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Abstract

We address the problem of reconstructing scalar and vector functions from

non-uniform data. The reconstruction problem is formulated as a minimiza-

tion problem where the cost is a weighted sum of two terms. The first data

term is the quadratic measure of goodness of fit, whereas the second regular-

ization term is a smoothness functional. We concentrate on the case where

the later is a semi-norm involving differential operators. We are interested in

a solution that is invariant with respect to scaling and rotation of the input

data. We first show that this is achieved whenever the smoothness functional

is both scale- and rotation-invariant.

In the first part of the thesis, we address the scalar problem. An ele-

gant solution having the above mentioned invariant properties is provided by

Duchon’s method of thin-plate splines. Unfortunately, the solution involves

radial basis functions that are poorly conditioned and becomes impractical

when the number of samples is large. We propose a computationally effi-

cient alternative where the minimization is carried out within the space of

uniform B-splines. We show how the B-spline coefficients of the solution

can be obtained by solving a well-conditioned, sparse linear system of equa-

tions. By taking advantage of the refinable nature of B-splines, we devise a

fast multiresolution-multigrid algorithm. We demonstrate the effectiveness

of this method in the context of image processing.

Next, we consider the reconstruction of vector functions from projected

samples, meaning that the input data do not contain the full vector values,

but only some directional components. We first define the rotational invari-

ance and the scale invariance of a vector smoothness functional, and then

characterize the complete family of such functionals. We show that such a

functional is composed of a weighted sum of two sub-functionals: (i) Duchon’s
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scalar semi-norm applied on the divergence field; (ii) and the same applied to

each component of the rotational field. This forms a three-parameter family,

where the first two are the Duchon’s order of the above sub-functionals, and

the third is their relative weight. Our family is general enough to include all

vector spline formulations that have been proposed so far.

We provide the analytical solution for this minimization problem and

show that the solution can be expressed as a weighted sum of vector basis

functions, which we call the generalized vector splines. We construct the

linear system of equations that yields the required weights. As in the scalar

case, we also provide an alternative B-spline solution for this problem, and

propose a fast multigrid algorithm.

Finally, we apply our vector field reconstruction method to cardiac motion

field recovery from ultrasound pulsed wave Doppler data, and demonstrate

its clinical potential.
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Résumé

Nous abordons le problème de la reconstruction de fonctions scalaires et vec-

torielles à partir de données non uniformes. Le problème de reconstruc-

tion est formulé comme un problème de minimisation, où le coût est une

somme pondérée de deux termes. Le premier terme est la mesure quadratique

d’adéquation aux données, tandis que le deuxième terme est une fonctionnelle

régularisante. Nous nous concentrons sur le cas où ce dernier est une semi-

norme impliquant des opérateurs différentiels. Nous sommes intéressés par

une solution invariante par rapport au changement d’échelle et à la rotation

des données d’entrée. Nous démontrons en premier que tel est le cas quand la

fonctionnelle régularisante est invariante d’échelle et invariante par rotation.

Dans la première partie de la thèse, nous abordons le problème scalaire.

Une solution élégante, possédant les propriétés mentionnées plus haut, est

fournie par la méthode des splines plaque mince de Duchon. Malheureuse-

ment, la solution implique des fonctions de base radiales qui sont mal condi-

tionnées, et perd son applicabilité quand le nombre d’échantillons est grand.

Nous proposons une alternative efficace au point de vue calculatoire, où la

minimisation est effectuée dans l’espace des B-Splines uniformes. Nous mon-

trons comment les coefficients B-spline de la solution peuvent être obtenus

en résolvant un système lineaire d’équations creux et bien conditionné. En

profitant de la propriêté d’échelle naturelle des B-splines, nous élaborons un

algorithme rapide de multirésolution-multigrille. Nous démontrons l’efficacité

de cette méthode dans le contexte du traitement d’images.

Puis, nous considérons la reconstruction de fonctions vectorielles à partir

d’echantillons projetés, ce qui signifie que les données d’entrée ne contien-

nent pas les valeurs vectorielles complètes, mais seulement certaines com-

posantes directionnelles. Nous définissons d’abord l’invariance par rotation
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et l’invariance d’échelle d’une fonctionnelle vectorielle régularisante; puis nous

caractérisons la famille entière de telles fonctionnelles. Nous montrons que

celles-ci sont composées d’une somme pondérée de deux sous-fonctionnelles:

(i) La semi-norme scalaire de Duchon appliquée au champ de divergence; (ii)

et la même semi-norme appliquée à chaque composante du champ rotationnel.

Cela forme une famille à trois paramètres, où les deux premiers sont l’ordre

de régularité des sous-fonctionnelles mentionnées plus haut, et le troisième

est leur poids relatif. Notre famille est suffisamment générale pour inclure

toutes les formulations de splines vectorielles proposées jusqu’à présent.

Nous fournissons la solution analytique à ce problème de minimisa-

tion et démontrons qu’elle peut être exprimée comme une somme pondérée

de fonction de base vectorielles, que nous appelons les splines vectorielles

généralisées. Nous construisons le système linéaire d’équations qui fournit les

poids exigés. Comme dans le cas scalaire, nous obtenons aussi une solution

B-spline alternatif pour ce problème, et proposons un algorithme multigrille

rapide.

Enfin, nous appliquons notre méthode de reconstruction de champs vec-

toriels à la reconstruction de champs de mouvement cardiaque à partir de

données ultrason Doppler, et démontrons son potentiel pour une application

clinique.
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Chapter 1

Background and the

Problem Addressed

1.1 Introduction

The problem of reconstructing images from nonuniform samples is frequently

encountered in medical imaging and other areas of applied sciences. The

non-uniformity of the distribution of sample locations is primarily due to the

nature of the acquisition devices. Examples include spiral scanning [1], sector

scanning [2], and free-hand scanning [3]. The computational problem is to

recover a continuously defined image from these samples. The required image

can be either a scalar image or a vectorial image. A typical example for the

scalar problem is to recover the spatial distribution of tissue density of an

organ [4]. An example for the vector problem is to recover velocity (both

magnitude and direction) of each tissue region of a beating heart [5]. The

focus of this thesis is to develop computational methods to recover scalar and

vector images from such non-uniform samples.

We are interested in a situation where there is no restriction on the dis-

tribution of sample points. Since this obviously makes the problem ill-posed,

we adopt a variational strategy, where a plausibility criterion is introduced

in order to make the problem well-posed.

In this chapter, we first give some example applications where scalar and

vector non-uniform sampling is encountered (Section 1.2), and then provide
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a general overview of some reconstruction methods present in the literature

(Section 1.3). We finally give an overview of our main contributions and an

outline of the thesis.

1.2 Examples of Non-Uniform Sampling

1.2.1 Non-uniform Scalar Sampling

A well-known problem in image processing is the reconstruction of an image

after a geometric transformation. The transformation, which typically de-

forms a regular grid of image pixels into a non-uniform grid, can arise due to

variety of reasons. For example, in super-resolution imaging [6], it is required

to reconstruct a high-resolution image from a set of low-resolution images of

the same scene acquired from different views. The reconstruction problem

amounts to transforming all the low-resolution images to a common reference

system—which results in a non-uniform distribution of samples—and then to

reconstructing a high-resolution image out of them. Other applications that

involve a transformation and a subsequent reconstruction from the resulting

non-uniform samples include motion compensation for video coding [7] and

disparity compensation in stereo processing [8].

In medical imaging, a typical example is pulsed-wave ultrasound imaging.

The imaging is performed along a series of scan lines. Each scan-line acquisi-

tion amounts to transmitting a periodic train of sinusoidal pulses at a chosen

position and orientation. The backscattered wave, which is periodic as well,

is measured by the transducer. Let srf(t) be the measured waveform, and

let T be the period. If T is greater than the time taken to travel the pene-

tration depth, then there is a one-to-one mapping between the time instant

of the waveform srf(t) and the distance from the transducer along the scan

line. This mapping is linear, since the speed of ultrasound is nearly constant

across the tissue layers. For example, the scatterers in any interval [d1, d2]

contribute to the part of the signal in the intervals {[d1/c+ k T, d2/c+ k T ],

k ∈ N}, where c is the speed of sound in the probing medium. Hence, the

strength of the signal in the intervals {[d1/c+ k T, d2/c+ k T ], k ∈ N}, pro-

vides information about the acoustic impedence of the tissue in the interval

[d1, d2]. The system extracts the strength of the backscattered wave (in-

tensity) for a set of regularly spaced intervals (known as sample volumes)
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{[nds − δ, n ds + δ], n ∈ N}, where ds is the sampling distance. To get the

density for the sample volume [nds − δ, n ds + δ], the system computes the

strength of the signal, sn(t) = srf(t)Gn(t), where

Gn(t+ k T ) = Gn(t), k ∈ N.

Gn(t) = 1, ∀t ∈ (1/c) [nds − δ, n ds + δ],

= 0, otherwise.

The measurement from the sample volume [nds− δ, n ds + δ] is considered to

be a point measurement, and nds is the sampling location. The distribution

of such sampling locations depends on the way the scan lines are launched. It

varies from system to system. We give two examples in Figure 1.1. The solid

lines with arrows represent the scan lines, whereas the dotted lines represent

the sampling grid along the scan lines. In the cone-beam scheme, the beams

are launched from a single point along a series of regularly spaced angles. In

the parallel-beam acquisition, beams are launched with a fixed angle from a

set of points spaced regularly along a line. Note that the samples are non-

uniformly distributed. The non-uniformity is more striking if one combines

multiple acquisitions obtained from different views in a manner similar to

super-resolution imaging.

α

(a) Cone-beam acquisition.

α

(b) Parallel-beam acquisition.

Figure 1.1: Sampling grids in ultrasound imaging.
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1.2.2 Non-Uniform Vector Sampling

In medical imaging, it is often required to compute a correspondence func-

tion between a pair of images, which is typically known as the deformation

field [9]. For example, the images can originate from a specific anatomical

cross section of different patients. This task is often accomplished by identi-

fying a set of corresponding landmarks. Let (xi)i∈[1...N ] and (x′i)i∈[1...N ] be

such landmark points. These two landmark sets induce a measurement set

(xi, fi)i∈[1...N ] on the deformation field f(x); we have N samples of the de-

formation field at locations (xi)i∈[1...N ] with the values (fi = x′i−xi)i∈[1...N ].

The problem is to find a function f(x) such that f(xi) = fi, ∀i ∈ [1 . . . N ].

With this setting, the image containing (xi)i∈[1...N ] is known as the source

image and the one containing (x′i)i∈[1...N ] is known as the target image. This

vector-sampling problem is demonstrated in Figure 1.2 using a toy example.

We give the source and target images with the landmarks in Figures 1.2(a)

and 1.2(b), and the samples of the required deformation field in Figures 1.2(c)

and 1.2(d). These samples are visualized component-wise in an equivalent

form in Figures 1.2(d) and 1.2(e).

The second interesting example is pulsed-wave Doppler imaging (PWD),

which is an extension of the pulsed imaging described in Section 1.2.1. Here,

in addition to the waveform, the frequency shift of the backscattered signal

is also measured. This frequency shift is proportional to the axial velocity of

the point under consideration, where the term “axial velocity” refers to the

component of the true velocity along the ultrasound beam direction. We give

in Figure 1.3 the schematic representation of a typical PWD imaging setup.

If di denotes the direction of the beam probing the point xi, then its axial

velocity si is related to the true velocity v(x) as follows:

si = d>i v(xi).

The measurement set for this imaging can be represented as

(dj ,xj , sj)j∈[1...N ], and the reconstruction problem is the task of find-

ing a function f(x) such that d>j f(xj) = sj , ∀j ∈ [1 . . . N ].

We illustrate in Figure 1.4 the sampling scheme of PWD imaging. Fig-

ure 1.4(a) contains a rotating object and Figure 1.4(b) depicts the axial ve-

locity components measured by a cone-beam probe. The arrows represent the

vectors si di. The missing velocity components can be found in Figure 1.4(c);
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(a) Source image. (b) Target image.

(c) Vector samples of the re-

quired deformation field.

(d) x and y components of

the vector samples.

(e) Samples of the x compo-

nent.

(f) Samples of the y compo-

nent.

Figure 1.2: A toy example for the problem of computing a defor-

mation field from landmarks.
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V(xi)
si

α

xi

Figure 1.3: The axial velocity si corresponds to the projection of

the true velocity v along the beam direction α.

they are equal to v(xi)−si di, and we give in Figure 1.4(d) the true velocities

at the sampling locations.

Note that the sample set in the landmark interpolation problem

(xi, fi)i∈[1...N ] can be also represented in a form similar to that of PWD imag-

ing. The representation is given by (dj , zj , sj)j∈[1...nN ], where the entries in

the list are now defined by

dn i+k = ek, k ∈ [1 . . . n], i ∈ [0 . . . N − 1],

sn i+k = {fi+1}k, k ∈ [1 . . . n], i ∈ [0 . . . N − 1],

zj = xdj/ne.

The reconstruction problem now becomes one of finding a function f(x) such

that d>j f(zj) = sj , ∀j ∈ [1 . . . nN ].

It is important to note that, even though the two examples given above

can be represented by the same sampling model, the first one can be decom-

posed into a set of n scalar problems, whereas the second, in general, is a

coupled problem.

1.3 Review of Reconstruction Methods

We provide here an overview of some available methods for the reconstruction

of images from non-uniform samples [10]. This review is restricted to the

6



(a) A rotating object. (b) Axial velocity components

measured by the ultrasound

probe. Arrows represent the vec-

tors si di.

(c) The missing velocity compo-

nent at the sampling locations.

(d) True velocities at the sam-

pling locations (sum of (b) and

(c)).

Figure 1.4: Demonstration of the sampling model in PWD imaging.
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scalar reconstruction problem. Obviously, these techniques can be applied

to the vector problem in a component-wise fashion. Nevertheless, there exist

also some variational techniques that are specifically tailored to vector fields;

these will be discussed in Chapter 2.

1.3.1 Global Fitting Techniques

One of the oldest approach to the interpolation/approximation problem is

based on global polynomial fitting. The required reconstruction is a polyno-

mial of the form

p(x, y) =
Nx∑
i=1

Ny∑
j=1

a(i, j)xi yj ,

where the coefficients are computed such that p(xi, yi) = fi, ∀i ∈ [1 . . . N ],

which amounts to solving a dense system of linear equations. In [11], the au-

thors provide the conditions on the sample locations that guarantee a unique

solution. The downside of this type of approach is that the solution is highly

oscillatory. This is a notorious problem with high-order global polynomial

models.

A similar method for band-limited images with an application to the

reconstruction of potential fields has been proposed in [12, 13], where the

author uses trignometric polynomials (i.e., harmonic basis functions). The

condition there for the uniqueness of the solution is that each Nyquist interval

should contain one sample point. The author proposes a fast DCT-based

algorithm for computing the required coefficients, which is the main strength

of the proposed method.

1.3.2 Distance-Weighted Methods

One of the earliest methods that was proposed for 2D interpolation is Shep-

ard’s method [14]. Given some samples (fi)i∈[1...N ] and their corresponding

locations (xi)i∈[1...N ], the reconstructing function is expressed as

f(x) =
∑N
i=1 ‖x− xi‖−2

fi∑N
i=1 ‖x− xi‖−2

. (1.1)

This method is known as the inverse-distance weighted method, for obvious

reasons. The main problem with this reconstruction is that the function is

not continuous at the data locations. Further, it is computationally expensive

8



to resample on a regular grid, especially when the input data size is large. In

order to overcome these difficulties, a modified method was proposed in [15].

The modified reconstructing function is given by

f(x) =
∑N
i=1 Wi(x)Qi(x)∑N

i=1 Wi(x)
, (1.2)

where (Qi(x))i∈[1...N ] are some quadratic polynomials, and where

(Wi(x))i∈[1...N ] are the modified weight functions. The quadratic polyno-

mials are expressed as

Qi(x, y) = ci1(x− xi)2 + ci2(y − yi)2 + ci3(x− xi)(y − yi)

+ ci4(x− xi) + ci5(y − yi) + fi.

Note that, by construction, these polynomials satisfy the interpolation con-

dition

Qi(xi) = fi, ∀i ∈ [1 . . . N ].

Further, for each Qi(x), the coefficients are chosen such that the following

cost is minimized:

Di =
N∑
j=1

Wj(xi) (Qi(xj)− fj)2 .

The modified weight function Wi(x) of Frank et al. is

Wi(x) =
(
T (Ri − ‖x− xi‖)

Ri ‖x− xi‖

]2
,

where

T (x) =

{
x, if x > 0,

0, otherwise,

and where Ri is the radius of influence for the sample point xi. Note that

the introduction of the quadratic polynomials improves the smoothness at

the sample locations, while the modified weight function results in a more

local computational scheme thereby reducing complexity.

1.3.3 Moving Least-Squares (MLS) Methods

Moving least-squares methods reconstruct the required image by fitting poly-

nomials locally [16]. Let (pj)j∈[1...Q] be a set of polynomials of degree

9



≤ s. The reconstruction problem is now to find a coefficient vector func-

tion c(x) = [c1(x) · · · cQ(x)]> such that

f(x) = c(x)> p(x) (1.3)

yields the required function, where p(x) = [p1(x) · · · pQ(x)]>. For each x,

the value of the coefficient function c(x) is defined as the minimizer of a

quadratic cost functional J that is a function of x, which is given by

J(x) =
N∑
k=1

(
fk − c(x)> p(xi − x)

)2
w(xk − x), (1.4)

where w is a radial-window function. In other words, for each x, f(x) is

obtained first by computing a polynomial that fits the data within a neigh-

borhood defined by w(·−x) in the least-squares sense, and then by evaluating

it at x.

The function c(x) that minimizes J(x) for each x is given by

c(x) =
(
Q> W(x)Q

)−1
Q> W(x) f , (1.5)

where

Q = [p(x1) · · ·p(xN )]>,

f = [f1 · · · fN ]>,

and where W(x) is the diagonal matrix with entries {W(x)}ii = w(xi − x).

Note that Q = 1 when s = 0. Hence, p(x) and c(x) are actually scalars

for this restriction. In this case, the solution takes the simple form given by

f(x) = c1(x) =
∑N
i=1 w(xi − x) fi∑N
i=1 w(xi − x)

.

It is interesting to note that, if w(x) = ‖x‖−2, then the above solution is the

same as Shepard’s solution given by (1.1).

1.3.4 Mesh-Based Methods

Another class of empirical methods that are widely used in the context of

surface reconstruction by the computer-graphics community is a mesh-based

method [17, 18, 19, 20, 21]. First, a mesh is generated by triangulating the

data points. Then, for each triangle, a polynomial surface is fit for its vertices.

Finally, the sum of all the polynomials yields the required surface.

10



1.3.5 Reconstruction in Shift-Invariant Spaces

The problem of reconstructing functions in shift-invariant spaces has been

addressed by many researchers [22, 23, 24, 25, 26, 27, 28]. See [29] for a recent

survey. We present here the method described in [29] with an appropriate

simplification. We start by defining a shift-invariant space: given a so-called

generator φ, a shift-invariant space V(φ) is defined as the space of functions

of the form

f(x) =
∑
k∈Zn

ck φ(x− k) such that
∑
k∈Zn

c2k <∞. (1.6)

In order to make the space V(φ) well-defined, the following condition is im-

posed on the Fourier transform of φ:

0 <≤ âφ(ω) =
∑
j∈Zn

∣∣∣φ̂(ω + j 2π)
∣∣∣2 ≤ B <∞, almost everywhere in ω.

(1.7)

If this condition is satisfied, then the set {φ(· − k)} forms a Riesz basis for

V(φ). This condition ensures that (1.6) is a stable representation. It also

guarantees the existence of a function φ̃ satisfying
〈
φ̃(·), φ(· − k)

〉
= δ(k). It

can be shown that
{
φ̃(· − k)

}
also forms a Riesz basis. The function φ̃ is

called the dual generator. Since the dual generator belongs to V(φ), it can

be expressed as

φ̃(x) =
∑
k∈Zn

bk φ(x− k).

The coefficients bk are determined by the relation

∑
k∈Zn

bk e
−2π k> ω =

(∑
k∈Zn

∣∣∣φ̂(ω + 2π k)
∣∣∣2)−1

.

In other words, (bk) is the discrete inverse Fourier transform of (
∑

k |φ̂(ω +

2π k)|2)−1.

The algorithm to reconstruct a function in V(φ) from a set of its non-

uniform samples relies on the existence of the so-called reproducing kernel.

The reproducing kernel Kx associated with the location x is defined by the

identity

f(x) = 〈f,Kx〉 , ∀f ∈ V(φ).

A sufficient set of conditions for the existence of a reproducing kernel for

every x is (i) that the generator φ is continuous, (ii) that it is absolutely

11



integrable, and (iii) that the sum
∑

k s
2
φ,k is finite, where

sφ,k = esssup φ(x + k), x ∈ [0, 1]n.

If these conditions are satisfied, then the reproducing kernel can be expressed

explicitly as

Kx(y) =
∑
k∈Zn

φ(x− k) φ̃(y − k).

Now, we suppose that, for each x, a unique reproducing kernel exists. Let

(xi)i∈[1...N ] be the set of sampling locations. Then, any function f ∈ V(φ)

can be perfectly reconstructed from its samples (fi)i∈[1...N ] if the associated

reproducing kernels (Kxi
)i∈[1...N ] form a valid frame, or, in other words, when

the functions (Kxi)i∈[1...N ] are such that

A ‖f‖2 ≤
N∑
i=1

|〈f,Kxi〉|
2 =

N∑
i=1

|fi|2 ≤ B ‖f‖2 , ∀f ∈ V(φ),

where A and B are some positive constants independent of f . If this condition

is satisfied, the function can be recovered as

f(x) =
N∑
i=1

〈f,Kxi
〉 K̃xi

(x) =
N∑
i=1

fi K̃xi
(x), (1.8)

where (K̃xi
)i∈[1...N ] is the dual frame. The dual frame, however, is difficult

to find in general; hence, this way of recovering the function is often not

practical.

An indirect way to recover the function using this frame formalism is to

invert the frame operator defined by

Tf(x) = f1(x) =
N∑
i=1

〈f,Kxi
〉 Kxi

(x).

The inverse of the operator T can be expressed as

T−1 =
2

A+B

∑
i∈N

(
I − 2T

A+B

)i
.

Applying this inverse on f1(x) yields

f(x) = T−1f1(x) =
2

A+B

∑
i∈N

(
I − 2T

A+B

)i
f1(x)

= lim
m→∞

fm(x),

12



where

fm(x) =
2

A+B

m∑
i=0

(
I − 2T

A+B

)i
f1(x).

This gives an iterative algorithm where the mth iterate satisfies the recursive

relation

fm =
2

A+B
f1 +

(
I − 2T

A+B

)
fm−1.

The author [29] shows that the reconstruction can also be obtained as the

least-squares fit to the data instead of interpolation, which is attractive in

noisy situations.

1.3.6 Variational Methods

Variational methods provide more robust reconstructions than most other

techniques, especially when the samples are sparsely distributed. This ro-

bustness is achieved by incorporating a so-called regularization. We provide

here a brief overview. A more detailed discussion is provided in Chapter 2.

Given measurements (fi)i∈[1...N ] at locations (xi)i∈[1...N ], the reconstruc-

tion problem is defined as the task of finding f (opt), which is a solution to

the following constrained minimization problem:{
f (opt)(xi) = fi, ∀i ∈ [1 . . . N ],

f (opt)(x) = argminf J(f),
(1.9)

where J(f) is the regularization functional that has the properties of a semi-

norm. The regularization term takes care of the ill-posedness of the problem

and gives a meaningful reconstruction. It typically penalizes the lack of

smoothness. The presence of the regularization is crucial for dealing with

large sampling gaps; it allows these to be filled-in in a smooth way using the

information from the surrounding samples.

The most-widely used regularization functional belongs to Duchon’s fam-

ily of semi-norms [30]. A Duchon’s semi-norm is parameterized by its order

m and has a simple expression in the Fourier domain given by

J(f) =
∫ ∞

−∞
‖ω‖2m |f̂(ω)|2 dω. (1.10)

These semi-norms are invariant to translation, scaling, and rotation of the

function that is measured by them. As a consequence, the reconstruction is

invariant with respect to such transformations of the data. In other words,

13



if we have two data sets that are related by a transformation composed of

translation, rotation, and scaling, then the function reconstructed out of them

will also be related by the same transformation.

The general solution to the above variational problem can be written as

S(x) =
N∑
i=1

wi ψ(‖x− xi‖) +
Q∑
i=k

ak pk(x). (1.11)

It is made up of two terms. The first is a linear combination of so-called thin-

plate splines which are radially symmetric and positioned at the sampling

locations. The second term is a linear combination of bases for the polynomial

space of maximum order (m− 1). Explicit formulæ for the thin-plate splines

can found in Chapter 2 (Equation 2.8).

