ± 97.84 398.48 ± 66.29
ISE 570.86 ± 30.67 489.65 ± 81.66 450.29 ± 51.15
DCE 15.28 ± 2.08 2.15 ± 1.38 8.59 ± 6.86
ICE 14.84 ± 1.28 2.01 ± 1.53 10.57 ± 4.09

(i) only the similarity term of our energy functional (1), or
(ii) the similarity term plus a vector-spline regularization with two sub-terms, one based on

the gradient of the divergence of the deformation fields and one based on the gradient of
their curl (Sorzano et al 2005), or

(iii) the similarity term plus our consistency term.

The results of the convergence of the three methods are shown in figure 10. Adding a
regularization or consistency term to the energy function increases the complexity but in return
forces the deformations to be smooth, which usually helps reducing the global similarity
error ES. When comparing both scenarios, we observe that using consistency instead of
regularization produces an improvement in the final value of the similarity error, with the
additional advantage of also obtaining the pseudo-inverse transformations. Additionally, in
our case the number of deformation coefficients is sufficiently low so as to not need to
be regularized. This is therefore the choice when no prior knowledge about the deformation
exists. However, if a priori information about the deformation is known, adding an appropriate
regularization term to the energy functional can greatly improve the results (Sorzano et al
2005).

3.1.7. Segmentation-based evaluation. A proper evaluation of the registration results cannot
only be based on the final image dissimilarity or the recovery from specific deformation models
and should take into account that the final goal of the registration, for instance in the case
of histological sections, is to correct for unwanted deformations, and align the images while
preserving the shape and connectivity of the structures of interest. An evaluation based on
a known well-defined ground truth is required. For this reason, we performed the following
experiment to quantitatively evaluate the results in a way which is independent of the algorithm.
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Figure 10. Evolution of the similarity error with the number of iterations for the non-regularized
non-consistent, regularized non-consistent and non-regularized consistent tri-wise registration of
the first image triple used in section 3.1.3.

(a) (b)

Figure 11. TEM section from Drosophila first instar larva ventral nerve cord (a) and corresponding
binary labeling (b). The membranes are labeled in black, while the neurites and glia are labeled in
white.

Namely, we used a 3D image stack composed of 30 serial transmission electron microscopy
(TEM) sections, 512 × 512 pixel each. The dataset contains a Drosophila first instar larva
ventral nerve cord. These sections, which have been manually segmented, are part of a
public dataset kindly provided by Dr Albert Cardona, from the Institute of Neuroinformatics
in Zurich, Switzerland (http://www.ini.uzh.ch/∼acardona/data.html). See figure 11 for an
example of TEM section and its binary labeling. The image stack is a 2×2×1.5 µm volume,

http://www.ini.uzh.ch/~acardona/data.html
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(a) (b)

(c) (d)

Figure 12. Correction of heavy distortion. Two consecutive TEM tissue sections (a) where the
second one (b) is folded in the middle. (c) Deformation grid after diffeomorphic registration
(Vercauteren’s method). (d) Deformation grid after CSR.

with a resolution of 4 × 4 × 50 nm/pixel. On top of the already present minor misalignments
and tissue distortions produced by the sectioning process and the slice thickness, we have
applied a set of known elastic distortions to one every four images in the sequence. The elastic
deformations were created by applying a grid of 8 × 8 B-spline coefficients, each of them
following a Gaussian distribution with mean 30. These distortions simulate well the elasticity
properties of the histological tissue, providing a proper test for the algorithm.

The registration was initialized with a rigid alignment before applying our CSR method
with four levels in the multiresolution image pyramid, 8 × 8 deformation coefficients at the
finest level, ws = 1.0 and wc = 10.0. To evaluate the results, we binarized the labels provided
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(a)

(b)

(c)

(d)

Figure 13. Detail of center section after re-slicing the sequence of TEM images from the top
of the stack: (a) original misaligned sequence, (b) UER results, (c) ESR results, and (d) CSR
results.

with the manual segmentation of the tissue, i.e. setting membranes to black and neurites and
glia to white. We then quantified the misalignment between the original labels with the pre-
and post-registration labels. The simplest way to do it is by measuring the amount of overlap
between the labels. In summary, the pre-registered labels had 67.85 ± 2.77% overlap while
the registered labels overlapped 78.53 ± 2.17%. A different way of comparing the pre- and
post-aligned segmentations is using the Rand error (Unnikrishnan et al 2007), which measures
the agreement between two segmentations. For two different set of labels, S and T, the Rand
error is defined as

R(S, T ) =
(

N

2

)−1 ∑

i %=j

|δ(Si, Sj ) − δ(Ti, Tj )|, (9)

where the sum is over all pairs of distinct pixels i, j , N is the total number of pixels and
δ(Si, Sj ) is 1 if i and j belong to the same object and 0 if they belong to different objects. In
our case the Rand error of the pre-registered images was 0.0215 ± 0.0043, being reduced by
40% (0.0133 ± 0.0031) after CSR.