The optimal weights in (1.11) are determined by solving a system of linear

equations. Specifically, the weights w = [· · ·wi · · · ]> and a = [a0 · · · ap−1]>

are the solution of [
A Q

Q> 0

] [
w

a

]
=

[
f

0

]
, (1.12)

where {A}i,j = ψ(‖xi − xj‖), f = [· · · fi · · · ]T , and {Q}i,j = pj(xi).

This variational method, which is also referred to as the thin-plate spline

method, has become one of the preferred techniques for approximating images

from their non-uniform samples [10]. Recent developments include methods

adopted for space-time interpolations [31] and methods with mixed semi-

norms [32].

Inspired from the above theory, various kinds of basis functions that are

radially symmetric were introduced for the non-uniform sampling problem,

which are collectively known as radial basis functions (RBFs) [33]. Methods

that use such functions for non-uniform interpolation often approach the

problem directly, and independently of any variational view point. The main

ingredients of these methods are discussed in the next section.

1.3.7 Radial Basis Function (RBF) Methods

In the RBF method, one attempts to compute a function of the form

f(x) =
N∑
i=1

wi φ(x− xi) (1.13)
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that satisfies the interpolation conditions

f(xi) = fi, ∀i ∈ [1 . . . N ],

where φ(x) is some radial basis function. This problem is equivalent to solving

the linear system

Aw = f ,

where {A}i,j = φ(xi−xj). Obviously, this problem has a unique solution iff

the so-called distance matrix A is non-singular. Since A is symmetric, the

non-singularity is equivalent to positive-definiteness, which is the condition

that

w> Aw =
N∑
i=1

N∑
j=1

wi wj φ(xi − xj) > 0, ∀w ∈ RN .

This leads to the definition of the so-called positive-definite function [33].

Definition 1 A function φ is called a positive-definite function if, for ev-

ery set of distinct points (xi)i∈[1...N ], and for every set of real numbers

(wi)i∈[1...N ], the quadratic form

N∑
i=1

N∑
j=1

wi wj φ(xi − xj)

is positive.

Hence, one chooses a positive-definite function to compute an interpo-

lating function of the form (1.13). Examples of positive-definite functions

include the Gaussian RBF φ(r) = e−c
2 r2 , and the second-order inverse mul-

tiquadric function φ(r) = 1/
√
r2 + c2, where r = ‖x‖.

This positive definiteness is often overly restrictive. It is not satisfied for

many interesting functions, including thin-plate splines. Micchelli arrived at

a more-general condition [34], which is the so-called conditionally positive

definiteness.

Definition 2 A function φ is called a conditionally positive-definite function

of order m if, for every set of distinct points (xi)i∈[1...N ], and for every set

of real numbers (wi)i∈[1...N ] satisfying
∑N
i=1 wi pj(xi) = 0, ∀j ∈ [1 . . . Q], the

quadratic form
N∑
i=1

N∑
j=1

wi wj φ(xi − xj)
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is positive, where (pj)j∈[1...Q] are the bases for the polynomial space of max-

imum order m.

If a RBF φ is conditionally positive-definite of order m, then the function

of the form

f(x) =
N∑
i=1

wi φ(x− xi) +
Q∑
i=k

ak pk(x), (1.14)

satisfying the interpolation conditions

f(xi) = fi, ∀i ∈ [1 . . . N ],

together with the orthogonality conditions

N∑
i=1

wi pj(xi) = 0, ∀j ∈ [1 . . . Q],

is unique, provided that the sample points satisfy some mild conditions [34].

The weights that yield this unique solution are given by (1.12), where the

sub-matrices involved are appropriately redefined.

In order to provide the condition on the sample locations (xi)i∈[1...N ]

that ensure the uniqueness of the solution, we first define a unisolvent set of

points. A set of points (xi)i∈[1...Q] is called a unisolvent set in (pi)i∈[1...Q]

if, for every set of real numbers (ti)i∈[1...Q], there exists one and only one

function p(x) ∈ span(pi)i∈[1...Q] such that, ∀i ∈ [1 . . . Q], p(xi) = ti. Then,

the condition that ensures the uniqueness of the solution is that the sample

locations (xi)i∈[1...N ] should contain a unisolvent set [34].

Functions that are not positive-definite, but conditionally positive-

definite, include the thin-plate splines, multiquadrics, and inverse multi-

quadrics [35, 36, 37]. In [38, 39], the authors provide a variational inter-

pretation for some functions other than the thin-plate spline such as multi-

quadrics or Gaussians. Of course, if one uses thin-plate splines, the resulting

function corresponds to the variational problem introduced in the previous

section. Further developments include some results on approximation prop-

erties [35, 36], preconditioning [40], fast evaluation methods [41, 42], ap-

proximate methods to handle large data sets [43, 44], compactly supported

RBFs [45], and numerically well-conditioned RBFs [46].
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1.3.8 Comparison of Methods

We compare now some important features of the methods described above.

The features we consider are the following: (i) existence of an explicit ex-

pression for the interpolant; (ii) invariance to rotations; (iii) invariance to

scaling; (iv) ability to handle large sampling gaps; (v) reconstruction quality;

(vi) computational complexity; (vii) numerical conditioning, which refers to

the sensitivity of computations; (viii) robustness to noise; (ix) cost of resam-

pling; and (x) convergence rate. We provide an overview of these comparisons

in Table 1.1.

All methods have an explicit expression of the solution, except the MLS

and the mesh-based ones. The former specifies the solution implicitly in the

form of a system of linear equations for each spatial location. The latter uses

a triangular mesh to specify the solution as a sum of piecewise polynomials

that are defined for each triangular region independently.

Next, we recall that a reconstruction method is regarded as invariant to

some transformation group if the following holds: if we have two data sets

that are related by a transformation, then the function reconstructed out of

them will also be related by the same transformation. The specific invariances

that we are interested in—scale- and rotation-invariances—are satisfied by all

the methods, except the shift-variant space and RBF ones. The latter is not

scale-invariant, whereas the former is neither scale-invariant nor rotationally

invariant.

We examine now their ability to handle sampling gaps. Variational and

RBF methods are the best ones in handling large sampling gap. The least-

efficient ones are the global-fitting and shift-invariant space methods, since

they require a minimum density to ensure the well-posedness of the problem.

Mesh-based and MLS methods handle the gaps moderately well.

With respect to reconstruction quality, variational methods are usually

believed to be the best. Global fitting and Shepard’s method yield the worst

quality.

All global methods, namely (i) global fitting, (ii) variational, and (iii)

RBF methods, have the highest computational complexity, since they require

solving a dense system of linear equations. Among the local ones, mesh-

based methods also have a complexity that is comparable to the global ones,

especially in the presence of regularization. Among the other methods, shift-
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invariant space and MLS methods have the next-highest complexity. The

former employs an iterative procedure, while the later specifies the interpolant

for each point implicitly in terms of a system of linear equations. Modified

Shepard’s method has the least complexity.

Considering the numerical conditioning, we do not observe any specific

problems with the local methods. On the other hand, the global methods,

especially the variational and global-fitting ones, are badly conditioned. The

RBF method is slightly better-conditioned than the other two, provided that

an appropriate basis function is used.

Concerning the robustness, variational method is the most robust one, and

the RBF method can be considered to be in the next level. Among the local

methods, the ones which allow a least-square fit, namely the shift-invariant

space and the MLS methods, can be robust. The other two—Shepard’s and

the mesh-based methods—do not place any particular emphasis on robust-

ness.

The global methods obviously have the highest resampling complexity.

The next highest level of complexity is attained by modified Shepard’s and

by mesh-based methods since they require evaluating multiple polynomials.

The MLS method has an intermediate level of complexity, whereas the shift-

invariant space methods have the lowest complexity, especially if one uses a

compactly supported generating function.

1.4 Main Contributions of the Thesis

The focus of the thesis is on the design of variational methods for recon-

structing scalar and vector functions. The main contributions fall under the

following three headings:

Theory. Starting from general invariance principles, we propose to derive

optimal methods for approximating non-uniform data. In particular,

we provide a complete family of vector-regularization functionals that

result in a reconstruction that is invariant to scaling and rotation of

the input data. The proposed family is general enough to include all

known functionals used for the vector problem so far. We provide the

analytical solution for the projected sampling model using this family

of functionals.
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Table 1.1: Comparison of Non-uniform interpolation methods

Computationally Efficient Algorithms. The main drawback of the an-

alytical methods in the variational formulation is their computational

complexity. A practical contribution of this thesis is the development

of some computationally efficient alternatives for the analytical meth-

ods. The minimization therein is carried out within a uniform B-spline

space. We propose fast multiresolution algorithms for this formulation,

which cut down the computational cost by several orders of magnitude.
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Applications. First, we apply our scalar algorithm to image processing

tasks such as reconstruction of images from sparse feature points, tex-

ture mapping, and more. Second, we demonstrate the potential of our

vector algorithm in clinical echocardiography. Specifically, we show how

the algorithm can be used to recover the full cardiac velocity field from

pulsed-wave Doppler data, and we provide experimental results for real

clinical data. As far as we know, this type of velocity-field reconstruc-

tion has never been attempted before. The results that we obtain are

very promising.

1.5 Organization and Summary of the Thesis

Since the focus of the thesis is on variational methods, we provide an in-

troductory chapter where we establish our notations and give an in-depth

description of state-of-the-art methods in the field (Chapter 2). We then

proceed with the innovative material of our research, which can be organized

under two headings: scalar and vectorials.

1.5.1 Scalar Problem

In Chapter 3, we provide a computationally efficient alternative for Duchon’s

thin-plate spline method. We consider the approximation problem and we

search for the minimizer of the approximation functional within the space of

uniform B-splines. The step size for the B-spline space can be freely speci-

fied by the user; it allows a tradeoff between the computational complexity

and the accuracy (closeness to the analytical solution). The minimization

problem now reduces to finding an appropriate set of B-spline expansion co-

efficients. We show how the coefficients can be computed from a system of

linear equations. The key point is that the linear system is well-conditioned,

in contrast to the analytical method where the linear system involved is ill-

conditioned. Further, the present system is sparse. We derive an algebraic

relation that links together the systems of linear equations specifying recon-

structions at different levels of resolution. We use this relation to develop a

fast multigrid algorithm. We demonstrate the effectiveness of our approach

on several image-reconstruction examples.
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1.5.2 Vector Problem

In chapter 4, we consider the problem of reconstructing a vector field from

non-uniform projected samples, where the term “projected sample” refers to

the directional (scalar) component of the vector value at the sample location,

as in the case of pulsed-wave Doppler imaging (axial velocity). Even though

this model includes conventional sampling as well (full vector sampling), we

are especially interested in situations where the data set contains only one

scalar value at each sample location. We argue that, in order to recover the

full vector field from such kind of data, the regularization functional should

be rich enough to incorporate a priori physical constraints. It should also

provide a realistic smoothing if necessary. To achieve this, it is necessary to

design a family of functionals satisfying generally desirable properties.

To this end, we extend Duchon’s notion of rotational invariance and scale

invariance of semi-norms for vector fields, and find a complete family of func-

tionals having these invariance properties. Notably, we show that the family

is composed of a weighted sum of two distinct parts (sub-functionals): (i)

Duchon’s scalar semi-norm applied on the divergence field; (ii) the same ap-

plied to each component of the rotational field. If we further include the rel-

ative weight of these two parts, we obtain a three-parameter family of vector

semi-norms. Our family is general enough to include all vector formulations

that have been proposed so far.

We provide an analytical solution to the reconstruction problem above.

We show that the solution can be expressed as a weighted sum of vector basis

functions which, in turn, are derived from scalar thin-plate splines. We call

these functions the generalized vector splines. The weights are obtained as

a solution of a system of linear equations. Using numerical examples, we

demonstrate the importance of tuning the parameters of the vector semi-

norm according to the a priori knowledge of the underlying vector field. In

particular, we show how irrotational and solenoidal solutions can be obtained

as limit cases—with respect to relative weights of the sub-functionals— by

choosing unequal orders for rotational and divergence sub-functionals.

In chapter 5, similar to the scalar case, we provide a numerically effi-

cient alternative solution to the problem above, where the minimization is

carried out within a uniform B-spline space. We explicitly construct the sys-

tem of linear equations that yields the B-spline expansion coefficients. We
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also provide a fast multiresolution algorithm. We demonstrate the numerical

advantages of this alternative method.

Finally, we apply our method to recover the cardiac motion field from ul-

trasound pulsed-wave Doppler data. We first provide quantitative validations

on synthetic and real phantom data, and then give reconstruction examples

for clinical data.
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Chapter 2

Review of Variational

Reconstruction Methods

Among the various reconstruction methods available, we have singled out

the variational ones because they have a wider range of applicabilty (e.g.

sparse and noisy samples), and also because they have attractive invariance

properties. These methods were briefly reviewed for the scalar problem in

Section 1.3.6. In this Chapter, we give a more detailed description of the

techniques currently available including some specific ones devoted to the

vector problem.

Notations and Conventions

• We represent vectors by bold faced lower case letters and matrices by

bold faced upper case letters. For example, x is a column vector with

its ith element given by {x}i = xi and X is a matrix with the elements

{X}ij = xij . ei with {ei}j = δ(i− j) is the ith standard basis vector;

in other words, we have x =
∑n
i=1 xiei.

• x = [x1 · · · xn]T usually denotes a spatial location. The notations

[x y]T and [x y z]T are sometimes used to represent 2D and 3D spatial

locations, respectively.

• |µµµ| represent the sum of its elements; i.e.,
∑n
i=1 µi. µµµ! is the product of

the factorials of its elements; i.e.,
∏n
i=1 µi!.
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• We work with functions f : Rn → Rn, n = 2, 3 that represent vector

fields. The scalar product of two vector functions is defined as 〈f ,g〉 =∫
Rn fT (x)g(x)dx. By extension, the notation 〈X, f〉 applied on the

matrix X and a vector f is a vector of scalar products between the

columns of X and f . In other words, y = 〈X, f〉 ⇐⇒ yi =
∑
j 〈xij , fj〉.

• We deal with convolution of matrices and vectors. We define it by

following the same rules of matrix multiplication. Examples: (a) fT ∗
g =

∑
j fj ∗ gj ; (b) yT ∗x = Z means yi ∗xj = zij ; (c) Z ∗x = y means∑

j zij ∗ fj = yi

• The Dirac distribution δ is defined as 〈δ, f〉 = f(0), for every contin-

uous function f . Convolving a function with a Dirac yields the same

function, i.e., δ ∗ f = f . The derivative of the Dirac δ′ is defined as

〈δ′, f〉 = −f ′(0). Consequently, δ′ ∗ f = f ′. More generally, any partial

derivative, for example ∂2f
∂xi∂xj

, can be expressed as
(

∂2δ
∂xi∂xj

)
∗ f .

• 4f denotes the Laplacian of f , which is given by
∑n
i=1

∂2f
∂x2

i
. It can be

represented in the form of a convolution as L(x) ∗ f(x), where L(x) =∑n
i=1

∂2δ
∂x2

i
.

• ∂µµµf denotes ∂|µµµ|

∂x
µ1
1 ···∂xµn

n
f . hmf is the vector of all partial derivative of

the form
√

m!
µµµ! ∂

µµµf such that |µµµ| = m. hm is Duchon’s operator.

• Pm(Rn) is the space of scalar polynomials of order m. Pm(Rn; Rn) is

the space of vector functions whose components are in Pm(Rn).

• We will denote f̂ , Ff , as the Fourier transform of f , f̂(www) =∫
Rn f(x)e−iωωω

T xdx. f̂†(ωωω) denotes the Hermitian conjugate transpose

of f̂(ωωω); i.e., f̂†(ωωω) =
(
fT (ωωω)

)∗.
• The operator ∇ = [ ∂

∂x1
· · · ∂

∂xn
]T plays an important role in our anal-

ysis. When operated on a scalar function f , it yields its gradient given

by ∇f . Its scalar product and the vector product with a vector func-

tion yields its divergence and the curl respectively. In other words,

div f = ∇ · f =
∑n
i=1

∂fi

∂xi
.

rot f = ∇× f = − ∂f1
∂x2

+
∂f2
∂x1

,
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in 2D, and is defined as

rot f = ∇× f =


− ∂f2
∂x3

+ ∂f3
∂x2

− ∂f1
∂x3

+ ∂f3
∂x1

− ∂f1
∂x2

+ ∂f2
∂x1

 ,
in 3D.

• ∂ijf is the short hand notation for ∂2

∂x1∂x2
f.

• D−mL2(Rn) denotes the space of scalar functions whose partial deriva-

tives of order m are in L2(Rn). D−mL2(Rn; Rn) is the space of vector

functions whose components are in D−mL2(Rn). D−mL2(Rn) is known

as the Beppo-Levi space. Wm,2(Rn) is the Sobolev space of order m,

which is the intersection of D−mL2(Rn) and L2(Rn). Wm,2(Rn; Rn) is

the corresponding space of vector functions.

2.1 Variational Reconstruction of Scalar Func-

tions

2.1.1 The Scalar Minimization Problem

We recall the basic variational interpolation problem, which is to determine

the continuously-defined function f(x) that minimizes a suitable regular-

ization functional J(f) subject to the interpolation constraints, f(xi) =

fi, ∀i ∈ [1 : N ].

In practice, the measurements are often noisy or lacking precision, and it is

not necessarily desirable to reconstruct a function f(x) that interpolates the

data fi exactly. One therefore relaxes the interpolation constraint, trading

some closeness of fit against more smoothness on the solution [30, 47]. In

that case, the reconstruction task is formulated as the following minimization

problem:

f (opt)(x) = argmin
f

(
N∑
i=1

(f(xi)− fi)2 + λJ(f)

)
(2.1)

where λ is the so-called regularization parameter that works as a trade-off

factor. It is set up such as to find a compromise between fitting the data

well and penalizing reconstructions that are not smooth enough. Note that,

in this second version, we have an approximation problem rather than an
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interpolation. Interestingly, we can get back to the first case by selecting λ

to be arbitrarily small (but non-zero).

2.1.2 The Regularization Functional

The most widely used regularization functionals are the Duchon semi-norms.

The Fourier domain representation of Duchon semi-norm of order m (integer)

is

Dm(f) =
∫
‖ωωω‖2m |f̂(ωωω)|2dωωω (2.2)

It should be noted that this expression is valid only for functions that belongs

to the Sobolev space of order m, Wm,2(Rn), since, only for these functions,

the Fourier transform of their partial derivatives of order m exist.

In the spatial domain, this semi-norm reads

J(f) = Dm(f) =
∫
‖hmf(x)‖2 dx, (2.3)

where hm is the vector of all partial derivative operators of the form
√

m!
µµµ! ∂

µµµ

such that |µµµ| = m.

Table 2.1 gives the expression for the first lower order instances of hm. In

order to make the reconstruction problem well-defined, one needs to impose

the constraint m > n/2. Note that when m = 1, the functional is equal to

the L2 norm of the gradient. In other words,

D1(f) =
∫
‖h1f(x)‖2 dx

=
∫
‖∇f(x)‖2 dx

Further, it can be shown that, when f is in Wm,2(Rn), D2(f) is equal to the

L2 norm of the Laplacian, i.e.,

D2(f) =
∫

(4f(x))2 dx.

This can be easily verified from the Fourier domain expression.

As mentioned before, an attractive property of the above class of semi-

norms is that they are invariant to translation, scaling, and rotations. In

order to state these properties formally, we first define the following trans-

formations:

fΩ(x) = f(ΩTx),
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Parameters hm

n = 2,m = 1
[
∂
∂x1

∂
∂x2

]T
n = 2,m = 2

[
∂2

∂x2
1

∂2

∂x2
2

√
2 ∂2

∂x1∂x2

]T
n = 3,m = 1

[
∂
∂x1

∂
∂x2

∂
∂x3

]T
n = 3,m = 2

[
∂2

∂x2
1

∂2

∂x2
2

∂2

∂x2
3

√
2 ∂2

∂x1∂x2

√
2 ∂2

∂x2∂x3

√
2 ∂2

∂x1∂x3

]T
Table 2.1: Operators for Duchon’s semi-norms

fa(x) = f(ax),

where Ω is an orthogonal matrix and a is real positive number. Then the

invariances are expressed as

Translation invariance: Dm(f(· − t)) = Dm(f), (2.4)

Rotational invariance: Dm(fΩ) = Dm(f), (2.5)

Scale invariance: Dm(fa) =
1
a2m
Dm(f). (2.6)

These properties can be readily verified from (2.2).

The implication of the rotational invariance of J is that the reconstruction

is rotationally invariant: if f is the function reconstructed from the data

{xi, fi}, then the function reconstructed from {Ωxi, fi} is given by fΩ, where

Ω is an orthogonal matrix. The implication of scale invariance is similar with

a slight modification: if f is the function reconstructed from the data {xi, fi},
then the function reconstructed from {axi, fi} is given by fa, provided that, in

the case of approximation, the regularization parameter is multiplied by a2m.

In summary, it can be stated that the reconstruction operation commutes

with geometric transformations if the regularization functional J is invariant

to them.

The kernel K of the semi-norm J is the space of functions such that

∀f ∈ K, J(f) = 0. For Duchon’s semi-norm Dm, the kernel is the space of

functions such that hmf is zero, which is equal to the space of polynomials

of degree m− 1, Pm−1(Rn).
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2.1.3 The Solution

The solution for the interpolation problem can be written as (cf. [30])

S(x) =
N∑
i=1

wiψ(||x− xi||) +
Q∑
i=k

akpk(x), (2.7)

where wi’s and ai’s are a suitable set of coefficients. Here, (pk(x))k∈[1:Q] are

the bases for the kernel of Dm, which is Pm−1(Rn), and the thin-plate splines

basis functions are given by

ψ(r) =

{
r2m−n log r, if 2m− n is even,

r2m−n, if 2m− n is odd.
(2.8)

The optimal weights for the interpolation problem satisfy[
A Q

QT 0

][
w

a

]
=

[
f

0

]
,

where {A}i,j = ψ(||xi − xj ||), and {Q}i,j = pj(xi).

The solution to the approximation problem is of the same form given by

(2.7), but now the optimal weights should satisfy[
B + λI Q

QT 0

][
w

a

]
=

[
f

0

]
.

It is interesting to note that choosing λ → 0 in the approximation solution

yields the interpolating spline.

Thin-plate splines, which are radially symmetric, are the earliest examples

of radial basis functions (RBFs). Other RBFs were introduced later and the

study of such functions is still an active area of research in computational

mathematics [33].

Since thin-plate splines do not have a finite support, the matrices in the

above system of equation are dense. Also, since the magnitude of the func-

tions grow with distance from the center, the matrices are poorly conditioned.

This makes thin-plate splines impractical and numerically unstable when the

number of samples is large. Despite the solutions that have been proposed for

reducing this complexity and improving the numerical behaviour [41], their

numerical efficiency is still insufficient. Note that one can use alternative

RBFs that have better numerical behavior [46, 38, 39], but their approxima-

tion power is inferior to that of the thin-plate splines.
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2.1.4 The Extended Semi-norm

The semi-norm given in (2.3) is actually a simplified form of the semi-norm

that was actually used by Duchon. The later is given by

Dm,s(f) =
∫
‖ωωω‖2s ‖F hmf‖2 dωωω (2.9)

where s is a real number. In order to make the reconstruction problem well-

defined, the following restrictions are imposed on m and s.

m+ s > n/2

−m− n/2 < s < n/2

To obtain the reconstruction with the above semi-norm, one needs to replace

(2.8) by the following equation for the definition of the thin-plate spline:

ψ(r) =

{
r2(m+s)−n log r, if 2(m+ s)− n is an even integer,

r2(m+s)−n, otherwise.
(2.10)

2.2 Variational Reconstruction of Vector

Functions

Several authors have proposed using variational methods for the reconstruc-

tion of vector functions. Most of the work published in this area is concerned

with interpolation to the complete samples, i.e., samples with full vector val-

ues. Note that the reconstruction problem can be considered as a set of

n scalar reconstruction tasks, even though it may not be optimal to do so.

The landmark interpolation problem is indeed usually addressed in this way

[48]. The interpolation is carried out for each component independently us-

ing Duchon’s thin-plate splines. Surprisingly, even though this approach does

not take into account the vectorial nature of the problem, it has been widely

used by many researchers.

In the context of reconstructing wind velocity field from full vector sam-

ples, it has been pointed out by researchers that treating the components

separately leads to unrealistic fluctuations in the derived divergence and ro-

tational fields. To get more realistic solutions, it has therefore been suggested

that the plausibility criterion should be based on some smoothing operators

on divergence and rotational fields [49].
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In this section, we provide a brief overview of methods that use semi-

norms based on divergence and rotational fields. For all such methods, the

general statement of the problem is as follows: given vector samples (si)i∈[1:N ]

at locations (xi)i∈[1:N ], the reconstruction problem is the task of finding a

function f (opt) such that

f (opt)(xi) = si,∀ i ∈ [1 : N ], and f (opt) ∈ V,

f (opt)(x) = argmin
f

Jdiv,rot(f),
(2.11)

where V is an appropriate space of vector functions, and Jdiv,rot(f) is the

vectorial semi-norm.

Let K be the kernel of Jdiv,rot(f). Then, the part of K that lies inside

V is called the reconstructing kernel Kf , which is given by Kf = K ∩ V.

The elements from Kf are useful because they can be included into the re-

constructing function as much as needed without contributing to the cost

functional. On the other hand, Kf should not be too large. Otherwise, the

problem may not have a unique solution.

To ensure the uniqueness of the solution, the sample points (xi)i∈[1:N ] are

assumed to contain a unisolvent set in Kf [49, 50, 51].

2.2.1 The 2D Problem

Amodei and Benbourhim in [49] address the problem of reconstructing 2D

wind velocity fields. They use the following semi-norm:

Jdiv,rot(f) = αD1(div f) + βD1(rot f) (2.12)

for some non-negative real numbers α and β. The minimization space is the

second order Beppo-Levi space; i.e., V = D−2L2(R2; R2). The reconstructing

kernel Kf in this case is equal to P1(R2; R2). Note that the basis for P1(R2)

is {1, x, y} and hence the basis for P1(R2; R2) is {
(
1
0

)
,
(
0
1

)
,
(
x
0

)
,
(
0
x

)
,
(
y
0

)
,
(
0
y

)
}.

Let (xi = [xi yi]T )i∈[1:N ] be sample locations and let (si = [ui vi]T )i∈[1:N ]

be the sample values. Under the assumption that the sample locations con-

tain a unisolvent set in P1(R2; R2), Amodei and Benbourhim have shown that
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the problem has a unique solution, which is given by

{f (opt)(x)}1 =
N∑
i=1

ai

(
1
α
ψ11(x− xi) +

1
β
ψ22(x− xi)

)

+
N∑
i=1

bi

(
1
α
− 1
β

)
ψ12(x− xi) + c1 + c2x+ c3y,

{f (opt)(x)}2 =
N∑
i=1

bi

(
1
α
ψ22(x− xi) +

1
β
ψ11(x− xi)

)

+
N∑
i=1

ai

(
1
α
− 1
β

)
ψ12(x− xi) + d1 + d2x+ d3y,

where

ψij(x) =
∂2

∂xi∂xj
‖x‖4 log ‖x‖ .

The coefficients are obtained by solving a (2N +6)× (2N +6) linear system.

To specify the solution explicitly, we first define the following:

{Ad}2i−2:2i,2j−2:2j =

[
ψ11(xi − xj) ψ12(xi − xj)

ψ12(xi − xj) ψ22(xi − xj)

]

{Ac}2i−2:2i,2j−2:2j =

[
ψ22(xi − xj) −ψ12(xi − xj)

−ψ12(xi − xj) ψ11(xi − xj)

]

Q =


1 x1 y1
...

...
...

1 x2 y2


P =

[
Q 0

0 Q

]
a = [a1 · · · aN ]T

b = [b1 · · · bN ]T

u = [u1 · · · uN ]T

v = [v1 · · · vN ]T

c = [c1 c2 c3]T

d = [d1 d2 d3]T
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The linear system that yields the required coefficients is then given by(
1
λd

Ad +
1
λc

Ac

)[
a

b

]
+ P

[
c

d

]
=

[
u

v

]
,

PT

[
a

b

]
= 0.

Let f (opt)
ei (x) be the solution obtained by solving the above problem with

β → ∞. Then, the authors show that f (opt)
ei (x) is the same as the solution

to the modified problem, where the semi-norm is Jdiv(f) = D1(div f) and

the reconstruction space is V := {f ∈ D−2L2(R2; R2);D1(rot f) = 0}. The

solution f (opt)
ei (x) is essentially irrotational. It is not exactly irrotational;

it may contain a rigid rotations of the form [−y x]T , since D1(rot f) = 0

is satisfied for rigid forms of rotation. Analogously, let f (opt)
es (x) be the re-

construction obtained by solving the original problem with α → ∞. Then

the authors show that it is the same as the solution to the modified prob-

lem where the semi-norm is Jrot(f) = D1(rot f) and reconstruction space is

V := {f ∈ D−2L2(R2; R2);D1(div f) = 0}. f (opt)
es (x) is essentially solenoidal.

It is not exactly solenoidal for it may contain a velocity component of the

form [x y]T , which satisfies D1(div f) = 0.

2.2.2 The 3D Problem

The 3D reconstruction problem has been solved by Dodu and Rabut in [50].

These authors also use a more general semi-norm, which is given by

Jdiv,rot,m(f) = ρDm−1(div f) +
3∑
i=1

Dm−1 ({rot f}i) , (2.13)

and the reconstruction space is V = D−mL2(R3; R3). The reconstructing

kernel is Pm−1(R3; R3).

Using the theory of abstract splines [52], the authors prove that a unique

solution exists provided that the sample locations contains a unisolvent set.

Similar to the previous case, the solution is expressed as weighted sum of basis

functions located at the sample points. In oder to provide the expression for

the solution, we first define the following n× n matrix basis function:

Ψ =
1
α
Ψd +

1
β
Ψc (2.14)
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where

Ψd = (−1)m


∂2
11ψ ∂2

12ψ ∂2
13ψ

∂2
12ψ ∂2

22ψ ∂2
23ψ

∂2
13ψ ∂2

23ψ ∂2
33ψ



Ψc = (−1)m


(∂2

22 + ∂2
33)ψ −∂2

12ψ −∂2
13ψ

−∂2
12ψ (∂2

11 + ∂2
33)ψ −∂2

23ψ

−∂2
13ψ −∂2

23ψ (∂2
11 + ∂2

22)ψ


with ψ being defined by

ψ(x) =
−1

4π(2m)!
‖x‖2m−1

.

The solution is given by

f (opt)(x) =
N∑
i=1

Φ(x− xi)ai +
Q∑
k=1

bipk(x) (2.15)

where (pk)k∈[1:Q] is basis for Pm−1(R3; R3), and (ai ∈ R3)i∈[1:N ] and

(bi)i∈[1:Q] are some vector and scalar coefficients respectively. The coefficients

are obtained by solving a (3N + Q) × (3N + Q) linear system of equations.

To specify the system, we define the following:

{A}3(i−1)+k,3(j−1)+l = {Ψ(xi − xj)}k,l,

∀ i, j ∈ [1 : N ], ∀ k, l ∈ [1 : 3].

{Q}3(i−1)+k,j = {pj(xi)}k,

∀i ∈ [1 : N ], ∀j ∈ [1 : Q], ∀k ∈ [1 : 3].

{a}3(i−1)+k = {ai}k,

∀i ∈ [1 : N ], ∀k ∈ [1 : 3].

{s}3(i−1)+k = {si}k,

∀i ∈ [1 : N ], ∀k ∈ [1 : 3].

{b}i = bi,

∀i ∈ [1 : Q].

The linear system is now given by[
A Q

QT 0

][
a

b

]
=

[
s

0

]
(2.16)
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Here too, as in the case of 2D, the limit cases ρ → ∞ and ρ → 0 yield

essentially divergence-free and rotation-free solutions respectively—especially

when m is small. If it is required to get a true divergence-free or rotation-free

solution, one needs to choose m = 1, which poses a technical problem: the

elements of D−1L2(R3; R3) are not continuous.

This divergence-free (solenoidal) and rotation-free (irrotational) inter-

polation problem is treated separately by the same authors in [51]. To

this end, the authors consider the irrotational and solenoidal subspaces of

D−mL2(R3; R3), which are defined by

Vm,irr = {f | f ∈ D−mL2(R3; R3); rot f = 0} (2.17)

Vm,sol = {f | f ∈ D−mL2(R3; R3); div f = 0}, (2.18)

Now, the solenoidal and irrotational interpolation solutions are defined by

f (opt)
irr (xi) = si,∀ i ∈ [1 : N ], and f (opt)

irr ∈ Vm,irr,

f (opt)
irr = argmin

f
Dm−1(div f).

(2.19)

f (opt)
sol (xi) = si,∀ i ∈ [1 : N ], and f (opt)

sol ∈ Vm,sol,

f (opt)
sol = argmin

f

3∑
i=1

Dm−1({rot f}i).
(2.20)

Let Kirr and Ksol be the reconstructing kernel for irrotational and solenoidal

problems respectively, which are defined by

Kirr = {f | Dm−1(div f) = 0; f ∈ Vm,irr}

Ksol =

{
f |

3∑
i=1

Dm−1 ({rot f}i) = 0; f ∈ Vm,sol

}
It can be shown that these spaces are given by

Kirr =
{
f | ∃g ∈ Pm−1(R3) : f = ∇g

}
Ksol = {f | ∃g ∈ Pm−1(R3; R3) : f = rotg}

Let (pk)k∈[1:Q1]
and (qk)k∈[1:Q2]

be the bases for Kirr and Ksol respectively.

The authors show that the irrotational problem has a unique solution if

the sample set contains a unisolvent set in Kirr. The solution is given by

f (opt)
irr (x) =

N∑
i=1

Φd(x− xi)ai +
Q1∑
k=1

bipk(x).
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where the coefficients are given by the same equation (2.16), but the matrices

A and Q are now defined by

{A}3(i−1)+k,3(j−1)+l = {Ψd(xi − xj)}k,l,

∀ i, j ∈ [1 : N ], ∀ k, l ∈ [1 : 3],

{Q}3(i−1)+k,j = {pj(xi)}k,

∀i ∈ [1 : N ], ∀j ∈ [1 : Q1], ∀k ∈ [1 : 3].

Similarly, it is proved that the solenoidal solution has a unique solution if the

sample set contains a unisolvent set in Ksol, and the solution is given by

f (opt)
sol (x) =

N∑
i=1

Φc(x− xi)ai +
Q2∑
k=1

biqk(x).

The matrices A and Q in this case become

{A}3(i−1)+k,3(j−1)+l = {Ψc(xi − xj)}k,l,

∀ i, j ∈ [1 : N ], ∀ k, l ∈ [1 : 3]

{Q}3(i−1)+k,j = {qj(xi)}k,

∀i ∈ [1 : N ], ∀j ∈ [1 : Q2], ∀k ∈ [1 : 3]

In sequel, we will first propose a more efficient computational solution for

the scalar thin-plate interpolation/approximation problem (Chapter 3). We

will then consider the vector problem and propose some practically relevant

generalizations (Chapter 4). We will also consider several applications in

image processing (Chapter 3) and ultrasound imaging (Chapter 5).
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Chapter 3

Scalar Image

Reconstruction from

Non-Uniform Samples: A

Fast Multiresolution

B-spline Solution

Summary

We propose a novel method for image reconstruction from non-uniform sam-

ples with no constraints on their locations. We adopt a variational approach

where the reconstruction is formulated as the minimizer of a cost that is a

weighted sum of two terms: (i) the sum of squared errors at the specified

points; (ii) a quadratic functional that penalizes the lack of smoothness. We

search for a solution that is a uniform spline and show how it can be deter-

mined by solving a large, sparse system of linear equations. We interpret the

solution of our approach as an approximation of the analytical solution that

involves thin-plate splines and demonstrate the computational advantages of

our approach. Using the two-scale relation for B-splines, we derive an alge-

braic relation that links together the linear systems of equations specifying
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reconstructions at different levels of resolution. We use this relation to de-

velop a fast multigrid algorithm. We demonstrate the effectiveness of our

approach on some image reconstruction examples.

This chapter is largely based on our article [53].

3.1 Motivation and Main Contributions

Our goal in this chapter is to develop a numerically efficient algorithm to

reconstruct images from non-uniform samples. We adopt the variational ap-

proach, since we do not intend to impose any restriction on the distribution of

sample locations, and also, since we are interested in handling noisy samples,

we choose the approximation method.

As seen Chapter 2, the optimal solution for this problem is given by

Duchon’s method, where the regularization functional belongs to a class

of rotationally invariant semi-norms; the general solution is expressed as a

weighted sum of thin-plate splines placed at the sample locations (cf. Equa-

tion (2.7)). Unfortunately, there are some practical limitations with this type

of formulation. First, the weights have to be computed through a poorly

conditioned linear system of equation, which is the main draw back of this

method. Second, the matrix is not sparse. Hence, solving the system soon

becomes overly expensive; the complexity is in O(M3), where M is the num-

ber of sample points. Various solutions have been proposed for reducing this

complexity and improving the numerical behaviour [41], but there is still a

long way to go for making them practical. Another fundamental limitation is

that computing the weights is only a part of the effort. Indeed, the solution

has to be resampled numerically if it is to be displayed on a regular grid; this

will cost an additional O(MN) operations, where N is the number of grid

points.

In 1D, the situation is not as dramatic because the optimal solution can be

expressed in terms of non-uniform B-splines which are compactly supported

as opposed to the thin-plate splines which are not; this is the key for ob-

taining an efficient solution [54]. Unfortunately, this is not possible in higher

dimensions; i.e., there are no compactly supported functions that reproduce

thin-plate splines.

In this chapter, we provide a computationally efficient alternative to the

38



thin-plate spline method, where we use the same class of semi-norms for

regularization, but where we choose to carry out the minimization of the

approximation functional within the space of uniform B-splines. The key

difference is that the basis functions are now attached to the reconstruction

grid, as opposed to the data points. In other words, we are proposing to

discretize thin plate splines using uniform B-splines with a degree that is

matched to the underlying semi-norm. In this way, we have at least the

guarantee that the solution in 1D coincides with the theoretical one, provided

that the sample points are on the reconstruction grid. This helps to say

qualitatively that the solution in general will not be very different from the

exact analytical one.

The proposed approach has many advantages over the optimal method.

First, the linear system for getting the B-spline coefficients is well-

conditioned. Second, the system matrix is sparse resulting in much faster

computation. Third, the formulation lends itself quite naturally to an effi-

cient multiresolution and multigrid implementation, thanks to an interscale

relation that is derived in this chapter. This reduces the complexity of solving

the linear system to O(N), where N is the number of grid points. Fourth,

after solving the linear system, there is no expensive resampling step as in

thin-plate spline reconstruction. The samples at the grid locations are ob-

tained by a simple digital filtering [55].

The present algorithm is flexible. One can reconstruct the image at any

desired resolution (step size a); the solution will converge to the analytical one

as a gets sufficiently small—the rate is given by the order of the spline. Since

the computational complexity (number of unknown B-spline coefficients) is

inversely proportional to a, it is a trade-off parameter that allows a compro-

mise between the complexity and the accuracy. Another interesting points is

that the complexity is essentially independent of number and location of the

data points, and it primarily depends on the required resolution a.

This chapter is organized as follows. In Section 2.2, we discuss about the

link between thin-plate splines and B-splines and provide some qualitative ar-

guments for the suitability of B-splines to approximate thin-plate splines. In

Section 2.3, we present our B-spline formulation and derive the corresponding

linear system of equations. We also derive the interscale relation that relates

the system matrices at various levels of resolution. We present the algorithm
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in Section 2.4 and give the experimental results in Section 2.5.

3.2 Thin-plate Splines and B-splines

For the unidimensional problem, the thin-plate spline is given by φ(x) =

|x|2p−1, which is a polynomial of degree 2p− 1, with a discontinuity of order

2p − 2 at the origin. This implies that the solution is a polynomial spline

of degree 2p − 1 with knots at the xi’s. It turns out that these splines have

basis functions, the so-called non-uniform B-splines, which are compactly sup-

ported and therefore much better conditioned than the radial basis functions

[54, 56]. The corresponding numerical technique is called “smoothing splines”

and is widely used in practical applications [57]. In the special case where

the samples are uniformly spaced, i.e. xi = i · a, there is still another simpli-

fication since all the B-splines become shifted replicates of each other. The

corresponding solution can be represented as S(x) =
∑
k ckβ

2p−1(x/a − k),
where β2p−1(x) is the central B-spline of degree 2p− 1. This means that the

approximation problem can be discretized exactly if we work with B-splines

of size a. Moreover, the expansion coefficients ck of the smoothing spline can

be evaluated very efficiently by recursive digital filtering [55]. Now, if there

are gaps in the samples but the available ones are positioned on the grid

(integer multiples of a), then the solution can still be expressed as a linear

combination of B-splines with step size a, but the algorithm does not have a

simple filtering interpretation anymore. The two cases of interest to us are

p = 1 and p = 2, which lead to piecewise linear and cubic spline solutions,

respectively.

Unfortunately, for dimensions higher than one, there are no compactly

supported functions that span the same space as the thin-plate splines. Thus,

a uniform B-spline discretization of the problem is not rigorously exact any-

more. However, a B-spline basis with a degree that is matched to p remains

the best possible choice among all tensor product shift-invariant bases, be-

cause it has a high enough order of differentiation and it is compatible with

the optimal 1D solution. The slight discrepancy with the optimal analytical

solution that this may generate is largely compensated by the computational

advantages (sparse matrices, multi-resolution) provided by this type of repre-

sentation. Additionally, the error can be made arbitrarily small by decreasing
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the sampling step a. In this last respect, B-splines offer another advantage:

for a given support size, they are the refinable functions that result in the

smallest discretization error [58]. Specifically, for the B-spline of degree n

which is of support L = n + 1, the approximation error decays like O(aL),

which is the maximum rate possible [59]. In other words, they provide the

best quality for a given computational cost.

3.3 B-spline Discretization and the Solution

In this section, we present the proposed B-spline discretization of the problem

and specify its solution. We discretize the variational reconstruction problem

by searching for the optimal solution within the space of uniform splines.

3.3.1 B-spline Formulation

Given a set of noisy measurements {fi} of the image at sampling locations

{xi, yi}, the approximation problem is now to find a uniform spline S(x, y)

of the form

S(x, y) =
(N−1)∑
l=0

(N−1)∑
k=0

ck,lβ
n(x/a− k)βn(y/a− l) (3.1)

such that

C(S) =
∑
i

|S(xi, yi)− fi|2 + λ

∫ ∫
||DpS||2dxdy (3.2)

is minimized. Obviously, the degree of the B-spline should be chosen such

that the regularization term does not blow up; i.e., n ≥ p.
The analytical part of this discretization process is to express the second

part of the cost function in term of the expansion coefficients ck,l. The

regularization term is∫ ∫
||DpS||2dxdy =

∑
q1+q2=p

(
p

q1

)
Dq1,q2

where

Dq1,q2 =
∫ ∫ [

∂pS(x, y)
∂xq1∂yq2

]2
dxdy
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Define αq,a(x) = dq

dxq β
n(x/a). Then

Dq1,q2 =
∑
l,n

∑
k,m

ck,lcm,n[∫
αq1,a(x− k)αq1,a(x−m)dx

]
[∫

αq2,a(y − l)αq2,a(y − n)dy
]
,

which yields

Dq1,q2 =
∑
l,n

∑
k,m

ck,lcm,nηq1((m− k)a)ηq2((n− l)a)

where

ηq(x) =
dq

dxq
βn(x/a) ∗ dq

dxq
βn(−x/a) (3.3)

Define,

γq(k) = ηq(ka)

rq1,q2(k, l) = γq1(k)γq2(l) (3.4)

Then

Dq1,q2 =
∑
l,n

∑
k,m

ck,lcm,nrq1,q2(m− k, n− l)

=
∑
k,l

ck,l
∑
m,n

cm,nrq1,q2(m− k, n− l)

= 〈rq1,q2(k, l) ∗ ck,l, ck,l〉

Hence, ∫ ∫
||DpS||2dxdy =

∑
q1+q2=p

(
p

q1

)
〈rq1,q2(k, l) ∗ ck,l, ck,l〉

Finally, ∫ ∫
||DpS||2dxdy = 〈r(k, l) ∗ ck,l, ck,l〉

with r(k, l) =
∑
q1+q2=p

(
p
q1

)
rq1,q2(k, l); in other words, the regularization

term is a quadratic form of the ck,l’s with a special convolutional structure.

In the filter component (3.4), γq(k) is the discrete B-spline kernel of order

2n−2q+1, convolved with the finite difference operator of order 2p. This can

be verified by using the following properties of splines [55]: (i) the derivative

of a B-spline is a B-spline of reduced degree convolved with a finite difference
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operator; (ii) the convolution of two B-splines results in a B-spline of increased

order. Table 3.1 gives the regularization filters for the first order and the

second order semi-norms.

p R(z1, z2)

1
42
∗(z1)B

2n−1(z1)B2n+1(z2)+

42
∗(z2)B

2n−1(z2)B2n+1(z1)

2

1
(a)2

[
44
∗(z1)B

2n−3(z1)B2n+1(z2) +

242
∗(z1)B

2n−1(z1)42
∗(z2)B

2n−1(z2)+

44
∗(z2)B

2n−3(z2)B2n+1(z1)
]

Table 3.1: Regularization filters. 42n
∗ (z) = (z − 2 + z−1)n (central

finite difference operator of order 2n); Bn(z) =
∑n/2
k=−n/2 β

n(k)z−k

(discrete B-spline kernel of degree n).

To introduce the corresponding matrix formulation, we define the coeffi-

cient and data vectors

c = [c0,0 · · · cN−1,0 · · · cN−1,N−1]T .

f = [· · · fi · · · ]T .

Then the cost is given by

C(S) = ||f − Sc||2 + λcTRc

where

{S}i,Nl+k = βn(xi/a− k)βn(yi/a− l),

and R is a block-circulant matrix that correspond to the discrete filter r(k, l).

Through vector differentiation, we get the minimizer of the above cost as a

solution of the following equation:

[D + λR] c = b (3.5)

where D = STS and b = ST f .
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3.3.2 Interscale Relation

Let us now consider signal reconstructions at different scales. Specifically, let

2j be the reconstruction grid size (scale j) and

Sj(x, y) =
(N−1)/2j∑

l=0

(N−1)/2j∑
k=0

c
(j)
k,lβ

n(x/2j − k)βn(y/2j − l) (3.6)

be the reconstructing function. A key property of the central B-spline of odd

degree is the two-scale relation:

βn(x/2j) =
∑

h(k)βn(x/2j−1 − k) (3.7)

where h(k) = 2−n
(
n+1
k

)
is the binomial filter. Consider a set of coefficients

{c(j)k,l} representing a 2D signal at scale j. It is well known from wavelet

theory [60, 61] that the same signal can be represented at scale j − 1 by

the coefficients {c̃(j−1)
k,l } that are obtained by upsampling {c(j)k,l} and filtering

with h. The schematic is given in the figure 3.1(a) where h(k, l) = h(k)h(l).

This operation can be represented by a matrix, Uj , that is obtained from

the circulant matrix corresponding to the filter h(k, l) after suppression of

its odd index columns. The adjoint operation is the downsamping operation

represented in the figure 3.1(b). The equivalent matrix is UT
j .

h k l( , )
ck l

j
,

( )
˜ ,

( )ck l
j−1

( , )2 2 h k l( , )( , )2 2

(a) Upsampling operation

h k l( , ) ( , )2 2

(b) Downsampling operation

Figure 3.1:

The coefficient vector cj = [· · · c(j)k,l · · · ] of the image reconstruction at

scale j must satisfy the equation

Ajcj = bj , (3.8)

with Aj = Dj + λRj where the matrices Dj and Rj are defined as in the

previous section with a being replaced by 2j . The block circulant matrix Rj
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is generated from the filter

rj(k, l) =
∑

q1+q2=p

rq1,q2,j(k, l)

where

rq1,q2,j(k, l) = γq1,j(k)γq2,j(l), (3.9)

γq,j(k) = ηq,j(k2j), (3.10)

ηq,j(x) =
dq

dxq
βn(−x/2j) ∗ dq

dxq
βn(x/2j) (3.11)

The following theorem gives an important property of the filters

{rq1,q2,j(k, l)}.

Theorem 1 The filters {rq1,q2,j(k, l)} satisfy

rq1,q2,j+1(k, l) = [ha(k, l) ∗ rq1,q2,j(k, l)]↓(2,2)

where ha(k, l) = h(k, l) ∗ h(k, l) with h(k, l) being the 2D version of the

binomial filter in the two-scale relation (3.7), and where ↓ (2, 2) denotes

down sampling by a factor of 2 in each dimension.

Using the above theorem, we prove the following:

Corollary 1 The system matrices at scales j and j + 1 are related by

Aj+1 = UT
j AjUj (3.12)

bj+1 = UT
j bj (3.13)

where Uj is the subsampling matrix described in this section.

Proof: Applying the two-scale relation, we get Sj+1 = SjUj . Hence

bj+1 = STj+1f = UT
j STj f = UT

j bj

and

Dj+1 = STj+1Sj+1 = UT
j STj SjUj = UT

j DjUj (3.14)

Now, consider UT
j RjUj . The equivalent filter is [ha(k, l) ∗ rj(k, l)]↓2. By

Theorem 1, it is equal to rj+1(k, l), which is equivalent to writing

Rj+1 = UT
j RjUj (3.15)

Combining (3.14) and (3.15), we get

Aj+1 = UT
j AjUj .