3.2. Experiments with real image sequences

We now show the results of using CSR to align real image sequences.

3.2.1. Robustness against non invertible transformations. We first show how CSR
can efficiently correct heavy distortions, such as those caused by folding and tearing in
histological tissue sections. As a reference, we compare our CSR algorithm with Vercauteren’s
diffeomorphic demon (VDD) method (Vercauteren et al 2007), a non-parametric registration
algorithm that generalizes Thirion’s diffeomorphic demons (Thirion 1998). We only used the
non-rigid registration algorithm, without previous rigid alignment of the images. We used
three sections from a set of 14 consecutive 50 nm thick TEM sections of Lamina tissue from
Drosophila melanogaster. All images were acquired at 3500× magnification, 512×512 pixel
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(a)

(b)

Figure 14. 3D reconstruction of registered lamina TEM sections with some segmented cells before
(a) and after CSR alignment (b). The tissue is displayed in an orthoslice fashion to better appreciate
the isosurfaces of the segmented cells (in red).

size. These thin tissue sections are often folded or torn, making the registration a difficult task.
An example of this is shown in figure 12, which shows two consecutive TEM sections, one of
them (figure 12(b)) affected by a folding area—black stripe in the middle of the section. We
applied our CSR registration—adding a third section to complete a triple—and then VDD,
obtaining a direct similarity error at convergence of 3306.38 (CSR) and 4546.82 (VDD). The
corresponding deformation maps (figures 12(c) and (d)) show how the CSR method is able to
model the tissue fold located in the middle of the image and capture the displacement between
the structures caused by the cutting process, while the VDD algorithm is not. The demon
method tries to locally adjust the images while the CSR method profits from the neighbor’s
information to better characterize the transformation. Then, to rule our the possibility that
the better performance of CSR versus VDD was due to the initialization—note that VDD is
known to be more effective at correcting local versus global changes than CSR—we modified
the previous experiment and used an initial rigid alignment of the first pair of sections of the
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Figure 15. Sequence of M. fascicularis brain sections stained with cholinesterase. From top to
bottom: original histology sections, RGB images showing some direct and inverse CSR results
(yellow color meaning perfect superposition and red and green colors pointing out the misalignment
regions) and their corresponding deformation grids and transformed versions.

triplet to have the best possible initial condition of the elastic registrations in both cases. Then
the images were registered pair-wise only (CPR versus VDD). In this experiment, as expected,
the image dissimilarities are closer, even though CPR still performs better than VDD: 3274, 59
(CPR) and 3652, 12 (VDD). However both results over-fit the alignment and consequently,
many details of the source image are eliminated.

3.2.2. Performance versus other elastic methods. To further compare the performance of
CSR with other standard registration methods, we used the whole set of 14 TEM lamina
sections (512 × 512 pixel size) described in the previous section. The TEM image sequence
was registered first using CSR, then with a combined method consisting of an initial affine
registration followed by unidirectional elastic registration with conjugate gradient optimizer
(UER), implemented in the open-source toolkit elastix and finally using the elastic sequential
registration (ESR) developed by Ledesma-Carbayo et al (2005) with a previous affine
alignment too. All methods used the same initial conditions: four levels of multiresolution
image pyramid, 8 × 8 deformation coefficients at the finest level and the same stopping
threshold (0.01), i.e. desired level of precision (absolute error difference between last and
previous level registration). To evaluate the results, several cells of the tissue were manually
segmented by an expert. The average cell overlap after registration was 78.48 ± 17.77%
(UER), 81.22 ± 6.91% (ESR) and 83.91 ± 6.06% (CSR). The result can be visualized by
re-slicing the sequence of sections and comparing it with the original alignment (figure 13(a)),
the UER result (figure 13(b)), the ESR result (figure 13(c)) and the CSR result (figure 13(d)).
Here we observe that in this case the ESR method minimizes the registration error by
slightly over-aligning, since several 3D structures are missing after the alignment. In the
UER and CSR re-slice results those structures are better preserved. Figure 14 shows
the segmented cells—in red—and the sequence of 14 CSR-aligned TEM sections from
the previous experiment. This way, we can see the segmented cells in a completely aligned 3D
environment.
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Figure 16. 3D reconstruction of registered M. fascicularis brain sections stained with
cholinesterase.