�
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3.4 Reconstruction Algorithm

We have shown that the reconstruction problem is equivalent to solving a sys-

tem of linear equations (cf. (3.5)). A key property is that the present system

is sparse and well-conditioned in contrast with the thin-plate spline method

where the matrix is dense and ill-conditioned. We also have the flexibility

to choose the step size a with the guarentee that the solution converges to

the analytical one (thin-plate spline) when a is sufficiently small. The main

difficulty here is that the number of unknowns {ck,l} for a given step size a

is typically very large. Therefore the choice of the method for solving the

linear system becomes crucial in order to do the reconstruction in affordable

time. Enabled by the right choice of the basis functions and our theorem

on interscale relation, we develop an efficient multiresolution algorithm to

achieve fast reconstruction.

3.4.1 Multiresolution Strategy

Since the dimension of the linear system is very large and depends upon the

resolution of reconstruction, one naturally thinks of multiresolution.

Let a0 be the required resolution and N = 2J + 1. Then the coarsest

resolution will be 2J−1a0. The idea is to solve cJ−1 exactly and to interpolate

the solution to the next finer scale using the two-scale relation for B-spline

[55]. This serves as initialization for the computation of cJ−2 and so on. At

the end of the process, c0 gives the reconstruction at the required resolution.

Note that the regularization matrix Rj has a generic form independent

of the resolution, while the matrix Dj is clearly scale-dependent since it is

defined by the sample points. Because of the compact support of B-splines,

the cost for the direct evaluation of Dj is the same at each scale and is

proportional to the number of data points, which is typically quite large. To

cut down on this cost, we evaluate the matrix at the fine scale and use our

inter-scale relation to derive the matrices at coarser resolutions. Here the

computation is by sparse matrix multiplication which makes the complexity

now depend on the resolution level. This enables us to compute all the

matrices very efficiently with complexity O(N × N); that is, a complexity

that is proportional to the number of grid points (i.e., the number of unknown

B-spline coefficients).
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We handle the computation of the coefficient vectors at each scale from

their initializations using the multigrid iteration described below.

3.4.2 Multigrid Iteration

A multigrid iteration is obtained by using classical iterators as the building

blocks. We first describe the classical iterative scheme and then the multigrid

iteration. A classical iterative scheme gives a way to get a refined estimate

of the solution from a given estimate. Let c(k)
j be the current estimate of the

solution for level j. A refinement step is represented as follows:

c(k+1)
j = c(k)

j + ωÂ−1
j (bj −Ajc

(k)
j ) (3.16)

where Â−1
j denotes an approximate inverse and ω is a damping factor. For

the estimate c(k)
j , the error ej and the residue rj are given by

ej = cj − c(k)
j

rj = bj −Ajc
(k)
j

When Âj in (3.16) is the diagonal of Aj , then the iterator is called damped-

Jacobi; if instead it is the lower triangular part of Aj , the algorithm yields

the so-called Gauss-Seidel iterator. See [62] for a comprehensive treatment

of such numerical schemes.

It is important here to note that such iterators have a smoothing effect

on the error. The larger k, the smoother the error, and for sufficiently large

k, there will not be significant improvement in the error anymore. Since the

error is smooth after a few relaxations (iterations), it can be well represented

at lower resolution. In other words, one can try to compute the error at a

coarser scale.

To do this we first consider the residual equation:

Ajej = rj

Then the computation of error is formulated as

Aj+1c̃j+1 = b̃j+1

where b̃j+1 is obtained by filtering and downsampling rj ; that is,

b̃j+1 = UT
j rj
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Here c̃j+1 is the lower dimensional version of the error to be computed. c̃j+1

is computed by the same iterative scheme with zero initialization. Afterwards

one gets back the error ej = Uj c̃j+1, which is used to correct c(k)
j . This is

called coarse-grid correction.

The advantage is twofold. First, it is computationally efficient to iterate

in lower dimension. Second, a smooth error becomes somewhat bumpier at a

coarser resolution. Hence, relaxation on the coarser grid further reduces the

error. However, the coarse grid correction is not perfect and also introduce

some amount of non-smooth error. Hence it is customary to do a few re-

laxations after coarse-grid correction. The overall scheme is computationally

more effective than relaxation at the finest grid. However, when the dimen-

sion of the system at the coarser grid is large, relaxation will also stall there.

Since the problem here is exactly the same as the original one, one can think

of applying the same three-step procedure recursively. This is called a multi-

grid V-cycle [63, 62]. Figure 3.2 gives the schematic of multigrid V-cycle.

Here ĉj is the initialization for V-cycle that is obtained by interpolating cj+1

(solution for the level j + 1) using the B-spline two-scale filter.

Whenever applicable, multigrid algorithms are extremely efficient; in fact,

they are among the best numerical methods available. There are also some

general convergence proofs [62] that are directly applicable to our case be-

cause of the existence of the interscale relation (3.12) that relates the systems

of equations at successive scales.

The parameters that affect the computational complexity of a multigrid

V-cycle are the number of iterations before and after the coarse-grid correc-

tion, n1 and n2 respectively.

3.4.3 Implementation Issues

The forgoing discussions cover the main philosophy of our method. However,

to get the full benefit of the multiresolution/multigrid algorithm described

above and to make the algorithm almost real-time, efficient implementation

of the building blocks in the algorithm is crucial. The implementation should

meet stringent constraints on computational complexity and storage require-

ments.

To get a flavor of what is involved, let us consider the structure of the

matrix A0 or D0 for cubic reconstruction. The matrix is block-band diagonal
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† 

Vcycle(A j ,b j ,n1,n2)

† 

Iterate n1 times
     (A j ,b j )

† 

Compute residue
r j = b j - A jc j

(n1 )

† 

Reduce

† 

Vcycle(A j +1, ˜ b j +1,n1,n2)

† 

Expand

† 

Iterate n2 times
     (A j ,b j )

† 

ˆ c j

† 

ˆ c j

† 

0

† 

c j
(n1 )

† 

r j

† 

˜ c j +1

† 

e j

† 

c j

† 

c j

† 

˜ b j +1

Figure 3.2: Schematic of multigrid V-cycle
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of width seven, and each block is band-diagonal of width seven. The whole

matrix is symmetric and each block in the matrix is symmetric as well. In

our implementation, we exploit this structure to reduce storage requirements.

The non-redundant elements are stored in a sparse format without explicit

indexing. The basic matrix iterators and modules (especially Gauss-Seidel

iteration) are coded specifically for this sparse format.

The sample matrix D0 is computed from the sample points directly into

the above mentioned sparse format. The matrices A1, . . . ,AJ−1 are also

precomputed using relation (3.12) directly into the sparse format exploiting

the special structure of Uj . In this way, we are able to compute the ma-

trices A1, . . . ,AJ−1 with around 20(N × N) multiplications in the case of

reconstruction with linear splines.

3.5 Experimental Results

For our experiments, we consider three kinds of scenarios: (i) reconstruction

from a subset of samples of a given digital image; (ii) reconstruction after

a geometric transformation of a given image; and (iii) reconstruction from

sparse samples of a synthetic phantom. In the first case, the inputs sample

points are obtained by randomly choosing the pixels or choosing the pixels

along some selected contours. In the second case, the input sample points

are obtained by a geometric transformation of a uniform grid points. In the

last case, we choose samples from a synthetic phantom along some lines. We

provide the samples to our algorithm in a list format {xi, yi, fi}.
In all our experiments we consider two settings: (i) linear spline recon-

struction with Duchon’s first semi-norm as the regularization; (ii) cubic spline

reconstruction with Duchon’s second semi-norm as the regularization. Unless

stated otherwise, we adjusted λ empirically for the best visual results. We

observed that the most favorable value of λ is image specific and typically

proportional to the noise variance when the data is corrupted by noise.

3.5.1 Reconstruction from Incomplete Data

For the experiments in this category, we define the reconstruction error as

er = ||Io−Ir||
||Io|| , where Io is the original image and Ir is the reconstructed

image. Note that this will be an underestimate of the performance of the
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Figure 3.3: Reconstruction error for various degrees of subsampling

algorithm—especially when the initial data is sampled arbitrarily—since it

does not correspond to the objective function that we minimize in our for-

mulation of the problem.

We first applied the algorithm on a face image. We sub-sampled the im-

age by applying a binary mask obtained by thresholding the Laplacian of the

image. Figure 3.3 gives the reconstruction error for both linear and cubic

reconstructions for various numbers of input samples. Cubic spline recon-

struction gives lower reconstruction error as one would expect. Figure 3.4

compares the reconstructed images from 20% of the samples. This example

demonstrates that our algorithm is able to handle both large and small gaps

simultaneously in an efficient way.

In figure 3.5, we give lower resolution reconstructions from the same set

of samples. One can clearly see the artifacts; they are somewhat reduced in

the case of cubic spline reconstruction.

Figure 3.6 displays reconstruction results for an MRI brain image. The

reconstruction was from 30% of samples that were retained in the same way as

in the previous experiment. In this case, the improvement of the cubic spline

reconstruction over the linear one is more visible even though both images
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(a) Original image (b) 20% of samples

(c) Reconstructed image using linear

splines

(d) Reconstructed image using cubic

splines

Figure 3.4: Reconstruction from high Laplacian points. Sampling

density: 20%
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(a) Linear spline reconstruction with

a = 4

(b) Cubic spline reconstruction with

a = 4

(c) Linear spline reconstruction with

a = 8

(d) Cubic spline reconstruction with

a = 8

Figure 3.5: Lower resolution reconstruction
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have same reconstruction error. The image from linear spline reconstruction

shows more bright spots than that of cubic spline reconstruction. This is due

to the fact that the contours are less prominent than those of the previous

image and that regularization with second order semi-norm is more suitable

when there are discontinuities in the contours. Figure 3.7 shows the images

for a larger smoothing factor. In this case as well, both cubic spline and

linear spline reconstructions have the same reconstruction error. However,

cubic spline reconstruction is smoother than the linear one with less artifacts

(bright spots). Figure 3.8 gives lower resolution reconstructions of the MRI

image from the same set of samples as in the figure 3.6. One can clearly see

the artifacts in this case too.

The above examples demonstrate the ability of the algorithm to recon-

struct data when there are large sampling gaps, something that is typically

not possible with the reconstruction algorithms for bandlimitted functions

mentioned in the introduction [12, 13]. However, we must admit that our

algorithm will fill the sampling gaps smoothly by extrapolating the available

information (samples). For this reason, it cannot correctly recover image

parts for which the contour or texture information has been lost. Note that

this effect may also be used to our advantage for suppressing unwanted ob-

jects or features in images, as demonstrated in the next example. Here, we

started with the contour map of 3.4(b) and applied a coarse binary mask to

suppress all samples in the regions of the round spot on the face and the

rose in the lower left corner. The corresponding reconstruction is given in

Figure 3.9. It is still looking realistic, even though the selected objects have

entirely disappeared. This is due to the regularization term that smoothly

extrapolates the missing pixel values from the surroundings.

The proposed algorithm is obviously also applicable to the case of ran-

dom sub-sampling, which is the context in which reconstruction algorithm

for band-limited functions are usually tested [12, 13]. An example of such

a reconstruction is given in Figure 3.10. As one would expect, the qual-

ity is inferior to that obtained with the reconstruction from high-Laplacian

points using the same percentage of samples (er = 0.0204 vs. 0.0145). We

have verified experimentally that the reconstruction errors obtained under

these conditions are essentially equivalent to those of alternative techniques

for bandlimited functions, provided that the reconstruction parameters are
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(a) Original image (b) 30% of samples

(c) Reconstructed image using linear

spline. λ = 1.5848× 10−3

(d) Reconstructed image using cubic

spline. λ = 1.5848× 10−3

Figure 3.6: Reconstruction from high Laplacian points. Sampling

density: 30%
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(a) Reconstructed image using linear

spline. λ = 7.9430× 10−1

(b) Reconstructed image using cubic

spline. λ = 7.9430× 10−1

Figure 3.7: Effect of λ

matched (same reconstruction density and λ small). This behavior is consis-

tent with the property that a cubic spline is a very good approximation of a

bandlimited function [64], and that our algorithms provides the least squares

solution as λ tends to zero (data term only). A very significant advantage of

our method is its computational speed: this is due to two important ingredi-

ents that are specific to our formulation: (1) the use of compactly supported

basis functions, and (2) a most efficient multi-grid algorithm that can solve

the linear system of equations with a complexity that is essentially propor-

tional to the number of reconstructed samples.

3.5.2 Reconstruction with geometric transformation

(texture mapping)

Texture mapping typically refers to the process of geometrically transforming

a given source image or pattern in order to simulate its mapping onto a

3D surface. There are potentially two ways to do this: (i) applying the

inverse transformation for each pixel position in the target image to get the

interpolated value from the source image; (ii) applying the transformation of

each source pixel and using our non-uniform reconstruction method to get
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(a) Linear spline reconstruction with

a = 2

(b) Cubic spline reconstruction with

a = 2

(c) Linear spline reconstruction with

a = 4

(d) Cubic spline reconstruction with

a = 4

Figure 3.8: Lower resolution reconstruction
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(a) Original image (b) Input samples

(c) Reconstructed image

Figure 3.9: Reconstruction from partial contours
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(a) Original image (b) 30% of samples

(c) Reconstructed image. λ = 3.086×
10−1. er = 0.0204

(d) Rescaled error image

Figure 3.10: Reconstruction from random samples
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Figure 3.11: Example of texture mapping: reconstruction with ge-

ometric transformation

the target image. The second method has the clear advantage that it uses the

information present in the source image completely, whereas, there might be

some loss of information with the first approach (unused pixels in the source

image). Our method will give the least squares fit in the regions where

the input samples (transformed source pixels) outnumber the reconstruction

grid points (target pixels). This reduces reconstruction artifacts. Figure 3.11

gives an example of texture mapping generated using our algorithm, where

the lena image is mapped onto a cylinder. The key feature of our technique

is that there are no aliasing artifacts and that the sharpness of the pictorial

information is essentially preserved when λ is small.

3.5.3 Phantom reconstruction

Our next test image takes the value 255 inside a circular ring and zero out-

side. We sample this phantom along some radial lines. The data is sampled

non-uniformly along the angular dimension and uniformly in the radial direc-

tion. The reconstruction is challenging because the samples are sparse and

the boundaries are lost. The results are given in the figure 3.12. One can
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clearly see that the cubic spline reconstruction gives better reconstruction of

boundaries. This is due to the fact that the underlying radial basis function

for the first order smoothness semi-norm is less suitable for recovering lost

boundaries. In fact, the analytical RBF method with p = 1 is not numerically

stable in 2D since the radial basis function log r is unbounded at the sample

locations.

(a) Input samples (b) Linear spline reconstruction

(c) Cubic spline reconstruction

Figure 3.12: Reconstruction of boundary.

In all the cases above, in order to make the comparison meaningful, we
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set up the iterations such that the residue of the linear system goes to the

machine precision. To achieve this, it was required to have n1 = n2 = 32 for

a reconstruction in a 256×256 grid; it took 2 seconds and 0.8 seconds on a 1.8

GHz Macintosh G5 system for cubic and linear splines, respectively. However,

we were able get a visually acceptable reconstruction with n1 = n2 = 2

that took 0.8 seconds and 0.2 seconds using cubic splines and linear splines,

respectively. Also, we should mention that the number and the distribution

of input samples have negligible effect on the speed of the algorithm. The

speed is primarily determined by the size of the reconstruction grid. This

factor makes our method quite attractive in the noisy situations where one

needs to have more input samples than the number of reconstruction grid

points.

The present algorithm is very general; it includes previously published

spline algorithms as particular cases. For instance, consider the case when

the input data is a standard digital image. When a = 1, the algorithm

gives the smoothing spline approximation of the image and is functionally

equivalent to filtering algorithm described in [65]. In fact, because of the

multigrid implementation, the computational complexity of our algorithm

is in the same order as that of the FFT algorithm given in [65] with the

advantage that the present scheme works for arbitrary samples. When λ →
0, it gives the standard B-spline interpolation [55]. One can also generate

least squares pyramid, by choosing λ → 0 and a = 2i. By choosing an

appropriate reconstruction grid size and a diagonal affine transformation,

one can achieve least squares rescaling [66], as well as more general types of

geometric transformations as illustrated in the figure 3.11.

Conclusion

We developed a new method for regularized image reconstruction from ar-

bitrarily spaced samples. We chose to reconstruct a continuously-defined

function that is a uniform spline and selected a regularization term within

Duchon’s class of smoothness semi-norms. We interpreted our scheme as a

way to discretize the thin-plate spline method which gives the optimal ana-

lytical solution of the approximation problem in the continuous domain. The

key point of our scheme is that it uses basis functions (B-splines) that are
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well conditioned; this makes our approach much more stable numerically and

computationally advantageous than the classical thin-plate spline method.

We provided a multiresolution formulation that allowed us to accelerate the

reconstruction by way of a fast multigrid algorithm; the key ingredient here is

an algebraic relation that links the reconstruction equations at different res-

olutions. Our algorithm has a number of advantageous features that should

make it attractive for practical applications:

• The user can select the resolution a of the reconstruction grid. This

parameter controles the trade-off between computational complexity

and reconstruction accuracy. For a sufficiently small, the reconstruction

converges to the solution of the thin-plate spline problem.

• It has a complexity that depends primarily on the number of reconstruc-

tion grid points. There is essentially no dependence on the location and

the number of samples.

Appendix

Proof of theorem

Define

βnj (x) = βn(x/2j)

αq,j(x) =
dq

dxq
βnj (x)

Let h(k) be the two-scale filter. Since

βnj+1(x) =
∑
k

h(k)βnj (x− k2j)

We get

αq,j+1(x) =
∑
k

h(k)αq,j(x− k2j) (3.17)

From (3.11), ηq,j(x) = αq,j(x) ∗ αq,j(−x). Hence from (3.17) we get

ηq,j+1(x) =
∑
k

ha(k)ηq,j(x− k2j) (3.18)

where ha(k) = h(k) ∗ h(k). Substituting x = m2j+1 yields

ηq,j+1(m2j+1) =
∑
k

ha(k)ηq,j(m2j+1 − k2j) (3.19)
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From (3.10), the above equation gives

γq,j+1(m) =
∑
k

ha(k)γq,j(2m− k) (3.20)

Hence γq,j+1(k) = [γq,j(k) ∗ ha(k)]↓2. Now, from (3.9), we get

rq1,q2,j(k, l) = γq1,j(k)γq2,j(l)

Due to separability

rq1,q2,j+1(k, l) = [ha(k, l) ∗ rq1,q2,j(k, l)]↓(2,2) (3.21)

where ha(k, l) = h(k, l) ∗ h(k, l). Note that the proof also carries over to any

refinable function other than splines.
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Chapter 4

Vector Field

Reconstruction from

Non-uniform Projected

Samples: Optimal Method

Summary

We address the problem of reconstructing a vector field, f : Rn → Rn, n =

2, 3, from a set of projected samples of the form si = dTi f(xi), where

{xi} are sampling locations, and {di} are projection directions. We for-

mulate the reconstruction task as finding the minimizer of the functional

Ja(f) =
∑
i(d

T
i f(xi) − si)2 + λJ(f), where J is a suitable quadratic plausi-

bility criterion given by J(f) =
∫

Rn fT (y)U(x − y)f(x)dxdy, with U being

a vector smoothness operator. We provide the solution to this minimization

problem and show how it can be expressed in terms of the Green’s function

of the operator U.

To identify the most appropriate class of regularization operators U, we

impose that the solution has two desirable properties: (i) rotational invari-

ance, and (ii) scale invariance. These properties induce some restrictions on

U, and yield a complete parametric family of operators. We provide the

65



expressions for the corresponding Green’s functions, which we call the gen-

eralized vector splines.

Using synthetic phantom data, we demonstrate the effectiveness of the

method, and also the importance of tuning U appropriately for the problem

at hand.

4.1 Motivation and Main Contributions

Our goal is to develop a method to reconstruct a vector field f : Rn →
Rn, n = 2, 3, from non-uniformly spaced samples of the form si = dTi f(xi),

where (xi)i∈[1:N ] are sampling locations with corresponding project directions

(di, )i∈[1:N ]. This sampling scheme is called the “projected sampling” and the

set of triplets (xi,di, si)i∈[1:N ] forms our data set. There is no restriction on

the sampling locations (xi)i∈[1:N ] other than the fact that (xi,di, si)i∈[1:N ]

should include a unisolvent set; in particular there may be several distinct

measurements originating from the same spatial location x. Thus the level of

generality of the method is such that it includes conventional vector sampling

as a particular case (cf. Section 1.2.2).

It should be noted that the incompleteness of the data can be two-fold:

(i) the sample locations are non-uniform and there can be arbitrarily large

sampling gaps; (ii) the samples themselves are incomplete. This type of

problem is notoriously ill-posed, and hence, is best handled by a variational

approach. To remove any kind of ambiguity, we formulate the problem as

the task of finding the minimizer of the following cost functional:

Ja(f) =
N∑
i=1

(dTi f(xi)− si)2 + λJ(f), (4.1)

where J(f) is a quadratic functional. The role of J is to make the problem

well-posed by specifying a “plausible” or a “smooth” solution. This also gives

a mechanism for trading closeness of the fit to the data against smoothness

of the solution. Since a smoothness measure of a vector quantity that is

physically meaningful should be vectorial in nature, one should allow cross-

terms among the components of the vector field in J . Hence, we write the

general form of J as

J(f) =
∫

Rn

fT (y)U(x− y)f(x)dxdy
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Here U is the n× n matrix smoothness operator.

We are especially interested in handling the situation where the data set

is highly “indeterminate”. In such cases, it is advantageous to find a com-

plete parametric family of U that yield some generally desirable properties

on the solution. The completeness of the parameterization will ensure the

adaptability of U according to the problem at hand. In this regard, we are

not aware of any such characterization of vector smoothness operators in lit-

erature. As mentioned in Chapter 1, there exists such a characterization in

the scalar case; it is provided by Duchon’s theory which gives the family of

semi-norms that satisfies rotational invariance and scale invariance (Section

1.3.6).

Since we believe that rotational- and scale-invariances are highly desirable

properties, we have taken up the task of extending these notions for vector

field reconstruction. We find a corresponding family of smoothness opera-

tors U. We then give the solution to our reconstruction problem using this

smoothness model.

The main contributions of this chapter are as follows:

1. The extension of the notion of rotational invariance for vector fields and

the study of its connection with the properties of the vector smoothness

operator. In the process, we also generalize the notion of scale invari-

ance to subspace scale invariance that is less restrictive, and show its

implication on the smoothness operator (Section 4.2).

2. The identification of the complete family of smoothness operator that

satisfy the rotational- and scale-invariance (Section 4.3). Interestingly,

we show that a rotation- and scale-invariant regularization operator

consists of a weighted sum of two parts: (i) a divergence operator fol-

lowed by a fractional Duchon’s operator of order γd ; (iii) a curl operator

followed by a fractional Duchon’s operator of order γc on each compo-

nent. If one further Includes the relative weighting between these two

parts, this yields a three-parameter family of operators. The operators

proposed in [49, 50] are special cases of this family, with γd = γc = m

(integer) (Section 2.2). We provide some physical arguments to demon-

strate the use of having unequal smoothness order for divergence and

curl fields. In particular, we explain how divergence-free or rotation-free

reconstruction can be achieved by appropriately choosing the parame-
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ters.

3. The specification of the solution for the optimal reconstruction from the

projected samples using this proposed family smoothness operators U.

In particular, we show how the required solution can be constructed in

terms of the Green’s functions of U. We give the expression for the

Greens functions, which we call the generalized vector splines (Section

4.5).

4. The implementation and demonstration of the method with some test

examples examples (Section 4.6).

4.2 Problem Formulation

4.2.1 The Minimization Problem

Given the measurement set {xj ,dj , sj}, the reconstruction problem is defined

as the following minimization task:

f (opt)(x) = argmin
f∈V

Ja(f), (4.2)

where Ja(f) is as given in (4.1). We postpone the specification of V until we

find a characterization of J .

K is defined as the space all functions such that J(f) = 0, which we

call the full kernel. The space of function within the reconstruction space

V such that J(f) = 0 is called the reconstructing kernel, which is given by

Kf = K
⋂
V. It is important to make sure that the reconstructing kernel is

sufficiently small (at least finite dimensional). Otherwise, (4.2) may not have

a unique solution.