These results confirm in real image series our previous deduction: CSR is especially
beneficial when one or several images of the sequence are heavily distorted.

3.2.3. Registration of brain histological sections. We finally registered nine consecutive
coronal cuts of M. fascicularis, including the triplet used in section 3.1.1. The registration
algorithm used a five-level multiresolution image pyramid and a four-level deformation
pyramid, with 1.0 as similarity weight and 10.0 as consistency weight. We set the stopping
threshold to 0.01 empirically, and the maximum number of iterations (i.e. whole sequence
registration in the corresponding level) to 10.

Our method achieved a satisfactory result, as can be seen in figure 15. Note that, even
though the 7th slice is badly torn and the registration of that slice is far from accurate, that fact
does not affect the registration of the neighboring sections, thus highlighting the benefit of using
global information in the registration process. The initial dissimilarity error 2122.00±426.36
was reduced to 375.27 ± 88.97, while VDD and UER only achieved 617.93 ± 348.73 and
610.34±159.32, respectively. This significant difference in the minimization of the similarity
error with respect to the previous example is due to the higher level of pyramid resolution and
especially to the flat light background of the brain images. The registration time was 90 min
on an Intel Pentium M, 1.59 GHz, with 2 GB of RAM memory, under Linux SUSE 10.0. The
contours of the structures of interest were satisfactorily aligned, as can be seen in figure 16.

4. Conclusions

We have introduced a novel, automatic landmark-free method for the registration of 2D image
sequences. Our method uses consistency, elasticity and full bidirectionality to register series
of related images in a multiresolution fashion. We have taken advantage of the B-spline theory
to implement both images and deformations with multiresolution spline pyramids, which
produces a general, flexible and computationally efficient solution to the registration problem.
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Furthermore, we chose a very powerful optimizer with the BFGS estimation of the Hessian,
which combines steepest-descent and quasi-Newton steps in order to speed up convergence.
In principle, the deformations represented by B-splines are not invertible; however and thanks
to the enforced consistency of the transformation fields, we obtain deformations that are
quasi-inverse of each other. Moreover, the method spreads the information from the neighbors
through the whole set of images enforcing the consistency of the whole sequence.

As shown in section 3, this algorithm reduces the warping index of synthetic images
to sub-pixel level, even when the deformation belongs to a space that cannot be exactly
represented using B-splines. These results are better than those obtained using classic pairwise
unidirectional or bidirectional (consistent) registration algorithms. Besides, we have shown
that our algorithm is more robust than those methods against noise or large rotations. We
believe that this increase in robustness is due to the combined use of consistency and global
image information, granted by the iterative, back and forth tri-wise registration algorithm,
which assigns equal relevance to all the images of the sequence.

Finally, although our algorithm allows using both landmarks and deformation
regularization, we show that registering using the consistency constraint provides satisfactory,
unbiased results without requiring either of them. This is especially helpful when the
regularization term cannot be customized due to the lack of a priori information about the
deformation and the number of deformation coefficients is sufficiently low. Based on these
improvements, we show the benefit of applying iteratively tri-wise bidirectional consistent
registration to sequences of images and in particular to series of TEM and optical microscopy
histological images.

The extension of the proposed algorithm to the registration of 3D images is mathematically
straightforward. It would require adding the third—z—dimension to the equations included
in section 2 and in the appendices A and B, and the reformulation of those equations to include
the derivatives with respect to the third dimension. However, this extension would involve a
considerable increase of the computational load in terms of time and memory consumption. A
popular solution to this limitation is the use of a reduced and randomly sampled set of voxels
instead of the complete image stacks in the registration process. If properly distributed, these
selected voxels will lead the algorithm to an optimal solution.

This 2D registration method is available from the author on request as an ImageJ/Fiji
plugin (Rasband 1997–2009).
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S Sorzano and Arrate Muñoz-Barrutia hold a Ramon y Cajal fellowship granted by the Spanish
Ministry of Education. This work has been partially funded by the Spanish Ministry of Science
and Innovation, under grants MICCIN PSS-0100000-2008-2 and MEC TEC2005-04732 and
the US Department of Defense under grant DAMD17-00-1-0306. Zhiyuan Lu and Marta
Rivera-Alba are gratefully acknowledged for providing the lamina TEM image sequence and
always bringing interesting discussions. Maria Jesus Ledesma-Carbayo nicely performed the
registration of the TEM sequence with her own method to allow us comparing it with our new
algorithm. This work benefited from the use of elastix, software developed by Stefan Klein
and Marius Staring, carried out at the Image Sciences Institute (ISI), on funding granted by the
Netherlands Organization for Scientific Research (NWO). Xabier Artaechevarria is especially
acknowledged for providing continuous help and support on elastix.



6236 I Arganda-Carreras et al

Appendix A. Operators and explicit derivatives

We calculate the derivatives of the similarity and consistency terms with respect to the
deformation coefficients c in appendices A.1 and A.2. Because B-splines were used to
represent the images and the deformations, the derivatives can be calculated explicitly. Then
we define the reduction and expansion operators needed to move through the resolution
pyramids in appendix A.3.

A.1. Data term derivatives

The derivative of the similarity term E
ij
S between images Ii and Ij with respect to the coefficients

c of the deformation field cr,s
a,k,l can be easily inferred from the corresponding definitions of

E
ij
S (see (3)) and cr,s

a,k,l (see (7)). Thus,

∂E
ij
S

∂crs
a,k,l

= −2
∑

x∈!ij

[

(Ij (x) − Ii(g
ij (x)))

∂Ii(g
ij (x))

∂crs
a,k,l

]

, (A.1)

where a ∈ {1, 2}, i, j, r, s ∈ {1, 2, 3} and k, l ∈ Z2.
The last term in the expression above equals

∂Ii(g
ij (x))

∂crs
a,k,l

= ∂Ii(g
ij (x))

∂gij (x)
· ∂gij (x)

∂crs
a,k,l

= ∂Ii(g
ij (x))

∂g
ij
1 (x)

∂g
ij
1 (x)

∂crs
a,k,l

+
∂Ii(g

ij (x))

∂g
ij
2 (x)

∂g
ij
2 (x)

∂crs
a,k,l

, (A.2)

where · denotes the scalar product. Finally, we need to evaluate ∂g
ij
b (x)

∂crs
a,k,l

.
If i = r and j = s (ij = {12, 21, 23, 32}), we can write

∂g
ij
b (x)

∂c
ij
a,k,l

= ∂g
ij
b (x, y)

∂c
ij
a,k,l

=
{
β3

(
x
sx

− k
)
β3

(
y
sy

− l
)

if a = b

0 if a %= b
(A.3)

with b ∈ {1, 2}.
In other cases, that is, if i %= r and j %= s and |i − j | = 2 (i.e. ij = {13} and rs = {12, 23}

or ij = {31} and rs = {21, 32}), the expressions are slightly more complicated. For instance,
for ij = {13} and rs = {12}, we get

∂g13
b (x)

∂c12
a,k,l

=
∂g23

b

(
g12

b (x, y)
)

∂c12
a,k,l

= ∂g23
b

∂x

∣∣∣∣
(x ′,y ′)

∂g12
b

∂c12
a,k,l

∣∣∣∣
(x,y)

+
∂g23

b

∂y

∣∣∣∣
(x ′,y ′)

∂g12
|b−2|+1

∂crs
a,k,l

∣∣∣∣
(x,y)

, (A.4)

where (x ′, y ′) = g12
b (x, y) and ∂g12

b (x)

∂c12
a,k,l

is calculated as given in (A.3).
For ij = {13} and rs = {23}, we can write

∂g13
b (x)

∂c23
a,k,l

=
∂g23

b

(
g12

b (x, y)
)

∂c23
a,k,l

= ∂g23
b

∂c23
a,k,l

∣∣∣∣∣
(x ′,y ′)

+
∂g23

|b−2|+1

∂c23
a,k,l

∣∣∣∣∣
(x ′,y ′)

, (A.5)

where (x ′, y ′) = g12
b (x, y) and ∂g23

b (x′)

∂c23
a,k,l

is calculated as in (A.3).
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The corresponding derivatives for ij = {31} and rs = {21, 32} are obtained by symmetry
from the ones already calculated.