4.2.2 General Form of J

We write the general form of the semi-norm as follows:

J(f) =
N∑
i=1

〈
lTi ∗ f , lTi ∗ f

〉
(4.3)

Here, li is a vector with its elements formed of derivatives of dirac distribu-

tion. Note that, by construction, J(f) is translation-invariant. Any quadratic
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semi-norm that is based on derivatives can be expressed in this form. For

example, applying second order Duchon’s semi-norm (cf. Table 2.1) on each

component independently on a 2D vector field can be expressed as

J(f) =
2∑
j=1

3∑
i=1

〈
lTij ∗ f , lTij ∗ f

〉
(4.4)

where

l1j =
∂2δ

∂x2
ej , l2j =

∂2δ

∂y2
ej , l3j =

√
2
∂2δ

∂x∂y
ej .

Equation (4.3) can also be written as

J(f) =
∑
i

〈f ,Ui ∗ f〉

where Ui = li ∗ lTi . Substituting U =
∑
iUi yields

J(f) = 〈f ,U ∗ f〉 (4.5)

We call U, the convolutional operator of J .

J(f) is a semi-norm, since its kernel K is non-empty. One can easily see

that, if Ki is the space of functions such that ∀ f ∈ Ki, LTi ∗ f is zero almost

everywhere, then K =
⋂
iKi.

The Fourier domain equivalent of (4.5) is

J(f) =
∫

R2
f̂†(ωωω)U(ωωω)f̂(ωωω)dωωω (4.6)

Note that writing J in the Fourier domain is not a complete definition, i.e.,

(4.6) is applicable only for functions whose Fourier transform is a true func-

tion. In particular, one cannot find K from (4.6) alone.

4.2.3 Rotationally Invariant Reconstruction

We start by defining the transformation of a vector field by an orthogonal

matrix.

Definition 3 Let f(x) be a vector field. Then the function fΩ(x), associated

with an orthogonal matrix Ω is called the transformed vector field if it satisfies

fΩ(x) = Ωf(ΩTx). (4.7)
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The function fΩ(x) denotes the same vector field f(x) represented in a

new coordinate system that is obtained by transforming the original one by

an orthogonal matrix Ω.

Let f (min) be the function reconstructed from the data set {xj ,dj , sj}.
Now, consider a transformed data set {Ωxj ,Ωdj , sj}. One would normally

expect that the function reconstructed from this new data set should be

f (min)
Ω . The reconstruction method is called invariant to orthogonal transfor-

mation if this is true. The following proposition gives a sufficient condition

for such an invariant reconstruction.

Proposition 1 Let f (min) and f ′(min) be the functions reconstructed from

data sets {xj ,dj , sj} and {Ωxj ,Ωdj , sj} respectively, by minimizing (4.1).

Then f ′(min) = f (min)
Ω , if J(f) = J(fΩ) for every f .

Proof: See appendix.

We say that the functional is invariant to orthogonal transformation if it

satisfies the above relation. For brevity, we call such a functional “rotationally

invariant”, even though orthogonal transformation may represent not only a

rotation but also a symmetry transformation. Rotational invariance implies

that f and fΩ should have the same cost, since they are physically the same.

Using (4.6), we deduce the corresponding condition on U(ωωω):

U(ωωω) = ΩTU(Ωωωω)Ω (4.8)

4.2.4 Scale Invariant Reconstruction

Let us consider the situation where the samples locations undergo a scaling.

Let {axj ,dj , sj} be the new scaled measurement set, where a is the scale

factor. Let f (a) be the function reconstructed from the measurement set

scaled by a, which is defined as

f (a) = argmin
f

N∑
j

(
dTj f(axj)− sj

)2
+ λ(a)J(f) (4.9)

We say that the reconstruction is scale invariant if, there exists a continuous

function λ(a) such that f (a1)(x) = f (a2)((a1/a2)x), for every a1 and a2.

The meaning of scale invariance is that when we multiply the sample

locations by a scale factor, then it should be possible to find a value for λ
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such that the new solution is a scaled version of the previous solution. The

new value of λ should be obtained from the previous value by multiplying

with a function that depend only on the scale factor. The purpose of the

scale invariance is to guarantee a predictable numerical behavior when there

is an ambiguity in the unit of distance. The following proposition gives the

condition for scale invariant reconstruction:

Proposition 2 The reconstruction is scale invariant if J is scale invariant,

i.e., J(fa) = c(a)J(f), where fa(x) = f(ax) and c(a) is a continuous function

on a.

Proof: See appendix.

Using (4.6), above theorem implies

U(ωωω) = ĉ(a)U(aωωω), (4.10)

for some continuous function ĉ(.).

In practice, scale invariance is often overly restrictive. We propose to

replace the scale invariance condition with the so-called subspace scale in-

variance. To this end, we first suppose that the functional can be written as

a sum of elementary functionals:

J(f) =
NJ∑
i=1

λiJi(f) (4.11)

Let the corresponding decomposition for U be

U =
NJ∑
i=1

λiUi (4.12)

The corresponding problem is

f (a) = argmin
f

N∑
j

(
dTj f(axj)− sj

)2
+ λ

(
NJ∑
i=1

λi(a)Ji(f)

)
(4.13)

We say that the reconstruction is subspace scale invariant if there exists NJ
continuous functions (λi(a))i∈[1:NJ ] such that f (a1)(x) = f (a2)((a1/a2)x), for

every a1 and a2. This implies that each of the elementary functionals is scale

invariant; i.e., Ji(fa) = ci(a)Ji(f), or, equivalently, Ui(ωωω) = ĉi(a)Ui(aωωω).
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4.3 Imposing Invariances on U

In this section, we find the complete family of smoothness operators U that

satisfy the rotational and subspace scale invariance properties. We first char-

acterize the family that satisfies rotational invariance. We then identify a

natural decomposition on the derived structure. Finally, we impose the sub-

space scale invariance on this decomposition.

We find it convenient to impose the invariances on the Fourier expression

for U. Hence we initially consider the action of U only on test functions

(the functions that are indefinitely differentiable and of rapid descent). This

restriction facilitates writing every partial derivative in the Fourier domain.

Later in Section 4.3.3, we extend the semi-norm for a larger class of functions.

4.3.1 Rotational Invariance

The following theorem gives the structure for U that satisfies rotational in-

variance.

Theorem 2 The Fourier kernel matrix U satisfies rotational invariance iff

it can be expressed as

U(ωωω) = αd(‖ωωω‖)ωωωωωωT + αc(‖ωωω‖)(‖ωωω‖2 I−ωωωωωωT ), (4.14)

where αd(.) and αc(.) are some real functions.

Proof: See appendix.

The decomposition (4.14) has some interesting implications. Substituting

(4.14) in (4.6) gives

J(f) = Jd(f) + Jc(f) (4.15)

where

Jd(f) =
∫

Rn

f̂†(ωωω)Ud(ωωω)f̂(ωωω)dωωω, (4.16)

Jc(f) =
∫

Rn

f̂†(ωωω)Uc(ωωω)f̂(ωωω)dωωω (4.17)

with Ud(ωωω) and Uc(ωωω) being given by

Ud(ωωω) = αd(‖ωωω‖)
(
ωωωωωωT

)
(4.18)

Uc(ωωω) = αc(‖ωωω‖)
(
‖ωωω‖2 I−ωωωωωωT

)
(4.19)
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The following theorem gives an interpretation of the sub-functionals Jd(f)

and Jc(f).

Theorem 3 The functionals Jd(f) and Jc(f) act on the divergence and the

curl of f , i.e.,

Jd(f) =
∫

Rn

αd(‖ωωω‖)f̂†d(ωωω)f̂d(ωωω)dωωω, (4.20)

Jc(f) =
∫

Rn

αc(‖ωωω‖)f̂†d(ωωω)f̂c(ωωω)cωωω, (4.21)

where fd = div f and fc = rot f .

Note that fc is an nc × 1 vector, where nc = 3 if n = 3, and nc = 1 if

n = 2. It is well known from vector calculus that any vector field f can be

expressed as f = firr + fsol, where firr and fsol are some vector fields such that

div fsol = 0 and rot firr = 0. Consequently,

J(f) = Jd(firr) + Jc(fsol).

firr is known as the irrotational component and fsol is known as the solenoidal

component.

4.3.2 Subspace Scale Invariance

For imposing subspace scale invariance, we need to have a decomposition of

J . We choose the decomposition (4.15), since it has a physical relevance. We

intend to impose the following relations:

Ud(aωωω) = cd(a)Ud(ωωω), (4.22)

Uc(aωωω) = cc(a)Uc(ωωω), (4.23)

where cd(a) and cc(a) are some continuous functions. Substituting (4.18) and

(4.19) in (4.22) and (4.23) yields

αd(a ‖ωωω‖)a2 = cd(a)αd(‖ωωω‖),

αc(a ‖ωωω‖)a2 = cc(a)αc(‖ωωω‖).

This implies that the functions αd(‖ωωω‖) and αc(‖ωωω‖) are necessarily of the

following form,

αd(‖ωωω‖) = λd ‖ωωω‖2γd ,
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αc(‖ωωω‖) = λc ‖ωωω‖2γc ,

where γd, γc, λd, andλc are some real numbers.

The Fourier kernel matrix is now given by

U(ωωω) = λdUd(ωωω) + λcUc(ωωω) (4.24)

where

Ud(ωωω) = ‖ωωω‖2γd ωωωωωωT (4.25)

Uc(ωωω) = ‖ωωω‖2γc (‖ωωω‖2 I−ωωωωωωT ) (4.26)

4.3.3 Specifying Jd(f) and Jc(f) in Spatial Domain

The functionals Jd and Jc defined by the equations (4.16) and (4.17) are now

given by

Jd(f , γd) =
∫

Rn

‖ωωω‖2γd f̂†(ωωω)
(
ωωωωωωT

)
f̂(ωωω)dωωω, (4.27)

Jc(f , γc) =
∫

Rn

‖ωωω‖2γc f̂†(ωωω)(‖ωωω‖2 I−ωωωωωωT )f̂(ωωω)dωωω, (4.28)

By Theorem 3, Equations (4.27) and (4.28) can also be written as

Jd(f , γd) =
∫

Rn

‖ωωω‖2γd f̂†d(ωωω)f̂d(ωωω)dωωω, (4.29)

Jc(f , γc) =
∫

Rn

‖ωωω‖2γc f̂†c (ωωω)f̂c(ωωω)dωωω (4.30)

Now, we intend to write (4.27) and (4.28) partly is space domain. To this

end, we first define the following:

md = bγdc

mc = bγcc

γ′d = γd −md

γ′c = γc −mc

We now consider Jd:

Jd(f , γd) =
∫

Rn

‖ωωω‖2γ
′
d ‖F (hmd

fd)‖2 dωωω,

=
∫

Rn

‖ωωω‖2γ
′
d ‖F (hmd

(∇ · f))‖2 dωωω, (4.31)
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where hmd
is the Duchon’s operator of order md.

Note that this new version is applicable for a more general class of func-

tions; the expression is valid for the function for which F (hmd
(∇ · f)) is a

true function. This is clearly less restrictive than (4.27). Note that if fd has

a well-defined Fourier transform, then

‖F (hmd
(∇ · f))‖2 = ‖ωωω‖2md f̂†d(ωωω)f̂d(ωωω),

and hence (4.31) is equivalent to (4.29).

Now, we extend Jc in a similar way:

Jc(f , γc) =
∫

Rn

‖ωωω‖2γc f̂†d(ωωω)f̂c(ωωω)dωωω

=
nc∑
i=1

∫
Rn

‖ωωω‖2γc

∣∣∣{f̂c(ωωω)}i
∣∣∣2 dωωω

=
nc∑
i=1

∫
Rn

‖ωωω‖2γ
′
c ‖F (hmc{fc}i)‖

2
dωωω,

=
nc∑
i=1

∫
Rn

‖ωωω‖2γ
′
c ‖F (hmc{∇ × f}i)‖2 dωωω. (4.32)

Note that when γd and γc are integers; i.e., when γ′d and γ′c are zero, then

(4.31) and (4.32) have the equivalent space domain expressions

Jd(f ,md) =
∫

Rn

‖(hmd
(∇ · f)‖2 dx, (4.33)

Jc(f ,mc) =
nc∑
i=1

∫
Rn

‖hmc
{∇ × f}i‖2 dx. (4.34)

Now, note that (4.27), (4.29), and (4.31) are equivalent for test functions.

Similarly, (4.28), (4.30), and (4.32) are equivalent. To summarize, our final

semi-norm is given by

J(f) = λdJd(f , γd) + λcJc(f , γc), (4.35)

where Jd and Jc are of the form specified by (4.31) and (4.32).

4.3.4 Physical Interpretation of Jd(f) and Jc(f)

In continuum mechanics, the divergence of the velocity field quantifies the

rate change of the density of the medium at a given point; the curl of a

velocity field at a point is equal to the twice the angular velocity within an
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infinitesimal neighborhood. In electromagnetics, the divergence of an electric

field is equal to the electric charge density, whereas the curl is equal to the

rate of change of the associated magnetic field, if present. When applied to

the magnetic field, the divergence is always zero, whereas its curl is equal to

the current density.

First, we will consider the effect of Jd(f), which imposes a γd-order

smoothness on the divergence of f . One can incorporate an a priori knowledge

about the vector field by choosing γd → 0 and λd →∞, which is equivalent to

specifying a divergence-free solution, which is functionally equivalent to the

method provided in [51]. In the case of velocity field approximation, the cor-

responding a priori knowledge is the incompressibility of the medium. This

setting is also an appropriate one for computing a magnetic field or current

density distribution, since such fields are divergence-free.

When the required vector is not divergence-free, choosing a finite value

of λd is equivalent to specifying some family of preferential solutions. For

example, in the case of velocity field reconstruction, choosing γd → 0 is

equivalent to minimizing the overall compression of the medium, whereas a

finite value of γd will specify a γd-order smoothness on the density (mass)

distribution of the medium. The later, for an electric field, will specify a

γd-order smoothness on the electric charge density.

Next, let us consider the effect of Jc(f), which imposes a γc-order smooth-

ness on the each component of the curl of f . Unlike Jd(f), the choice γc → 0

and λc → ∞ is not of practical interest for vectors fields such as velocity

field, magnetic field, and current field, since it will specify a trivial solution.

However, this setting should be chosen for an electric field, since the latter

is rotation-free when there is no time varying magnetic field (Faraday’s law).

Choosing finite values for γc and λc is again equivalent to specifying some

convex set of preferential solutions. For example, in the case of a velocity

field, this choice will minimize the overall deformation, since spatially-varying

rotation (curl) contributes to deformation.

The above arguments only give the physical relevance in choosing the

parameters. One also needs to ensure that the minimization problem is well-

defined for a particular choice.
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4.4 The Minimizations Space V

4.4.1 Imposing Constraints on V

Our goal now is to specify the minimization space in such a way that the

reconstructing kernel Kf is fairly small. This will ensure that only simple

functions, such as low order polynomials, should contribute a zero cost to

the functional J . Also, this will guarantee the uniqueness of the solution

especially when the data size is small.

We already have a constraint on V: J(f) <∞. However, this condition is

not sufficiently restrictive. Indeed, we can construct a large class of functions

for which ∇ · f = 0 and ∇× f = 0. For example, consider the following 2D

function:

f(x, y) = ∇φ(x, y), φ(x, y) = Re{(x+ i.y)k}, (4.36)

where Re stands for real part of a complex function. First, by construction,

∇× f = 0. Second, φ(x, y) belongs to the class of analytic functions, which

satisfy 4φ = 0. Hence ∇ · f = 4φ = 0. Hence (4.36) gives an example for

the kernel of J , which is valid for any integer k. In other words, there is an

infinite number of such functions. This shows that the kernel is too large,

which calls for some further restriction on V.

To this end, we will identify an interesting relationship for the sum of Jd
and Jc that holds for test functions. Then, we will designate the minimization

space as the space of functions that satisfy this property.

Substituting γd = γc = m(integer) in (4.27) and (4.28) and adding them

yields

Jd(f ,m) + Jc(f ,m) =
∫

Rn

‖ωωω‖2m+2 f̂†(ωωω)f̂(ωωω)dωωω (4.37)

In other words, for the class of test functions, the above sum is equal to the

Duchon’s norm applied to each component independently. Next, using (4.33)

and (4.34) we write (4.37) in space domain as follows:∫
‖(hm(∇ · f)‖2 dx +

nc∑
i=1

∫
‖hm{∇ × f}i‖2 dx =

n∑
i=1

∫
‖hm+1{f}i‖2 dx

(4.38)

Now, we are ready to define the minimization space:

Definition 4 The minimization space V is the space of functions such that

J(f) is finite, and (4.38) is satisfied for m = max(md,mc).
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Note that the first condition ensures that Jd(f , γd) and Jc(f , γc) given in the

equations (4.31) and (4.32) are well defined, and the second ensures that the

reconstructing kernel Kf is fairly small. In particular, it ensures that the

dimension of the kernel is finite.

4.4.2 The Kernel Kf

The kernel Kf is the subspace of functions that satisfy J(f) = 0 as well

as equation (4.38). First, note that J(f) is zero only when Jd(f) and Jc(f)

are simultaneously zero. Further, note that the solution of the equations

Jd(f) = 0 and Jc(f) = 0 is determined only by the integers md and mc.

Hence Kf is included in the simultaneous solution of the equations

Jd(f ,md) = 0 (4.39)

Jc(f ,mc) = 0 (4.40)

Substituting (4.33) and (4.34) yields∫
‖(hmd

(∇ · f)‖2 dx = 0 (4.41)

nc∑
i=1

∫
‖hmc

{∇ × f}i‖2 dx = 0 (4.42)

The kernel determination problem now boils down to solving (4.41),

(4.42), and (4.38) simultaneously. Now, we consider two cases: (i) mc ≥ md;

(ii) and mc < md. We solve for each case individually.

Case (i): mc ≥ md

We first substitute (4.38) in (4.42) with m = mc:

n∑
i=1

∫
‖hmc+1{f}i‖2 dx−

∫
‖(hmc

(∇ · f)‖2 dx = 0 (4.43)

Now, we need to solve (4.43) and (4.41). To this end, we first observe that if∫
‖(hmd

(∇ · f)‖2 dx is zero, then
∫
‖(hmc(∇ · f)‖

2
dx is automatically zero,

since mc ≥ md. Consequently, it only remains to solve,

n∑
i=1

∫
‖hmc+1{f}i‖2 dx = 0, (4.44)
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together with (4.41). We know that the solution space of (4.44) is

Pmc
(Rn; Rn). Hence the required kernel is a subspace of Pmc

(Rn; Rn) that

satisfies (4.41). This subspace can be determined as follows:

Let B be the number of basis functions for Pmc
(Rn) and let ζζζ(x) be the

vector of polynomials that form a basis for Pmc(Rn). Then any function in

Pmc
(Rn) can be expressed as vTζζζ(x) for some v ∈ RB . Now, consider a

function f ∈ Pmc
(Rn; Rn). There exist vectors {vi, i = 1, · · · , n} ∈ RB such

that

{f(x)}i = vTi ζζζ(x).

Since, ∇ · f is also in Pmc
(Rn), there exist some vd ∈ RB such that ∇ · f =

vTd ζζζ(x). Since ∇· is a linear operator, the vector vd can be expressed as

vd = Mdivu,

where u = [· · · vTi · · · ]T and Mdiv is some B × nB matrix. Now, (4.41)

implies that each partial derivative of ∇ · f with order md is zero. Let ti be

a vector such that {hmd
div f}i = tTi ζζζ(x). This vector is then expressed as

ti = DiMdivu,

where Di is matrix representing the corresponding partial derivative. Now

let

M =


...

Di

...

Mdiv

This means that the kernel Kf is determined by the null vectors of M.

In other words, there is a one-to-one correspondence between the kernel of

M and the kernel Kf as follows: for any vector n such that Mn = 0, the

function f(x) defined by

{f(x)}i = nTi ζζζ(x)

is an element of Kf , where ni is the ith block of n. Hence the problem of

determining Kf boils down to the task of computing the kernel of M, which

can by done by standard numerical methods.

Note that when md = 0, Kf is the divergence-free subspace of

Pmc(Rn; Rn), which is the same as the kernel of the divergence-free recon-

struction problem considered in [51]. According to these authors, it is equal
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to Rot Pmc+1(Rn; Rn) where Rot Pmc+1(Rn; Rn) is defined as the space of all

f such that there exists some g in Pmc+1(Rn; Rn) meeting f = ∇× g.

Case (ii): mc < md

In this case, we substitute (4.38) in (4.41) with m = md:

n∑
i=1

∫
‖hmd+1{f}i‖2 dx−

nc∑
i=1

∫
‖hmc

{∇ × f}i‖2 dx = 0 (4.45)

The kernel determination problem is now to solve (4.45) and (4.42). Using

similar arguments as in the previous case, the problem is equivalent to solve

the following equation together with (4.42):

n∑
i=1

∫
‖hmd+1{f}i‖2 dx = 0 (4.46)

Consequently, the kernel is a subspace of Pmd
(Rn; Rn) that satisfies (4.42).

This subspace can be computed numerically in a way similar to the previous

case.

As in the previous case, when mc = 0, Kf is the rotation-free subspace of

Pmd
(Rn; Rn), which is the same as the kernel of the rotation-free reconstruc-

tion problem addressed in [51]. It is equal to∇Pmc+1(Rn) where∇Pmc+1(Rn)
is defined as the space of all f such that there exists some g in Pmc+1(Rn)
meeting f = ∇g.

To illustrate these various concepts, we consider a concrete 2D example

for the semi-norm and its corresponding kernel Kf . For the choice md = 0

and mc = 1, the kernel is spanned by the following vector polynomials:

n1(x, y) = [1 0]T

n2(x, y) = [0 1]T

n3(x, y) = [−y x]T

n4(x, y) = [−x y]T

n5(x, y) = [y x]T

Figure (4.1) provide a visualization of these vector fields in terms of arrows.

Let us now provide the physical interpretation assuming that the vector field

that is under consideration is a velocity field. The vectors n1, n2, and n3 rep-

resent rigid forms of motion: n1, n2 represent translational motion, whereas
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(d) n5(x, y)

Figure 4.1: 2D kernel vector fields for md = 0 and mc = 1
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n3 represents rotational motion. n1 and n2 fall under the category of laminar

flow, but they are trivial forms of laminar flow. n4 and n5 are non-trivial

forms of laminar flow; each of them represent two in-flows and two out-flows

around the origin. There is only one vector that is in P1(R2; R2), but not in

Kf :

n6(x, y) = [x y]T .

Figure (4.2) gives its visualization. This flow field can represent, for example,
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(a) n6(x, y)
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(b) −n6(x, y)

Figure 4.2: 2D first order polynomial vector field representing source

or sink

the existence of a source or sink. Alternatively, if present in a small neighbor-

hood, it may indicate some compression or rarefaction of the medium that

undergoes motion. This will normally correspond to some internal energy

(other than kinetic energy) of the system. By choosing md = 0 and mc = 1,

it becomes possible to penalize such motion. Note that if md and mc are con-

strained to be equal (which corresponds to [49, 50]), there is no possibility

to penalize such a motion alone. However, such a motion can be eliminated

completely by the divergence-free method proposed in [51].
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4.5 The Solution: Vector Splines

4.5.1 The Reconstruction Formula

We now give the solution for the reconstruction problem. The solution is

constructed using the Green’s function of the operator U. It is defined as the

n × n matrix function such that Ψ ∗U = δI. The following theorem gives

the solution based on Ψ.

Theorem 4 The minimum of the functional (4.1) is given by

fopt(x) =
N∑
i=1

wiϕϕϕdi
(x− xi) +

q∑
k=1

akpk(x) (4.47)

where ϕϕϕdi
(x) = Ψ(x)di, and (pk)k∈[1:q] is a basis for the kernel of J . The

weight vectors w = [. . . wi . . .]T and a = [. . . ai . . .]T are given by[
A + λI Q

QT 0

][
w

a

]
=

[
s

0

]
(4.48)

where

{A}ij = dTj ϕϕϕdi
(xj − xi), ∀ i, j ∈ [1 : N ]

{Q}ij = dTj pi(xj), ∀ i ∈ [1 : N |; ∀ j ∈ [1 : q].

s = [. . . si . . .]T .

Proof: See appendix.

Note that the solution is the weighted sum of basis functions placed at

each sampling locations. Moreover, each basis function is derived from the

Green’s function by making a weighted sum of its columns; the weights are

simply specified by the projection vector di, and are dependent upon the

sampling direction.