A.2. Consistency term derivatives

The consistency energy functional E
ij
C needs to be evaluated only for the intermediate

deformation fields, which simplifies the number of the derivatives to calculate. We have

∂E
ij
C

∂crs
a,k,l

= −2
∑

x∈!i,j

(x − gji(gij (x)))

(
∂gji(gij (x))

∂crs
a,k,l

)

. (A.6)

For i = r and j = s, we can write for the last term

∂gji(gij (x))

∂c
ij
a,k,l

= ∂gji(gij (x))

∂gij (x)
· ∂gij (x)

∂c
ij
a,k,l

= ∂gji(gij (x))

∂g
ij
1 (x)

∂g
ij
1 (x)

∂c
ij
a,k,l

+
∂gji(gij (x))

∂g
ij
2 (x)

∂g
ij
2 (x)

∂c
ij
a,k,l

= ∂gji

∂x

∣∣∣∣
(x ′,y ′)

∂g
ij
1

∂c
ij
a,k,l

∣∣∣∣∣
(x,y)

+
∂gji

∂y

∣∣∣∣
(x ′,y ′)

∂g
ij
2

∂c
ij
a,k,l

∣∣∣∣∣
(x,y)

, (A.7)

where (x ′, y ′) = g
ij
1 (x, y) and ∂g

ij
b

∂c
ij
a,k,l

is calculated from (A.3).

For i = s and j = r , the evaluation is straightforward also from (A.3):

∂gji(gij (x))

∂c
ji
a,k,l

= ∂gji(x′)

∂c
ji
a,k,l

= ∂g
ji
1 (x′)

∂c
ji
a,k,l

+
∂g

ji
2 (x′)

∂c
ji
a,k,l

, (A.8)

where (x ′, y ′) = gij (x, y) and ∂g
ji
b

∂c
ji
a,k,l

is calculated from (A.3).

A.3. Reduction and expansion operators

The expansion operator maps a coarser level of the pyramid onto a finer grid, and the reduction
operator makes the complementary action. Following Unser et al (1993), we define the
expansion and reduction operators needed to implement the image and deformation pyramids.
When the image dimensions are not a power of 2, we divide by 2 and truncate to the closest
integer. We can write the expansion operator as

c−1(k) =
(
u3

2∗ ↑2 (c0)
)
(k), (A.9)

where c0 are the initial coefficients, u3
2 is the binomial filter defined by

u3
2(k) =





2−3

(
4

k + 2

)
|k| ! 2

0 other,
(A.10)

the ∗ operator represents a discrete convolution such that (u ∗ v)(k) =
∑

l∈Z u(l)v(k − l) and
the operator ↑2 (·) upsamples its argument by a factor of 2.

The reduction operator can be expressed as

c1(k) =
( 1

2 (b7)−1∗ ↓2
(
u3

2 ∗ b7 ∗ c0
))

(k), (A.11)
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where bn(k) = βn(x)|x=k for n = 3, 7, and the operator ↓2 (·) downsamples its argument by
2. Since u3

2 and b7 are FIR filters, the main difficulty to evaluate (A.11) stems from the fact
that (b7)−1 is an IIR filter.

As images are always finite, some data extrapolation is necessary to calculate the infinite
sum involved in filtering with (b7)−1. We have chosen to extend the images using the widely
extended mirror-on-bounds symmetric boundary conditions. If f0(k)∀k ∈ [0, . . . , N − 1] is
the 1D signal we want to process and f (k) is the mirrored signal with symmetric boundary
conditions, then

f (k)=






f0(−k) k < 0
f0(k) k ∈ [0, . . . , N − 1]
f0(2N − 2 − k) k > N − 1,

(A.12)

Let us next give the definition of the mirror-on-bounds anti-symmetric boundary
conditions in 1D. Let f (k) be the mirrored signal with anti-symmetric boundary conditions
∀x ∈ R :

{
f (x) − f (0) = f (0) − f (−x)

f (x + N − 1) − f (N − 1) = f (N − 1) − f (N − 1 − x).
(A.13)

The direct B-spline filter (b7)−1 is an all-pole system that can be implemented efficiently
using a cascade of first-order causal and anti-causal recursive filters (Unser et al 1993). Next,
we describe the explicit procedure for the calculation using the same reasoning as described
in Unser (1999).

By sampling the seventh degree B-spline at integers values we find that

b7(z) = (z3 + 120z2 + 1191z + 2416 + 1191z−1 + 120z−2 + z−3)

(
1

5040

)
. (A.14)

Thus, the filter to implement is

(b7)−1(k) ↔ 1
b7(z)

= 5040
3∏

i=1

(
1

ziz−1

) ( −zi

1 − ziz

)
, (A.15)

with z1 = −0.535 28, z2 = −0.122 558 and z3 = −0.009 148 69 (see table A1). This three-
pole filter can be implemented as three sequential one-pole filters. Given the input signal
values {f (k)}k=0,...,N−1 and defining c−(k) = c(k)

5040 . The right-hand side factorization leads to
the following recursive algorithm:

c+(k) = f (k) + zic
+(k − 1), (k = 1, . . . , N − 1), (A.16)

c−(k) = zic
−(k + 1) + (1 − zi)

2c+(k), (k = N − 2, . . . , 0), (A.17)

where zi is the corresponding pole. Note that the first filter is casual, running from left to right
and the second filter is anticausal running from right to left. Therefore, we need to specify
the appropriate starting values for both recursions, i.e. c+(0) and c−(N − 1). To ensure that
the procedure is reversible, we impose the requirement that f (k) can be recovered exactly
by convolving c(k) with b7 using the same type of boundary conditions. The starting values
to be used for symmetric mirror boundary conditions are given by Unser (1999). We have
calculated the corresponding values for anti-symmetric mirror boundary conditions using the
same reasoning. The initial value for the first recursion is given by

c+(0) =
(

1

1 − z2N−2
i

)
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Table A1. Poles of the septimic B-spline.

θ = 1
3 arccos

(
− 738√

556 549

)

c =
√

301 cos(θ)

s =
√

903 sin(θ)

λ1 = 20 − 2c

λ2 = 20 + c − s

λ3 = 20 + c + s

z1 =
√

λ2
1 − 1 − λ1

z2 =
√

λ2
2 − 1 − λ2

z3 = −
(√

λ2
3 − 1 + λ3

)−1

((
1 + zi

1 − zi

) (
f

(
0 + zN−1

i f (N − 1)
)

+
∑

n∈[1,...,N−2]

(
z
(2N−2−n)
i − zn

i

)
f (n)



 . (A.18)

Note that here f (k) indicates the results of the previous recursions and not the original
samples as it was above in (A.12) and (A.13). Correspondingly, the initialization for the
second recursion is

c−(N − 1) = c+(N − 1) − zic
+(N − 2). (A.19)

Appendix B. Selection of boundary conditions

The following straightforward experiment shows the benefit of using anti-symmetric over
symmetric boundary conditions to represent the deformation fields. We first applied a
barrel/pincushion (Ma et al 2003) deformation to a 256 × 256 pixel image of a uniform
grid (figure B1). This type of deformation is very relevant in this context because it
preferentially affects the borders of the image. If the input coordinate x is normalized to
lie in [1,−1] × [1,−1], and if rin is the radius of its polar expression in this coordinate
system, then the output radius rout produced by the distortion is rout = 1 + k1r

2
in + k2r

4
in.

Thus, the type of barrel pincushion deformation is given by the signs of k1 and k2. Thus,
k1 < 0 and k2 < 0 (k1 > 0 and k2 > 0) generate a barrel (pincushion) deformation. We
represented the deformation using 16 × 16 B-spline coefficients with k1 and k2 set to 0.10.
Then, we reduced the deformation field to 8 × 8 coefficients using both symmetric and
anti-symmetric boundary conditions and subsequently expanded them back. To compare the
effect of the boundary conditions, we calculated the difference between the original and the
reduced and then expanded deformation fields, for both the symmetric and anti-symmetric case.
Figure B2 shows the details of the upper-left corner of the difference image, where the effect
of the boundary conditions should be more pronounced. It is clear from the image that
anti-symmetric mirror conditions preserve the deformation field better than their symmetric
counterpart. Note also that the anti-symmetric boundary conditions force the second
derivatives to be zero at the boundary, which is convenient when working with distortions
that have small high-order derivatives.
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(a) (b)

Figure B1. (a) Pincushion distortion (k1 = 0.10 and k2 = 0.05) of a uniform grid and (b) its
inverse barrel transformation (k1 = −0.10 and k2 = −0.05).

(a) (b)

Figure B2. Upper-left corner of the difference image between 16 × 16 B-spline coefficients
barrel/pincushion deformation and its 8 × 8 coefficients reduced and then expanded version using
symmetric boundary conditions (a) and anti-symmetric boundary conditions (b).
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