This theorem is compatible with the vector spline methods of Amodei

[49], and more recently, Rabut et al [50]. However, it provides two important

generalizations: (i) the reconstruction from projected data (di 6= ei); (ii) and

a more general class of regularization including fractional derivatives.
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4.5.2 The Vector Splines

We have shown so far that the solution to the variational problem is a

weighted sum of basis functions of the form

ϕϕϕdi
(x) = Ψ(x)di, (4.49)

located at the sample points, where is the Ψ(x) is the Green’s function, and

di is the measurement operator. The Green’s function is obtained by solving

the equation Ψ ∗U = δI. Because of (4.8), Ψ(x) satisfies

Ψ(x) = ΩTΨ(Ωx)Ω (4.50)

To find the implication of (4.50) on ϕϕϕdi
(x), we substitute in (4.49):

ϕϕϕdi
(x) = ΩTΨ(Ωx)Ωdi

= ΩTϕϕϕΩdi
(Ωx)

Now, we provide the expression for the Green’s function Ψ in the following

theorem:

Theorem 5 The Green’s function Ψ for the operator U expressed in (4.24)

is given by

Ψ(x) =
1
λd
ψl1(‖x‖) ∗D(x)

+
1
λc
ψl2(‖x‖) ∗ (L(x)I−D(x))

(4.51)

where

L(x) =
n∑
i=1

∂2

∂x2
i

δ,

{D(x)}ij =
∂2

∂xi∂xj
δ,

ψl(r) =

rl log r, if l is an even integer,

rl, otherwise,
(4.52)

and

l1 = 2γd + 4− n, l2 = 2γc + 4− n.
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Proof: See appendix.

Note that the Green’s function is the sum of two distinct parts, i.e.,

Ψ(x) =
1
λd

Ψ(d)(x) +
1
λc

Ψ(c)(x), (4.53)

where

Ψ(d)(x) = ψl1(‖x‖) ∗D(x) (4.54)

Ψ(c)(x) = ψl2(‖x‖) ∗ (L(x)I−D(x)) (4.55)

Letψψψ(d)
i (x) andψψψ(c)

i (x) denote the ith columns of Ψ(d)(x) and Ψ(c)(x) respec-

tively. The following theorem gives an interesting property of these functions.

Theorem 6 The functions ψψψ
(d)
i (x) and ψψψ

(c)
i (x) satisfy the following prop-

erty:

rotψψψ(d)
j (x) = 0, ∀ j ∈ [1 : n]

divψψψ(c)
j (x) = 0, ∀ j ∈ [1 : n]

Proof: See appendix.

In other words, ψψψ(d)
i (x)s are irrotational and ψψψ(c)

i (x)s are solenoidal. Now,

note that the basis functions ϕϕϕdi
can also be expressed as

ϕϕϕdi
(x) =

1
λd
ϕϕϕ

(d)
di

(x) +
1
λc
ϕϕϕ

(c)
di

(x) (4.56)

where

ϕϕϕ
(d)
di

(x) = Ψ(d)(x)di (4.57)

ϕϕϕ
(c)
di

(x) = Ψ(c)(x)di (4.58)

As a consequence of the theorem 6,

rotϕϕϕ(d)
di

(x) = 0

divϕϕϕ(c)
di

(x) = 0.

In other words, each of the basis functions can be expressed as a sum of its

irrotational and solenoidal components.

Because of the special structure of the functions, Ψ(d) and Ψ(c), their

columns ψψψ(d)
i and ψψψ(c)

i are related, as stated below.
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Theorem 7 The vector functions ψψψ
(d)
i and ψψψ

(c)
i satisfy the relation

ψψψ
(d)
k+1(x) = Pψψψ(d)

k (PTx), ψψψ
(c)
k+1(x) = Pψψψ(c)

k (PTx), (4.59)

where the increment from k and k + 1 is considered in the cyclic sense, and

P is the first order cyclic permutation matrix given by

P =



 0 1

1 0

 , for n = 2,
0 0 1

1 0 0

0 1 0

 , for n = 3.

Proof: See appendix.

Consequently, the irrotational an the solenoidal basis function ϕϕϕ
(d)
di

and

ϕϕϕ
(c)
di

given in (4.57) and (4.58) are now expressed as

ϕϕϕ
(d)
di

(x) =
n−1∑
j=0

dijPjψψψ
(d)
1 ((PT )jx), (4.60)

ϕϕϕ
(c)
di

(x) =
n−1∑
j=0

dijPjψψψ
(c)
1 ((PT )jx), (4.61)

where dij is the jth component of di. This implies that the overall basis

function ϕϕϕdi
can be expressed as

ϕϕϕdi
(x) =

n−1∑
j=0

dijPjψψψ((PT )jx), (4.62)

where ψψψ is first column of Ψ given by

ψψψ(x) =
1
λd
ψψψ

(d)
1 (x) +

1
λc
ψψψ

(c)
1 (x) (4.63)

We call ψψψ(x) the generalized vector spline. It is characterized by the

parameter set {γd, γc, λd, λc}. Note that the shape of ψψψ(x) is determined by

the orders γd and γc, and the ratio λc

λd
; and hence ψψψ(x) essentially represents a

three-parameter family of functions. However, we retain the four-parameter

structure in (4.63), since it facilitates retrieving the following limit cases:

lim
λc→∞

ψψψ(x) =
1
λd
ψψψ

(d)
1 (x) (4.64)

lim
λd→∞

ψψψ(x) =
1
λc
ψψψ

(c)
1 (x) (4.65)
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This allows the user to specify a irrotational or a solenoidal solution.

Figures 4.3 and 4.4 gives arrow plots of the functions ψψψ(d)
1 (x) and ψψψ(c)

1 (x)

for the 2D case. Their magnitude distribution is visualized in Figures 4.5 and

4.6. Note that these functions are not radial unlike the scalar splines.
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Figure 4.3: Arrow plots of 2D irrotational vector spline ψψψ(d)
1 (x)

4.5.3 Admissible Choice of Parameters

Even thought γd, γc, λd, andλc are essentially free parameters, choosing the

orders γd and γc less than unity leads to pathological condition when n = 3.

The corresponding scalar functions ψl1 and ψl2 are not twice differentiable in

that case, and hence the Green’s functions Ψ(d) and Ψ(c) defined in Equations
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Figure 4.4: Arrow plots of 2D solenoidal vector spline ψψψ(c)
1 (x)
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Figure 4.5: Magnitude plots of 2D irrotational vector spline ψψψ(d)
1 (x)
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Figure 4.6: Magnitude plots of 2D solenoidal vector spline ψψψ(c)
1 (x)
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(4.54) and (4.55) are not continuous.

Nevertheless, choosing γd and γc less than unity is still useful if the corre-

sponding weight is set to infinity. For example, setting γd = 0 and λd → ∞
is well-defined in our formulation and it yields a divergence-free solution.

Similarly, the setting γc = 0 and λc →∞ gives a irrotational solution.

4.6 Numerical Examples

We present here some numerical results for experiments that we conducted

on synthetic data. The phantom model is given by

f(x) = wfirr(x) + (1− w)fsol(x), 0 ≤ w ≤ 1,

where firr(x) and fsol(x) are some solenoidal and irrotational vector fields

respectively. They are defined in terms of a potential function given below:

φ(x) = e−‖x‖
2

The irrotational part firr(x) is given by

firr(x) = ∇φ(x),

and the solenoidal part fsol(x) is given by

fsol(x) =



 −∂yφ(x)

∂xφ(x)

 , for n = 2,

∇×


−∂yφ(x)

∂xφ(x)

0

 , for n = 3.

The input data is some list of triplets of the form {(xi,di, si)}, where xi
and di are randomly chosen, and si = dTi f(xi) + ni with ni being some i.i.d

Gaussian noise with variance σ2. Before we present the numerical results, we

define the following quantities:

Input SNR = 10× log
(
E((dTi f(xi))2)

σ2

)
Reconstruction SNR = 10× log

(
E(‖f(k)‖2)

E(‖f(k)− fr(k)‖2)

)
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Figure 4.7 gives the 2D reconstruction results for w = 0.25 with input

SNR of 20 dB. It compares the SNR obtained by vector spline reconstruction

with γd = γc = 1 to that of second order thin-plate spline reconstruction,

which does not involve any coupling between the x and y components. The

regularization parameters were chosen as

λd = kσ2 (1− w)2

w2 + (1− w)2
,

λc = kσ2 w2

w2 + (1− w)2
,

The factor k was chosen empirically such that

E(s2i ) = E((dTi fr(xi))2) + σ2,

where fr is the reconstructed output. Note that choosing λd = λc = kσ2

yields the second order thin-plate spline solution. From the figure, one can

clearly see the advantage of using vector splines.

Figure 4.7 gives the 3D reconstruction result for w = 1 with input SNR

of 15 dB. Since, we need irrotational reconstruction, the optimal choice of

parameters is given by

λd = kσ2,

λc →∞.

With this choice, the figure compares the reconstruction SNR for the choices

of order (γd = 1, γc = 1) and (γd = 1, γc = 0). Note that the choice (γd =

1, γc = 0) gives better performance since it specifies the true rotation-free

constraint.

Conclusion

We developed a variational method to reconstruct a vector field from pro-

jected non-uniform samples. We first characterized a complete family of

regularization functionals that satisfy rotational- and scale-invariance prop-

erties. We showed that such a functional is composed of a weighted sum of

two sub-functionals: (i) Duchon’s scalar semi-norm applied on the divergence

field; (ii) and the same applied to each component of the rotational field. We

provided the analytical solution for the reconstruction using this family of
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Figure 4.7: Reconstruction error for 2D phantom f(x) = wfirr(x)+

(1 − w)fsol(x). Comparison between second order thin-plate spline

and vector spline with λd ∝ σ2 (1−w)2

w2+(1−w)2 , λc ∝ σ2 w2

w2+(1−w)2 , γd =
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Figure 4.8: Reconstruction error for 3D phantom f(x) = firr(x)

with λd ∝ σ2, λc →∞.

regularization functionals. In particular, we showed that the optimal solu-

tion consists of two parts: (i) a weighted sum of polynomial basis functions

that span the kernel of the regularization functional; (ii) and a weighted sum

of some basis functions that are derived from the so called generalized vec-

tor spline. We showed how the form of this vector spline is determined by

the form of the chosen regularization functional. We derived the linear sys-

tem of equations for computing the weights to yield the final solution. We

demonstrated the method by synthetic phantom reconstruction.
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Proof of Theorems

Proposition 1

The functions f (min) and f ′(min) are given by

f (min) = argmin
f

N∑
j

(
dTj f(xj)− sj

)2
+ λJ(f) (4.66)

f ′(min) = argmin
f

N∑
j

(
(Ωdj)T f(Ωxj)− sj

)2
+ λJ(f) (4.67)

Applying a transformation on the coordinate system of (4.66) yields

f (min)
Ω = argmin

f

N∑
j

(
(Ωdj)T f(Ωxj)− sj

)2
+ λJ(fΩ) (4.68)

From (4.67) and (4.68) it is clear that f ′(min) = f (min)
Ω if J(f) = J(fΩ) for

every f .

Proposition 2

Define

f (a1) = argmin
f

N∑
j

(
dTj f(a1xj)− sj

)2
+ λ(a1)J(f) (4.69)

f (a2) = argmin
f

N∑
j

(
dTj f(a2xj)− sj

)2
+ λ(a2)J(f) (4.70)

Let fa(x) = f(ax). Now, in (4.70), applying a scaling on the coordinate

system by a factor a1/a2, we get

f (a2)
a1/a2

= argmin
f

N∑
j

(
dTj f(a1xj)− sj

)2
+ λ(a2)J(fa1/a2) (4.71)

From (4.69) and (4.71) it is clear that f (a1) = f (a2)
a1/a2

if λ(a1)J(f) =

λ(a2)J(fa1/a2). This implies that J(fa) = c(a)J(f) for some continuous func-

tion c.

Theorem 2

We intend to show (4.8) for every orthogonal matrix Ω. We consider two

cases of n.
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Case (i): n = 2

We first choose two orthogonal matrices that are functions of the frequency

variable ωωω = [ω1 ω2]T . To this end, we define the following matrices:

Θ =

[
ω1 ω2

−ω2 ω1

]

D =

[
1 0

0 −1

]
Now we investigate the implication of (4.8) for the following matrices:

Ω1 =
1
‖ωωω‖

Θ (4.72)

Ω2 = DΩ1 (4.73)

Substituting Ω1 and Ω2 in (4.8) yields

U(ωωω) = ΩT
1 U(e1‖ωωω‖)Ω1 (4.74)

U(ωωω) = ΩT
1 DU(e1‖ωωω‖)DΩ1 (4.75)

Equations (4.74) and (4.75) imply that U(e1‖ωωω‖) = DU(e1‖ωωω‖)D, which in

turn implies that U(e1‖ωωω‖) is diagonal. Hence, (4.74) is indeed the eigenvalue

decomposition of U(ωωω). Hence U(ωωω) is necessarily of the form

U(ωωω) = ΩT
1 A(‖ωωω‖)Ω1, (4.76)

where A(‖ωωω‖) is is diagonal matrix that is a function of ‖ωωω‖ only. Equation

(4.76) can be written as

U(ωωω) = ΘT

[
αd(‖ωωω‖) 0

0 αc(‖ωωω‖)

]
Θ, (4.77)

where we have used the relation ( 4.72) and made the substitution[
αd(‖ωωω‖) 0

0 αc(‖ωωω‖)

]
=

1
‖ωωω‖2

A(‖ωωω‖).

Next we rewrite (4.77) as

U(ωωω) = αd(‖ωωω‖)

[
ω1

ω2

]
[ω1 ω2] + αd(‖ωωω‖)

[
−ω2

ω1

]
[−ω2 ω1] (4.78)
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Now, it is straightforward to verify that[
−ω2

ω1

]
[−ω2 ω1] = ‖ωωω‖2 I−ωωωωωωT .

Hence (4.78) becomes

U(ωωω) = αd(‖ωωω‖)ωωωωωωT + αc(‖ωωω‖)(‖ωωω‖2 I−ωωωωωωT ).

Case (ii): n = 3

The first step is to analyze (4.8) for a rotation matrix with ωωω as its axis of

rotation; i.e., for a rotation matrix Ω1 satisfying

Ω1ωωω = ωωω. (4.79)

Substituting Ω = Ω1 in (4.8) and multiplying by ωωω on both sides yields

ΩT
1 U(Ω1ωωω)Ω1ωωω = U(ωωω)ωωω,

⇔ ΩT
1 U(ωωω)ωωω = U(ωωω)ωωω,

⇔ U(ωωω)ωωω = Ω1(U(ωωω)ωωω).

The above equation implies that whenever ωωω is an eigen vector of Ω1, the

same is also true for U(ωωω)ωωω. Hence ωωω is also an eigen vector of U(ωωω).

Now, we look at the other eigen vectors of Ω1. They are complex and

they can be expressed in the following form:

u(ωωω) = u1(ωωω) + ju2(ωωω), (4.80)

u∗(ωωω) = u1(ωωω)− ju2(ωωω), (4.81)

where u1(ωωω) and u2(ωωω) are some real vectors such that

‖u1‖ = 1/2

‖u2‖ = 1/2

uTi (ωωω)ωωω = 0, i = 1, 2

uT1 (ωωω)u2(ωωω) = 0
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By construction, the following hold:

uT (ωωω)ωωω = 0 (4.82)

u∗T (ωωω)ωωω = 0 (4.83)

uT (ωωω)u(ωωω) = 0 (4.84)

u∗T (ωωω)u∗(ωωω) = 0 (4.85)

u∗T (ωωω)u(ωωω) = 1 (4.86)

Since u(ωωω) and u∗(ωωω) are the eigen vectors of Ω1, they satisfy the following:

Ω1u(ωωω) = ejθu(ωωω) (4.87)

Ω1u∗(ωωω) = e−jθu∗(ωωω) (4.88)

We now apply (4.87) on (4.8):

ΩT
1 U(Ω1ωωω)Ω1u(ωωω) = U(ωωω)u(ωωω)

⇔ ΩT
1 U(ωωω)ejθu(ωωω) = U(ωωω)u(ωωω)

⇔ Ω1(U(ωωω)u(ωωω)) = ejθ(U(ωωω)u(ωωω))

The above equation implies that u(ωωω) is an eigen vector of U(ωωω). In a similar

way, it can be shown that u∗(ωωω) is also an eigen vector of U(ωωω). Hence U(ωωω)

can be expressed as follows:

U(ωωω) =
µ1(ωωω)
‖ωωω‖2

ωωωωωωT + µ2(ωωω)u(ωωω)u∗T (ωωω) + µ∗2(ωωω)u∗(ωωω)uT (ωωω), (4.89)

where µ1(ωωω) and µ2(ωωω) are some real and complex functions, respectively.

For a general orthogonal matrix, the RHS of the equation (4.8) now is

given by

ΩTU(Ωωωω)Ω =
µ1(Ωωωω)
‖ωωω‖2

ωωωωωωT + µ2(Ωωωω)v(ωωω)v∗T (ωωω) + µ∗2(Ωωωω)v∗(ωωω)vT (ωωω),

(4.90)

where

v(ωωω) = ΩTu(Ωωωω) (4.91)

v∗(ωωω) = ΩTu∗(Ωωωω) (4.92)

We now observe that (4.82) implies

vT (ωωω)ωωω = 0 (4.93)
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This can be verified as follows:

ωωωTv(ωωω) = ωωωTΩTu(Ωωωω)

= (Ωωωω)T u(Ωωωω)

= 0

In a similar way, it can be verified that (4.83)—(4.86) imply the following:

v∗T (ωωω)ωωω = 0 (4.94)

vT (ωωω)v(ωωω) = 0 (4.95)

v∗T (ωωω)v∗(ωωω) = 0 (4.96)

v∗T (ωωω)v(ωωω) = 1 (4.97)

Now (4.93) implies that v(ωωω) is in the space spanned by u(ωωω) and u∗(ωωω).

Hence, it can expressed as

v(ωωω) = ϑ1u(ωωω) + ϑ2u∗(ωωω), (4.98)

for some complex numbers ϑ1 and ϑ2. Substituting (4.98) in (4.95) and

simplifying using the relations (4.84), (4.85), and (4.86) yields

ϑ1ϑ2 = 0

This implies that v(ωωω) is either of the form ϑ1u(ωωω) or ϑ2u∗(ωωω), and ϑ1 and ϑ2

are unit modulus numbers. Now let Ω2 and Ω3 be some orthogonal matrices

such that

v2(ωωω) = ΩT
2 u(Ω2ωωω) = ϑ1u(ωωω) (4.99)

v3(ωωω) = ΩT
3 u(Ω3ωωω) = ϑ2u∗(ωωω) (4.100)

Substituting Ω = Ω2 in (4.90), and applying (4.8) and (4.99) yields

U(ωωω) =
µ1(Ω2ωωω)
‖ωωω‖2

ωωωωωωT + µ2(Ω2ωωω)u(ωωω)u∗T (ωωω) + µ∗2(Ω2ωωω)u∗(ωωω)uT (ωωω).

(4.101)

Similarly, substituting Ω = Ω3 in (4.90), and applying (4.8) and (4.99) yields

U(ωωω) =
µ1(Ω3ωωω)
‖ωωω‖2

ωωωωωωT + µ2(Ω3ωωω)u∗(ωωω)uT (ωωω) + µ∗2(Ω3ωωω)u(ωωω)u∗T (ωωω).

(4.102)
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In the equations (4.89) , (4.101), and (4.102), equating the scalar coefficients

of the corresponding terms yields

µ1(ωωω) = µ1(Ω2ωωω) = µ1(Ω3ωωω)

µ2(ωωω) = µ2(Ω2ωωω) = µ∗2(Ω3ωωω)

µ2(ωωω) = µ∗2(Ω2ωωω) = µ2(Ω3ωωω)

Since, Ω2 and Ω3 are arbitrary matices, this implies that µ1(ωωω) and µ2(ωωω)

are radial functions, and that µ2(ωωω) is indeed a real function. Hence (4.102)

becomes

U(ωωω) = µ1(‖ωωω‖)ωωωωωωT + µ2(‖ωωω‖)
(
u(ωωω)u∗T (ωωω) + u∗(ωωω)uT (ωωω)

)
, (4.103)

Now, Equations (4.82)— (4.86) imply

1
‖ωωω‖2

ωωωωωωT + u(ωωω)u∗T (ωωω) + u∗(ωωω)uT (ωωω) = I

Consequently (4.103) becomes

U(ωωω) = µ1(‖ωωω‖)ωωωωωωT + µ2(‖ωωω‖)
(
‖ωωω‖2I−ωωωωωωT

)
Substituting αd(‖ωωω‖) = µ1(‖ωωω‖) and αc(‖ωωω‖) = µ2(‖ωωω‖) yields the required

relation:

U(ωωω) = αd(‖ωωω‖)ωωωωωωT + αc(‖ωωω‖)(‖ωωω‖2 I−ωωωωωωT ).

Theorem 3: Div–Curl sub-functionals

We first rewrite (4.16) by substituting (4.18)

Jd(f) =
∫
αd(ωωω)f̂†(ωωω)

(
ωωωωωωT

)
f̂(ωωω)dωωω

=
∫
αd(‖ωωω‖)

(
jωωωT f̂(ωωω)

)† (
jωωωT f̂(ωωω)

)
dωωω

Since F(∇ · f) = jωωωT f̂(ωωω), the above equation becomes

Jd(f) =
∫
αd(‖ωωω‖)f̂†d(ωωω)f̂d(ωωω)dωωω.

To prove the second part, we rewrite (4.17) by substituting (4.19)

Jc(f) =
∫
αc(‖ωωω‖)f̂†(ωωω)(‖ωωω‖2 I−ωωωωωωT )f̂(ωωω)dωωω (4.104)
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Now, by a simple algebra, it is straight forward to verify that

‖ωωω‖2 I−ωωωωωωT = C(ωωω)TC(ωωω)

where

C(ωωω) =



[−ω2 ω1], for n = 2,
0 −ω3 ω2

−ω3 0 ω1

−ω2 ω1 0

 , for n = 3.

Hence (4.104) becomes

Jc(f) =
∫
αc(‖ωωω‖)

(
jC(ωωω)f̂(ωωω)

)† (
jC(ωωω)f̂(ωωω)

)
dωωω (4.105)

Now, we recognize that jC(ωωω)f̂(ωωω) is the Fourier transform of the curl, i.e.,

f̂c(ωωω) = F(∇× f) = jC(ωωω)f̂(ωωω).

Hence (4.105) becomes

Jc(f) =
∫
αc(‖ωωω‖)f̂†c (ωωω)f̂c(ωωω)dωωω.

Theorem 4: Solution to the Variational Problem

Minimality Conditions

The goal is to find the minimum of (4.1) within the space V. We first note

that dif(xi) can be written as

dif(xi) = 〈ri, f〉 , (4.106)

where ri(x) = diδ(x− xi). Then (4.1) becomes

Ja(f) =
N∑
i=1

(〈ri, f〉 − si)2 + λJ(f). (4.107)

A necessary condition for a function fopt to be a local minimum is

lim
α→0

Ja(f + αg)− Ja(f)
α

= 0,∀g ∈ V (4.108)

It can be shown that the above equation implies

λB(fopt,g) = −
N∑
i=1

〈ri,g〉 (〈ri, fopt〉 − si),∀g ∈ V (4.109)
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Since the Ja(f) is a quadratic functional, the above condition is also sufficient.

Let D be the space test functions. We assume that D + Kf is dense in V,

i.e., for every f ∈ V, we assume that there exist a polynomial p ∈ Kf , and a

sequence of test functions {un} such that

lim
n→∞

Ja(f − un − p) = 0 (4.110)

The consequence is that ( 4.109) can be decomposed into the following two

conditions:

N∑
i=1

〈ri,g〉 (〈ri, fopt〉 − si) = −λB(fopt,g),∀g ∈ D (4.111)

N∑
i=1

〈ri,g〉 (〈ri, fopt〉 − si) = 0,∀g ∈ Kf (4.112)

Constructing the Solution

The goal is now to construct a function that satisfies (4.111) and (4.112). We

suppose that we have found a set of functions {ϕϕϕi} such that

B(ϕϕϕi,g) = 〈ri,g〉 (4.113)

We consider the following candidate solution:

fopt(x) =
N∑
k=1

wkϕϕϕ(x) +
Q∑
k=1

akpk(x), (4.114)

where {pk(x), k = 1, . . . , Q} is the basis for the kernel Kf . We intend

to show that it possible to choose the weights {wk, k = 1, . . . , N} and

{ak, k = 1, . . . , Q} such that (4.111) and (4.112) are satisfied. To this end,

we substitute (4.114) into (4.111) and (4.112). We first consider (4.111):

N∑
j=1

N∑
i=1

wj 〈ri,g〉
〈
ri,ϕϕϕj

〉
+

Q∑
j=1

N∑
i=1

aj 〈ri,g〉 〈ri,pj〉 −
N∑
i=1

〈ri,g〉 si

= λ
N∑
j=1

wjB(ϕϕϕj ,g) + λ

Q∑
j=1

ajB(pj ,g)︸ ︷︷ ︸
0

, ∀g ∈ D
(4.115)
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Plugging-in (4.113) gives

N∑
j=1

N∑
i=1

wj 〈ri,g〉
〈
ri,ϕϕϕj

〉
+

Q∑
j=1

N∑
i=1

aj 〈ri,g〉 〈ri,pj〉 −
N∑
i=1

〈ri,g〉 si

= λ
N∑
j=1

wj 〈ri,g〉 ∀g ∈ D

(4.116)

We make the following substitutions:

a = [· · · aj · · · ]T

w = [· · · wj · · · ]T

s = [· · · sj · · · ]T

b = [· · · 〈ri,g〉 · · · ]T

{A}ij =
〈
ri,ϕϕϕj

〉
{Q}ij = 〈ri,pj〉

This yields

bTAw + bTQa− bT s = −λbTw,∀b ∈ RN , (4.117)

where we have replaced the condition ∀g ∈ D by the condition ∀b ∈ RN .

This is valid if the mapping from D to RN induced by the measurement

functionals {ri, i = 1, . . . , N} is surjective. Equation (4.117) implies

(A + λI)w + Qa = s (4.118)

Replacing (4.114) in (4.112) yields

N∑
j=1

N∑
i=1

wj 〈ri,g〉
〈
ri,ϕϕϕj

〉
+

Q∑
j=1

N∑
i=1

aj 〈ri,g〉 〈ri,pj〉

−
N∑
i=1

〈ri,g〉 si = 0 ∀g ∈ Kf

(4.119)

This can be equivalently written in terms of the basis functions of Kf as

follows:

N∑
j=1

N∑
i=1

wj 〈ri,pk〉
〈
ri,ϕϕϕj

〉
+

Q∑
j=1

N∑
i=1

aj 〈ri,pk〉 〈ri,pj〉

−
N∑
i=1

〈ri,g〉 si = 0 for k = 1, . . . , Q

(4.120)
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The above equation is then written in matrix form,

qTkAw + qTkQa = qTk s, for k = 1, . . . , Q. (4.121)

where qk = [· · · 〈ri,qk〉 · · · ]T . Let Q = [q1 · · · qQ]. Then the above set of

Q equations can be written as

QTAw + QTQa = QT s (4.122)

Multiplying ( 4.118) with QT and subtracting from (4.122) gives

QTw = 0 (4.123)

Equations ( 4.118) and (4.123) together yield[
A + λI Q

QT 0

][
w

a

]
=

[
s

0

]

Hence we have shown that the function given in (4.114) with the weights

satisfying (4.48) solves the minimization problem.

Now, it remains to show how to construct functions {ϕϕϕi} satisfying

(4.113). They can be obtained as

ϕϕϕi = Ψ ∗ ri, (4.124)

where Ψ is the n×n matrix function satisfying U∗Ψ = δI. It can be verified

that the above construction satisfies (4.113) as follows:

B(ϕϕϕi,g) = 〈U ∗ϕϕϕi,g〉

= 〈U ∗Ψ ∗ ri,g〉

= 〈ri,g〉 , since U ∗Ψ = δI

Ψ is the Green’s function of the operator U.

Theorem 5: Vector Splines

The goal is to find Ψ such that

U ∗Ψ = δI

The Fourier domain equivalent of this equation reads

U(ωωω)Ψ(ωωω) = I,
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which implies

Ψ(ωωω) = U−1(ωωω).

From (4.24), (4.25), and (4.26), U(ωωω) is equal to

U(ωωω) = λd ‖ωωω‖2γd U1(ωωω) + λc ‖ωωω‖2γc U2(ωωω),

where

U1(ωωω) = ωωωωωωT

U2(ωωω) = ‖ωωω‖2 I−ωωωωωωT

Now, it is straightforward to verify that the following hold for U1(ωωω) and

U2(ωωω).

Ui(ωωω)Uj(ωωω) = 0, for i 6= j

U2
i (ωωω) = ‖ωωω‖2 Ui(ωωω)

U1(ωωω) + U2(ωωω) = ‖ωωω‖2 I

(4.125)

The above set of relations allows to write the inverse of U(ωωω) in a simple

form:

U−1(ωωω) =
1
λd

1
‖ωωω‖2γd+4 U1(ωωω) +

1
λc

1
‖ωωω‖2γc+4 U2(ωωω) (4.126)

Hence, the Green’s function Ψ is given by

Ψ(x) = F−1Ψ̂(ωωω) =
1
λd

U1(x)∗F−1

[
1

‖ωωω‖2γd+4

]
+

1
λc

U2(x)∗F−1

[
1

‖ωωω‖2γc+4

]
.

The functions U1(x) and U2(x) are obtained as

U1(x) = F−1U1(ωωω),

= −D(x),

U2(x) = F−1U2(ωωω),

= −L(x)I + D(x),

where

L(x) =
n∑
i=1

∂2

∂x2
i

δ

{D(x)}ij =
∂2

∂xi∂xj
δ
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This yields

Ψ(x) = − 1
λd

D(x)∗F−1

[
1

‖ωωω‖2γd+4

]
− 1
λc

(L(x)I−D(x))∗F−1

[
1

‖ωωω‖2γc+4

]
.

Now, from [67],

F−1

[
1

‖ωωω‖2m

]
= ψ2m−n(x)

where

ψl(x) =

c1‖x‖l log ‖x‖, if l is even,

c2‖x‖l, otherwise,

for some constants c1 and c2. For practical purposes, one can ignore these

constants, since they can be absorbed into the parameters λd and λc.

Finally, Ψ(x) becomes

Ψ(x) =
1
λd

D(x) ∗ ψ2γd+4−n(x) +
1
λc

(L(x)I−D(x)) ∗ ψ2γc+4−n(x).

Theorem 6: Irrotational and solenoidal Green’s functions

Recall that the functions ψψψ(d)
j and ψψψ(c)

j are of the following form:

ψψψ
(d)
j (x) =

[
∂2ψl1(x)
∂xj∂x1

· · · ∂
2ψl1(x)
∂xj∂xn

]T
(4.127)

ψψψ
(c)
j (x) = ej4ψl2(x)−

[
∂2ψl2(x)
∂xj∂x1

· · · ∂
2ψl2(x)
∂xj∂xn

]T
(4.128)

Note that ψψψ(d)
j (x) in (4.127) is the gradient of the scalar functions ∂ψl1 (x)

∂xj
;

i.e.,

ψψψ
(d)
j (x) = ∇

(
∂ψl1(x)
∂xj

)
.

Since Curl of gradient is zero,

Curlψψψ
(d)
j (x) = 0.
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Now, we evaluate Divψψψ(c)
j (x).

Divψψψ
(c)
j (x) = ∇ · ej4ψl2(x)−∇ ·

[
∂2ψl2(x)
∂xj∂x1

· · · ∂
2ψl2(x)
∂xj∂xn

]T
= ∇ · ej4ψl2(x)−∇ · ∇

(
∂ψl2(x)
∂xj

)
= ∇ · ej4ψl2(x)−4

(
∂ψl2(x)
∂xj

)
=

∂

∂xj
4ψl2(x)− ∂

∂xj
4ψl2(x)

= 0

Theorem 7: The columns of Green’s matrix function are

related

The functions ψψψ(d)
j and ψψψ(c)

j are expressed in Fourier as follows:

ψ̂ψψ
(d)

j (ωωω) = ĝj(ωωω)ψ̂l1(ωωω)

ψ̂ψψ
(c)

j (ωωω) = l̂j(ωωω)ψ̂l2(ωωω)− ĝj(ωωω)ψ̂l2(ωωω)

where

l̂j(ωωω) = ej ‖ωωω‖2

ĝj(ωωω) = ωjωωω

Note that the functions l̂j(ωωω) and ĝj(ωωω) satisfy the following relations:

l̂j+1(ωωω) = Pl̂j(PTωωω)

ĝj+1(ωωω) = Pĝj(PTωωω)

where

P =



 0 1

1 0

 , for n = 2,
0 0 1

1 0 0

0 1 0

 , for n = 3.

Since ψ̂l(ωωω) is a radial function, the above relations imply

ψ̂ψψ
(d)

j+1(ωωω) = Pψ̂ψψ
(d)

j (PTωωω)

ψ̂ψψ
(c)

j+1(ωωω) = Pψ̂ψψ
(c)

j (PTωωω)

107



108



Chapter 5

Vector Field

Reconstruction from

Non-uniform Projected

Samples: B-spline Solution

Summary

We address the problem of reconstructing a 2D vector field, v : R2 → R2,

from a set of projected samples of the form si = dTi v(xi), where {xi}
are sampling locations, and {di} are projection directions. We formulate

the reconstruction task as finding the minimizer of the functional Ja(f) =∑
i(d

T
i v(xi)−si)2+λJ(v), where J is a quadratic plausibility criterion given

by J(f) = λdDmd
(div v) + λdDmc

(rotv), and where Dm is Duchon’s semi-

norm of order m. We consider the case md,mc ∈ [0, 1]. We search for the

solution within the space of uniform B-splines and interpret our method as

the computationally efficient alternative for vector splines method. We show

that the required solution can be obtained by solving a sparse linear system

of equations. Exploiting the refinable nature of B-splines, we develop a fast

multiresolution-multigrid algorithm. We demonstrate the computational ad-

vantages of this new method over the analytical vector-spline method. We
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apply our method for recovering full velocity field from pulsed wave ultra-

sound Doppler data and demonstrate its utility for clinical echocardiography.

5.1 Motivation and Main Contributions

Our development of the previous vector-spline method was motivated by

our desire to reconstruct a full motion field from partial projection data

provided by clinical echocardiography. Echocardiography relies on Pulsed

wave ultrasound Doppler (PWD) imaging (Chapter 1) as a tool for cardiac

flow visualization. We recall here the imaging scheme briefly. The imaging

system sends a periodic pulse train along a set of scan lines and measures the

backscattered signal. By analyzing the Doppler frequency shift in the received

signal, the system retrieves a set of velocity estimates; these estimates are

the axial velocities of some points in the myocardium, where the term “axial

velocity” refers to the projected velocity along the beam direction. These

axial components are resampled on a regular grid and presented in a color

coded form that is known as the color flow image. See [5] for a comprehensive

treatment of the various apects of such systems. In the context of clinical

echocardiography, PWD imaging is also known as color Doppler imaging

when used to asses blood flow, and tissue Doppler imaging, when applied to

tissue motion.

The color flow image sequence contains the instantaneous velocity infor-

mation, but it is incomplete; in particular, the system is blind to the mo-

tion that is orthogonal to the beam. Nevertheless, such a partial velocity

field has been used for the determination of quantitative parameters such

as flow volume [68, 69, 70]. Further, qualitative motion analysis obtained

from this kind of data was found to be clinically useful in several instances

[71, 72, 73, 74, 75, 76]. However, clinical echocardiography poses more com-

plex problems such as discriminating the regions of wall thickening and thin-

ning. Such tasks call for the recovery of the true velocity field (vector field)

of the myocardium.

We propose to recover the full velocity field from PWD data by fusing

multiple view acquisitions of a particular region of interest. This problem

fits well with the theoretical framework developed in Chapter 4. However,

since fusing multiple view acquisitions results in a large number of samples,
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we are faced with a considerable computational challenge. Unfortunately,

the vector spline method proposed in Chapter 4 becomes computationally

impractical when the number of samples is large. This numerical inefficiency

is analogous to that of the thin-plate spline method for the scalar problem.

We recall here the factors that degrade the numerical efficiency: (i) the basis

functions are poorly conditioned since their magnitude grows from the center;

(ii) it requires to solve a dense, ill-conditioned linear system of equations; (iii)

the complexity grows rapidly with the number of input samples; (iii) after

computing the solution, displaying the result in a regular grid calls for an

expensive resampling step.

We propose to overcome this computational bottleneck by approximating

the theoretical vector-spline within a space of uniform vector B-splines. The

resulting computational advantages of this alternative method are analogous

to that of the method proposed for the scalar problem in Chapter 3. The

advantages are the following: (i) the reconstruction is simplified considerably

and only amounts to solving a well-conditioned, sparse linear system of equa-

tions; (ii) the complexity now essentially depends on the reconstruction grid

size (step size for B-splines), which acts as a trade-off parameters that allows

to find a compromise between the computational cost and the reconstruction

accuracy; (iii) the complexity is essentially independent of the input samples;

(iv) refinable nature of the present basis functions allows to devise a fast

multiresolution algorithm.

In Section 5.2, we set up the reconstruction problem and the derive the

linear system of equations yielding the required solution. In order to demon-

strate the importance of using the appropriate regularizer, we derive the

linear systems for three cases: (i) least squares approximation of the data

without regularization; (ii) approximation with scalar regularization based

on Duchon’s semi-norm; (iii) approximation using the vector regularization

proposed in Chapter 4. We also derive the interscale relation that links to-

gether the linear systems of equations specifying solutions in different levels

of resolution. In Section 5.3 we provide the numerical algorithm, which is

a modified version of the scalar one proposed in Chapter 3. We apply our

method for PWD imaging in Section 5.4, where we demonstrate how the

partial nature of the data demands the use of appropriately tuned vector

regularizer. We provide some reconstruction results on clinical data.
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5.2 The Proposed Method

Let v(x) = [u(x, y) v(x, y)] be the velocity field. Our aim is to recover v(x)

from the given Doppler measurement set {xi,di,mi}. We search for the

solution in the space of uniform B-splines; in other words, we restrict the

velocity field to be of the following form:

u(x, y) =
Ng−1∑
k=0

Ng−1∑
l=0

cuk,lβ
n(x/a− k)βn(y/a− l) (5.1)

v(x, y) =
Ng−1∑
k=0

Ng−1∑
l=0

cvk,lβ
n(x/a− k)βn(y/a− l) (5.2)

Here, βn is the B-spline of degree n and a is the step size that controls

the accuracy. The idea is to formulate the reconstruction as the minimizer

of a quadratic functional. Consequently, the expansion coefficients ck,l are

expressed as a solution of a linear system of equation. We study three forms

of the quadratic functional.

5.2.1 Least Squares Method (LS)

The least squares B-spline solution is the minimizer of the following quadratic

cost functional:

JLS(v) =
N∑
i=1

(
dTi v(xi)−mi

)2
(5.3)

Let cu = [· · · cuk,l · · · ]T , cv = [· · · cvk,l · · · ]T , and c = [cTu cTv ]T . Now, the task

is express the above functional in terms of c. Let tu = [· · · u(xi) · · · ]T and

tv = [· · · v(xi) · · · ]T . The vectors tu and tv are computed as

tu = Sscu,

tv = Sscv,

where the sample matrix Ss is defined as

{Ss}i,Ngl+k = βn(xi/a− k)βn(yi/a− l). (5.4)

Let Wx and Wy be the diagonal matrices defined by

{Wx}ii = dxi,
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{Wy}ii = dyi,

where dxi and dyi are the components of di. Further, let

tvd = [· · · dTi v(xi) · · · ]T .

It can be verified that

tvd = Wxtu + Wytv = WxScu + WyScv

We now define,

W = [Wx Wy], (5.5)

S =

[
Ss 0

0 Ss

]
. (5.6)

Then, tvd becomes

tvd = WSc.

Let m = [· · · mi · · · ]T . Putting all these elements together, we express (5.3)

in the following standard matrix form:

JLS(v) = ‖tvd −m‖2 = ‖WSc−m‖2

= cTALSc− 2cTBTm + mTm (5.7)

where

ALS = STWTWS, (5.8)

B = WS. (5.9)

Note that ALS is a square matrix of size 2N2
g . Finally, the least squares

reconstruction—i.e., the minimizer of (5.7)—is given by the solution of the

following equation:

cLS = A−1
LSb, (5.10)

where b = BTm. In the case where ALS is not of full rank, we consider the

minimum norm solution which is given by cLS = A†
LSb, where A†

LS is the

generalized (Moore-Penrose) inverse of ALS .
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5.2.2 Regularized Least Squares Method (RLS)

The reconstruction in the regularized least squares methods is the minimizer

of an extended cost functional; it is obtained by adding a smoothness func-

tional to the original least squares functional, i.e.,

JRLS(v) = JLS(v) + λR(v) (5.11)

A typical choice of smoothness functional, R(v), that is frequently used for

the estimation of deformation fields is a weighted sum of membrane spline and

thin-plate spline regularizers [30, 48] applied to each component. Specifically,

we have

R(v) = λ1(D1(u) +D1(v)) + λ2(D2(u) +D2(v)) (5.12)

where Dm is Duchon’s semi-norm of order m, which is given by

D1(u) =
∫ ∫ (

∂u(x, y)
∂x

)2

+
(
∂u(x, y)
∂y

)2

dxdy, (5.13)

D2(u) =
∫ ∫ (

∂2u(x, y)
∂x2

)2

+ 2
(
∂2u(x, y)
∂x∂y

)2

+
(
∂2u(x, y)
∂y2

)2

dxdy, (5.14)

with λ1 ≥ 0 and λ2 ≥ 0. We set one these two parameters to zero, so

that the regularization functional corresponds to the original scale invariant

semi-norm. It is important to note that this fairly standard regularizer does

not have any coupled terms, meaning that it does not enforce any special

relationship between velocity components.

The main task now is to express D1(.) and D2(.) in terms of expansion

coefficients. In the Appendix, we show that these can be written down rela-

tively simply in terms of digital filtering operations and l2-inner products as

given below:

D1(u) =
〈
g(k, l) ∗ cuk,l, cuk,l

〉
l2(Z2)

(5.15)

D2(u) =
〈
l(k, l) ∗ cuk,l, cuk,l

〉
l2(Z2)

(5.16)

The digital filters g and l are conveniently characterized by their z-transforms
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G(z1, z2) and L(z1, z2). For B-splines they take the following form:

G(z1, z2) = (z1 + 2 + z−1
1 )B2n−1(z1)B2n+1(z2)

+B2n+1(z1)(z2 + 2 + z−1
2 )B2n−1(z2) (5.17)

L(z1, z2) =
1
a2

[
(z1 + 2 + z−1

1 )2B2n−3(z1)B2n+1(z2)

+2(z1 + 2 + z−1
1 )B2n−1(z1)(z2 + 2 + z−1

2 )B2n−1(z2)

+ B2n+1(z1)(z2 + 2 + z−1
2 )2B2n−3(z2)

]
(5.18)

where Bn(z) =
∑
k∈Z β

n(k)z−1 denotes the z-transform of the discrete B-

spline of degree n. Note that these filters can also be obtained from the

expression derived in Chapter 3. Equations (5.15) and (5.16) can also be

written as

D1(u) = cTuRgcu (5.19)

D2(u) = cTuRlcu (5.20)

where Rg and Rl are the circulant matrices corresponding to G(z1, z2) and

L(z1, z2), respectively. This together with (5.7) yields the following expres-

sion for JRLS(v):

JRLS(v) = cTALSc− 2cTBTm + mTm + λ1cTRgec + λ1cTRlec, (5.21)

where

Rge =

[
Rg 0

0 Rg

]

Rle =

[
Rl 0

0 Rl

]
Thus the minimizer of (5.21) can be formally expressed as

cRLS = A−1
RLSb,

where ARLS = ALS + λ1Rge + λ2Rle. In practice, we do not compute the

inverse but we solve the system using direct or iterative methods that are

efficient for sparse systems.

5.2.3 Vector Regularized Least Squares (VRLS)

We now introduce the vector regularization proposed in 4. The criterion to

minimize is

JV RLS(v) = JLS(v) + λRE(v), (5.22)
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where RE(v) is the vector regularizer. The functional, RE(v), is based on

the divergence and curl of the velocity field, which are expressed as follows

for the present set up:

div v(x) = ∂xu(x, y) + ∂yv(x, y), (5.23)

rotv(x) = −∂yu(x, y) + ∂xv(x, y). (5.24)

The divergence of the velocity field quantifies the rate change of the density of

the medium at a given point. The curl of a velocity field, on the other hand, is

equal to the twice the angular velocity within an infinitesimal neighborhood

at the point of interest. Thus, we construct RE(v) as given below:

RE(v) = λd0

∫
(div v(x))2 dx + λd1

∫
‖∇ (div v(x))‖2 dx

+ λc0

∫
(rotv(x))2 dx + λc1

∫
‖∇ (rotv(x))‖2 dx. (5.25)

Here we choose only one of the parameters in {λd0 , λd1} to be non-zero, and

only one of the parameters in {λc0 , λc1} to be non-zero. Consequently, RE(v)

is a special case of the functional proposed in Chapter 4 which is given by

Equations (4.35), (4.31), and (4.32) with the restriction γd, γc ∈ (0, 1).

This restriction is imposed in order to simplify the computations. Never-

theless, this choice is sufficient to include every possible case that has direct

physical interpretation in terms of the deformation of the medium undergoing

motion. Specifically, since the divergence gives the density change, the first

term in the equation (5.25) quantifies the overall compression rate, whereas

the second term gives the spatial roughness of this compression rate. Both

terms are related to the deformation of the medium. The third term sums up

the squared angular velocity. It does not directly quantify the deformation,

but will tend to penalize rotations including rigid ones. The last term, on

the other hand, is indeed a measure of deformation, as it captures the spatial

variation of the angular velocity. Hence, RE(v) is sufficient to include any

a priori knowledge of the type of velocity field and also to specify physically

plausible solutions.

In the Appendix, we show that the various terms in (5.25) can be written
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as ∫
(Div v(x))2 dx =

〈
r11(k, l) ∗ cuk,l, cuk,l

〉
+
〈
r12(k, l) ∗ cvk,l, cvk,l

〉
+2
〈
r13(k, l) ∗ cuk,l, cvk,l

〉
, (5.26)∫

(Curl v(x))2 dx =
〈
r11(k, l) ∗ cuk,l, cuk,l

〉
+
〈
r12(k, l) ∗ cvk,l, cvk,l

〉
−2
〈
r13(k, l) ∗ cuk,l, cvk,l

〉
, (5.27)∫

‖∇ (Div v(x))‖2 dx =
〈
r21(k, l) ∗ cuk,l, cuk,l

〉
+
〈
r22(k, l) ∗ cvk,l, cvk,l

〉
+2
〈
r23(k, l) ∗ cuk,l, cvk,l

〉
, (5.28)∫

‖∇ (Curl v(x))‖2 dx =
〈
r21(k, l) ∗ cuk,l, cuk,l

〉
+
〈
r22(k, l) ∗ cvk,l, cvk,l

〉
−2
〈
r23(k, l) ∗ cuk,l, cvk,l

〉
. (5.29)

where the underlying digital filters are defined as follows:

R11(z1, z2) = (z1 + 2 + z−1
1 )B2n−1(z1)B2n+1(z2) (5.30)

R12(z1, z2) = B2n+1(z1)(z2 + 2 + z−1
2 )B2n−1(z2) (5.31)

R13(z1, z2) = B′2n+1(z1)B′2n+1(z−1
2 ) (5.32)

R21(z1, z2) =
1
a2

[
(z1 + 2 + z−1

1 )2B2n−3(z1)B2n+1(z2)

+ (z1 + 2 + z−1
1 )B2n−1(z1)(z2 + 2 + z−1

2 )B2n−1(z2)
]
(5.33)

R22(z1, z2) =
1
a2

[
B2n+1(z1)(z2 + 2 + z−1

2 )2B2n−3(z2)

+ (z1 + 2 + z−1
1 )B2n−1(z1)(z2 + 2 + z−1

2 )B2n−1(z2)
]
(5.34)

R23(z1, z2) =
1
a2

[
(z1 + 2 + z−1

1 )D2n−2(z1)B′2n+1(z−1
2 )

+ D2n+1(z1)(z2 + 2 + z−1
2 )B′2n−2(z−1

2 )
]

(5.35)

Here Dn(z) =
∑
k∈Z (βn(x+ 1/2)− βn(x− 1/2)) z−1. In matrix form,

Equations (5.26), (5.27), (5.28), and (5.29) read∫
(Div v(x))2 dx = cTuR11cu + cTv R12cv + 2cTuR13cv (5.36)∫

(Curl v(x))2 dx = cTuR12cu + cTv R11cv − 2cTuR13cv (5.37)∫
‖∇ (Div v(x))‖2 dx = cTuR21cu + cTv R22cv + 2cTuR23cv (5.38)∫
‖∇ (Div v(x))‖2 dx = cTuR22cu + cTv R21cv − 2cTuR23cv (5.39)
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The cost functional, JV RLS(v), now becomes

JV RLS(v) = cTALSc− 2cTBTm + mTm + λd0c
TRd0c + λc0c

TRc0c

+λd1c
TRd1c + λc1c

TRd1c, (5.40)

where

Rd0 =

[
R11 R13

R13 R12

]
(5.41)

Rc0 =

[
R12 −R13

−R13 R11

]
(5.42)

Rd1 =

[
R21 R23

R23 R22

]
(5.43)

Rc1 =

[
R22 −R23

−R23 R21

]
(5.44)

Note that the functional, RE(v), includes R(v) as a special case. To show

this, we first observe from (5.30), (5.31) and (5.17) that

G(z1, z2) = R11(z1, z2) +R12(z1, z2).

Similarly, using (5.33), (5.34), and (5.18), we get

L(z1, z2) = R21(z1, z2) +R22(z1, z2).

These two relations in turn imply

Rd0 + Rc0 = Rge

Rd1 + Rc1 = Rle

Thus we conclude that RE(v) = R(v) if λd0 = λc0 = λ1 and λd1 = λc1 = λ2.

This agrees with the relation (4.37).

Finally, the solution for the VRLS method—i.e., the minimizer of (5.40)—

is given by

cV RLS = A−1
V RLSb,

where AV RLS = ALS + λd0Rd0 + λc0Rc0 + λd1Rd1 + λc1Rc1 .

Note that in all the forms of the solution, the size of the linear system

is inversely proportional to step size a. Hence a is a trade-off parameter

(complexity vs. accuracy).
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5.2.4 Interscale Relation

Let us now consider signal reconstructions at different scales. Specifically, let

2j be the reconstruction grid size (scale j) and

uj(x, y) =
(Ng−1)/2j∑

k

(Ng−1)/2j∑
l

c
u,(j)
k,l β(x/2j − k)β(y/2j − l), (5.45)

vj(x, y) =
(Ng−1)/2j∑

k

(Ng−1)/2j∑
l

c
v,(j)
k,l β(x/2j − k)β(y/2j − l) (5.46)

be the reconstructing functions, and let

cu,(j) = [· · · cu,(j)k,l · · · ]
T

cv,(j) = [· · · cv,(j)k,l · · · ]
T

c(j) = [cTu,(j) cTu,(j)]
T

From Equations (5.7), (5.21), and (5.40), the general form of the cost func-

tional for all the three methods can be written as

Jspline

(
c(j)

)
= cT(j)A(j)c(j) − 2cT(j)b(j) + mTm, (5.47)

where A(j) now denotes the matrix corresponding to any of the above three

methods (LS, RLS, or VRLS) with the subscript j signifying the dependence

of the matrices on the scale. The solution minimizing the above cost is given

by

A(j)c(j) = b(j), (5.48)

Let h(k, l) be the two-scale filter, and let E(j) be the matrix obtained from

the circulant matrix corresponding to the filter h(k, l) after suppression of its

odd index columns. Define

U(j) =

[
E(j) 0

0 E(j)

]
The following theorem relates the reconstruction matrices across at two

successive scales.

Theorem 8 The system matrices at scales j and j + 1 are related by

A(j+1) = UT
(j)A(j)U(j) (5.49)

b(j+1) = UT
(j)b(j) (5.50)
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We will use this relation to construct the multi-resolution algorithm as done

in the scalar case (Chapter 3). The proof is given in the Appendix. Even

though this theorem can be obtained by a suitable extension of the proof for

the scalar case (Chapter 3), we provide here a more general proof without

looking into the structure of the regularization filters.

5.3 Numerical Algorithm

We have shown that the reconstruction problem is equivalent to solving a sys-

tem of linear equations. A key property is that the present system is sparse

and well-conditioned in contrast with the theoretical vector spline method

where the matrix is dense and ill-conditioned. We also have the flexibility to

choose the step size a with the guarentee that the solution converges to the

analytical one when a is sufficiently small. However, for most of the practical

cases, sufficient accuracy is achieved with a fairly large value of a. Eventually,

solving the system of equations by direct methods (example: Gaussian elim-

ination) will be sufficiently fast (few seconds) on personal computers with a

moderate computational power, provided the system of equations is set-up in

an efficient sparse format. Nevertheless, iterative methods are more efficient

under favorable conditions, especially is the context of a multi-grid solver.

As in the scalar case, the iterative method can be constructed based on

the multiresolution strategy. Specifically, one solves the linear system exactly

at coarsest resolution and propagates the solution across the scales up to the

required resolution; at each stage of propagation, the solution at the current

resolution is obtained by an iterative refinement from its initialization, where

the later is obtained by expanding the solution from the coarser resolution. As

in the scalar case, one can compute the matrices for all the coarse resolutions

by using the interscale relation.

In the scalar case, we used multigrid V-cycle for the iterative refinement.

In the present problem, one can either use the multigrid V-cycle if the system

is diagonally dominant. Otherwise conjugate gradient method can be used.
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5.4 Performance Evaluation

We study the performance of the proposed method in the context of velocity

field recovery from pulsed wave ultrasound doppler data. We first discuss

about the nature of input data and the role of appropriately tuned regularizer

in recovering the true velocity field. We then study the reconstruction on a

synthetic phantom. Next, we move to real phantom data, where the motion

is controlled and known a priori. Finally, we present reconstruction results

obtained from echocardiographic patient data, and demonstrate its clinical

potential.

5.4.1 Data Indeterminacy and the Role of Regulariza-

tion

Let us consider a plane rotating with an angular velocity ω about the center

(xc, yc); its velocity field is given by

u(x, y) = −ω(y − yc) (5.51)

v(x, y) = ω(x− xc) (5.52)

Let the measurement device be a cone beam probe located at the origin. The

probe measures the samples of the following function:

vd(x, y) = [dx(x, y) dy(x, y)]

[
u(x, y)

v(x, y)

]

Here [dx(x, y) dy(x, y)]T is the direction of the beam from the probe, whose

components, in the present geometry, are given by

dx(x, y) =
x√

x2 + y2
, dy(x, y) =

y√
x2 + y2

.

Then vd(x, y) reads

vd(x, y) =
xωyc − yωxc√

x2 + y2
.

It is clear from the above equation that we cannot recover the motion pa-

rameters {ω, xc, yc} individually from the samples of vd(x, y), no matter how

many. We can only recover the products ωxc and ωyc. In other words, any

rotating plane with an angular velocity, ω1, and a center of rotation, (x1, y1),

is a candidate solution, provided ω1x1 = ωxc and ω1x1 = ωyc. Hence, there
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is no reconstruction method that can recover the motion uniquely. We can

resolve this ambiguity if we have the value of one of the components (u or

v) at any point. In fact, the minimal sample set (possibly artificial) required

to determine all the three parameters is the following: (i) samples of the

function vd(x, y) at two points that do not lie on the same scan line; (ii) a

sample of one of the components.

An ideal non-parametric regularized method should recover the true mo-

tion from a measurement set, whenever it is possible to recover parametri-

cally. For example, the method should recover the rotational motion from

the minimal measurement set described above, since they are sufficient to

compute the motion field parametrically. To achieve this, the regularization

functional should be rich enough to incorporate the main physical properties

of the motion.

5.4.2 Rotating Synthetic Phantom Reconstruction

The synthetic phantom we consider is the vector field described above, which

corresponds to a plane rotating with a constant angular velocity. We demon-

strated earlier that the single probe measurement set is ambiguous and does

not permit the recovery of the motion parameters. We also described a min-

imal artificial sample set required to recover the center of rotation and the

angular velocity of the plane (two samples from the probe and one sample

of one of the components). Here, we first demonstrate how the velocity field

can be recovered by VRLS from such a minimal set. Then, in the second

part, we consider measurements from two probe locations, since it is the only

practical way to resolve the ambiguity. We study the performance of all three

method on such a measurement set.

Reconstruction from a minimal measurement set

For a rigid rotation, the divergence is zero, and so is the gradient of the curl.

Hence the appropriate regularization set up for VRLS is {λd0 → ∞, λd1 =

0, λc0 = 0, λc1 → ∞}. However, since there will be a non-zero gradient of

the curl at the boundary, a non-zero value of λc1 will force the rotation at

the boundary to be zero, and hence will give a rather large reconstruction

error away from the center. We therefore choose {λd0 → ∞, λd1 = 0, λc0 =
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s1

s2

θ

Figure 5.1: Schematic for synthetic phantom experiment

0, λc1 = 0}. With this setting, the VRLS algorithm reconstructs the velocity

field perfectly from the minimal measurement set. Also, as we expected, the

extra freedom that results from choosing λc1 = 0 does not have any effect

in the interior. Indeed, we verified that the reconstruction at the interior is

essentially insensitive to the value of λc1 . By contrast, choosing a non-zero

value of λc1 tends to result in a sizable reconstruction error at the boundaries.

Finally, note that neither the RLS nor the LS can recover the velocity field

from the minimal measurement set.

Reconstruction from simulated measurements for two probe posi-

tions

We consider now the Doppler data simulated for two probe locations s1 =

[x1 y1]T , and s2 = [x2 y2]T , that subtend an angle, θ, with respect to the

center of rotation (figure 5.1). The idealized phantom data is now obtained

by sampling two functions v1(x) and v2(x), where

vj(x) = vj(x, y),

= dTj (x)v(x),

= [dxj (x, y) dyj (x, y)]

[
u(x, y)

v(x, y)

]
.
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Here, u(x, y) = −ω(y − yc), v(x, y) = ω(x− xc), and

dxj (x, y) =
x− xj√

(x− xj)2 + (y − yj)2
, dyj (x, y) =

y − yj√
(x− xj)2 + (y − yj)2

.

We are also adding noise to make the problem more realistic. Each of the

functions v1(x) and v2(x) are uniformly sampled with respect the polar co-

ordinate systems with origins s1, and s2 respectively. However, note that the

samples are non-uniform with respect to our cartesian reconstruction system.

Let {xji, i = 1, . . . , N} be the set of sample locations for the probe sj . The

input for the algorithm is given by the following list of triplets:

{xji,dji,mji, j = 1, 2; i = 1, . . . , N},

where dji = dj(xji), and mji = dTj (xji)v(xji) + nji with nji being some

i.i.d Gaussian measurement noise with variance σ2. Note that the richness

of the data set is controlled by the magnitude of θ, and that the reconstruc-

tion becomes easier as θ tends to 90o. Because of the presence of noise,

we need to modify the previous regularization setting for VRLS method; we

use a non-zero value for λc1 to favor the reconstruction of a smooth field.

The best value for λc1 is proportional to the input noise variance. In other

words, {λd0 → ∞, λd1 = 0, λc0 = 0, λc1 = kσ2} is the appropriate setting,

where k is a adequately chosen positive real number. We choose k somewhat

empirically such that E[m2
ji] = E[(dTjivr(xji))

2] + σ2, where vr(x) is the re-

constructed velocity field, and E [•] denotes the expectation operator. For the

RLS method, we need to set λ1 = 0, since a rigid rotation contains the first

order spatial variation. Hence the appropriate setting is {λ1 = 0, λ2 = kσ2}.
Before presenting our results, we define the following quantities:

Input SNR = 10× log

(
E
[
dTjiv(xji)2

]
σ2

)

Reconstruction SNR = 10× log

(
E

[
‖v(k)‖2

‖vr(k)− v(k)‖2

])

where v(x) is the true velocity field. Note that the input SNR is computed

over the available sample locations, whereas the reconstruction SNR is com-

puted over the reconstruction grid. Figure 5.2 gives reconstruction SNR for

VRLS and RLS as a function of θ, for different values of the input SNR. It

can be observed that the reconstruction error decreases with increasing θ,
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Figure 5.2: Reconstruction error for synthetic phantom experiment.

as one expects. Also, one can clearly see the superiority of VRLS. Figure

5.3 gives the reconstruction SNR for all three methods as a function of the

input SNR with θ = 30o. Note that VRLS performs the best, and that the

reconstruction error for the conventional LS approach is far worse (off by

more than 30 dB). All the reconstructions were done on a 16× 16 grid with

a = 4 and with the number of samples equal to the number of grid points.

5.4.3 Synthetic Phantom with Non-Rigid Motion

In this experiment, we consider a more complex model for the synthetic

phantom. Specifically, we adopt a non-rigid motion model given by

v(x) = α

[
∂
∂xϕ(‖x‖)
∂
∂yϕ(‖x‖)

]
+ β

[
−∂
∂y ϕ(‖x‖)
∂
∂xϕ(‖x‖)

]
(5.53)

where ϕ(r) = 1
2π e

−r2/2, α ≥ 0, and β ≥ 0. The first term is the curl-free com-

ponent and the second is the divergence-free component. In this experiment

too, the input data are the measurements simulated for two probes (Figure

5.1) with some i.i.d Gaussian noise. Since the velocity field has a non-zero

divergence and a non-zero curl, we have to choose λd0 = λc0 = 0. The overall
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Figure 5.3: Reconstruction error for synthetic phantom experiment.

preferred setting is {λd0 = 0, λd1 = k β2

α2+β2σ
2, λc0 = 0, λc1 = k α2

α2+β2σ
2},

where k is chosen as before. The chosen range for the reconstruction grid is

[−3, 3] (essential support of the Gaussian) and the average sampling density

is 28 samples per unit area. Figure 5.4 compares the reconstruction result

for VRLS obtained for different values of the step size a with θ = 30o. The

input SNR is 10 dB. The reconstruction SNR is nearly constant when a is

sufficiently small and falls off drastically when it becomes too low. For prac-

tical purpose, the choice a = 2 offers a good compromise in terms of quality

and computational cost.

5.4.4 Real Phantom Experiment

The real phantom that we constructed for this experiment is a cylindrical

tissue-mimicking object (sponge) immersed in a water container. The object

rotates with a constant angular velocity. Doppler data were acquired, and

reconstruction was performed from views differing by 10 degrees. Figure

5.5 shows one frame of the B-mode intensity image with the super-imposed

reconstructed motion field. The input SNR is 14.27 dB. The reconstruction
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Figure 5.4: Reconstruction error for VRLS with synthetic phantom

with non-rigid motion. Input SNR = 10 dB.

SNR for the VRLS method is 13.67 dB. The regularization set-up was the

same as that of the previous experiment.

5.4.5 Echocardiographic Data

The echocardiographic data are from a healthy individual and were acquired

using Siemens Sequoia Ultrasound System from two echocardiographic stan-

dard views: (i) apical long axis view, and (ii) parasternal long axis view, with

careful observation of anatomical landmarks to make sure that the images

belong to the same cross sectional plane. Along with the Doppler images, the

data set contains B-mode intensity images that reveal the anatomical struc-

ture of the cross sectional plane. The acquisition was done by an experienced

echocardiographer who adjusted the probe such that both acquisitions are

from the same cross-sectional plane. They are also synchronized with respect

to cardiac cycle by ECG gating. Hence, the premise of this data set is that the

image planes are related by a rigid transformation (translation+rotation). To

reconstruct the motion field in one image plane, one therefore has to register
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Figure 5.5: Reconstructed motion field for the rotating real phantom.

the two data sets and superimpose them onto a common reference system.

To this end, we computed the required transformation by identifying a pair

of landmarks (base of the mitral valves) in both the sequences. Figure 5.6

shows the reconstructed motion field for one frame in both views. The recon-

structed velocity field was validated in a qualitative manner by comparison of

the motion directions determined from grayscale images by several echocar-

diographic experts, who could confirm the agreement of expert readings with

the results found by our algorithm.

5.4.6 Some Notes on the Performance

The above experimental examples demonstrate the effectiveness of the pro-

posed method. We observe a striking difference between the performance

of the vector regularizer and the more traditional thin-plate spline regular-

izer. This is due to the fact that the vector regularizer introduces a coupling

between the x and y components whereas the thin-plate spline regularizer—

which works well when the sample are complete (both components)— treats

the components independently. The incompleteness of the Doppler data
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(a) Apical long axis view.

(b) Parasternal long axis view.

Figure 5.6: Reconstructed motion field from two view cardiac

Doppler data.
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makes the coupling crucial, and hence the improvement of coupled regularizer

over the uncoupled one is significant. Another point that makes the proposed

vector regularizer attractive is that it allows one to incorporate some a priori

knowledge on the motion. Note that it can be specified to penalize the pure

deformation only; in other words, the null space of the regularization opera-

tor can be chosen to include all the rigid forms of motions such as translation

and rotation.

The computational task essentially consists of two parts: (i) setting up

the system of equations, and (ii) solving the system. The size of the data set

influences the first part only, which is typically negligible when compared to

the second. The later depends only on the required resolution a or, equiva-

lently, the number of grid points Ng×Ng. Thanks to the right choice of basis

functions, this complexity can be brought down to O(Ng ×Ng), if one uses

efficient techniques that are specialized for sparse systems [62]. To sum up,

the overall complexity is essentially proportional to 1
a2 . Thus we can control

the complexity by adjusting the grid size, an option that is especially useful

when dealing with large data set that originate from multiple acquisitions. Of

course, having more measurements is advantageous because it will contribute

to improving the reconstruction SNR.

Even though our results are still preliminary and require some careful

imaging set-up, they open up some interesting future perspectives. The key

point is that modern systems have the capability of acquiring Doppler data

in multiple views without moving the probe, for example, by steering the

beam in the parallel beam system (figure 1.1(b)). However, in such systems,

the users can only visualize the axial velocity in a color coded form, and the

raw data is not accessible normally. The proposed algorithm, if integrated

with such systems, opens up a possibility of visualizing the true velocity field

without any manual registration procedure.

All the reconstructions were done with the grid size in the range 32− 50.

The corresponding size of the linear system is in the range 2048 − 5000.

Thanks to the right choice of the basis functions, the matrices are sparse and

hence it takes only 3−9 seconds to solve by direct methods using matlab on a

Apple G5 system. We also implemented a multi-grid version of the algorithm

for the case λd0 = λc0 , and λd1 = λc1 . We verified that the multigrid solver

will speed up by at least one order of magnitude. The same strategy should
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also work for the more general case but will require a significant programming

effort as well as a re-engineering of the structure of the current program, which

is an adaptation of the scalar algorithm developed in Chapter 3.

Conclusion

We developed a numerically efficient method to reconstruct vector field from

projected samples that is a preferable alternative for vector spline method

when the data size is large. Using this method, we demonstrated the feasi-

bility of recovering true velocity field from pulsed wave Doppler data. Using

the reconstruction examples, we also demonstrated the importance of tuning

the smoothness functional, and showed how the data indeterminacy can be

overcome by a suitable choice of vector regularization.

Appendix

Regularization Filters

Our goal is to find expressions for R(v) and RE(v) in terms of the B-spline

expansion coefficients. Each constitutive term is a bilinear functional involv-

ing the velocity components. They are of the following form:

B(f, g, p1, q1, p2, q2) =
∫ (

∂p1x ∂
q1
y f(x, y)

) (
∂p2x ∂

q2
y g(x, y)

)
dxdy. (5.54)

where f and g are expressed as

f(x, y) =
∑
k,l

cfk,lβ
n(x/a− k)βn(y/a− l) (5.55)

g(x, y) =
∑
m,n

cgk,lβ
n(x/a−m)βn(y/a− n) (5.56)

Here, f and g are the symbolic replacements for the velocity components, u

and v; they either refer to the same component (square terms) or different

components (cross terms). This representation facilitates deriving a generic

computational formula that will be useful for both square terms and cross

terms. To derive the formula, we first define

αp,a(x) =
dp

dxp
{βn(x/a)} . (5.57)
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Substituting (5.55) and (5.56) in (5.54), we get

B(f, g, p1, q1, p2, q2) =
∑
l,n

∑
k,m

cfk,lc
g
m,n[∫

αp1,a(x− ka)αp2,a(x−ma)dx
]

[∫
αq1,a(y − la)αq2,a(y − na)dy

]
.

This in turn yields

B(f, g, p1, q1, p2, q2) =
∑
l,n

∑
k,m

cfk,lc
g
m,nηp1,p2((m−k)a)ηq1,q2((n−l)a), (5.58)

where ηp1,p2(x) is defined by the following convolution:

ηp1,p2(x) = αp1,a(x) ∗ αp2,a(−x). (5.59)

Now define

γp1,p2(k) = ηp1,p2(ka), (5.60)

µp1,q1,p2,q2(k, l) = γp1,p2(k)γq1,q2(l). (5.61)

Substituting we get,

B(f, g, p1, q1, p2, q2) =
∑
l,n

∑
k,m

cgk,lc
f
m,nµp1,q1,p2,q2(m− k, n− l),

=
∑
k,l

cgk,l

∑
m,n

cfm,nµp1,q1,p2,q2(m− k, n− l),

=
〈
µp1,q1,p2,q2(k, l) ∗ c

f
k,l, cgk,l

〉
l2(Z2)

(5.62)

In other words, the bilinear form B(f, g, p1, q1, p2, q2) that involves an inte-

gral over R2 is re-expressed as a bilinear form that involves a discrete inner

product over l2. Hence (5.62) gives a basic building block to represent any

vector regularization functional for B-splines by discrete convolutions. The

discrete filter µp1,q1,p2,q2(k, l) is completely determined by the quadruple of

derivative orders {p1, q1, p2, q2}, the degree of the B-spline, and the scale a

(equations (5.57), (5.59), (5.60), (5.61)). Let Γp1,p2(z) and Mp1,q1,p2,q2(z1, z2)

be z-transforms of γp1,p2(k) and µp1,q1,p2,q2(k, l) respectively. Then

Mp1,q1,p2,q2(z1, z2) = Γp1,p2(z1)Γq1,q2(z1) (5.63)
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The next step now is to find explicit expression for Γp1,p2(z). To this end,

we first write the Fourier expressions for B-spline [55]:

βn(x) ←→ β̂n(ω) =
(ejω/2 − e−jω/2)n+1

(jω)n+1

βna (x) = βn(x/a) ←→ β̂na (ω) = aβ̂n(aω) = a
(ejaω/2 − e−jaω/2)n+1

(jaω)n+1

Then Fourier expression for αp,a(x) defined in the equation (5.57) is given by

α̂p,a(ω) = (jω)p β̂na (ω)

= (jω)p aβ̂n(aω)

= (jω)p a
(ejaω/2 − e−jaω/2)n+1

(jaω)n+1

=
1
ap

(ejaω/2 − e−jaω/2)p
[
a
(ejaω/2 − e−jaω/2)n+1−p

(jaω)n+1−p

]
(5.64)

Now, ηp1,p2(x) defined in the equation (5.59) is given by

η̂p1,p2(ω) = α̂p1,a(ω) ˜̂αp2,a(ω)

Substituting (5.64) yields

η̂p1,p2(ω) =
1

ap1+p2
(ejaω/2 − e−jaω/2)p1(e−jaω/2 − ejaω/2)p2

×a2

[
(ejaω/2 − e−jaω/2)n+1−p1

(jaω)n+1−p1

] [
(e−jaω/2 − ejaω/2)n+1−p2

(−jaω)n+1−p2

]
Now let us consider the case when p1 + p2 is even. We rewrite the above

equation as

η̂p1,p2(ω) =
1

ap1+p2−1
(ejaω/2 − e−jaω/2)p1(e−jaω/2 − ejaω/2)p2

×a
[
(ejaω/2 − e−jaω/2)2n+2−p1−p2

(jaω)2n+2−p1−p2

]
=

1
ap1+p2−1

(ejaω/2 − e−jaω/2)p1(e−jaω/2 − ejaω/2)p2aβ̂2n+1−p1−p2(aω)

=
1

ap1+p2−1
(ejaω/2 − e−jaω/2)p1(e−jaω/2 − ejaω/2)p2 β̂2n+1−p1−p2

a (ω)

=
1

ap1+p2−1
ζ̂(p1,p2)(ejaω)β̂2n+1−p1−p2

a (ω) (5.65)

where

ζ̂(p1,p2)(ejaω) = (ejaω/2 − e−jaω/2)p1(e−jaω/2 − ejaω/2)p2 .
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Since p1+p2 is even ζ̂(p1,p2)(ejaω) is a polynomial in e−jaω (or even polynomial

in e−jaω/2). Let

ζ̂(p1,p2)(ejaω) =
∑
l

ζ
(p1,p2)
l e−jlaω. (5.66)

Substituting in (5.65) and applying an inverse Fourier transformation, we get

ηp1,p2(x) =
1

ap1+p2−1

∑
l

ζ
(p1,p2)
l β2n+1−p1−p2

a (x− la)

=
1

ap1+p2−1

∑
l

ζ
(p1,p2)
l β2n+1−p1−p2(x/a− l)

This yields

γp1,p2(k) = ηp1,p2(ka)

=
1

ap1+p2−1

∑
l

ζ
(p1,p2)
l β2n+1−p1−p2(k − l)

=
1

ap1+p2−1
ζ
(p1,p2)
k ∗ β2n+1−p1−p2(k)

Hence in z-domain we get,

Γp1,p2(z) = ζ̂(p1,p2)(z)B2n+1−p1−p2(z)

Now, let p1 + p2 be odd. We rewrite (5.65) as follows:

η̂p1,p2(ω) =
1

ap1+p2−1
ζ̂(p1−1,p2)(ejaω)(ejaω/2 − e−jaω/2)β̂2n+1−p1−p2

a (ω)

(5.67)

Note that ζ̂(p1−1,p2)(ejaω) is now a polynomial in e−jaω, and let

ζ̂(p1−1,p2)(ejaω) =
∑
l

ζ
(p1−1,p2)
l e−jlaω.

Substituting the above equation in (5.67) and applying inverse Fourier trans-

formation, we get

ηp1,p2(x) =
1

ap1+p2−1

∑
l

ζ
(p1−1,p2)
l

×
(
β2n+1−p1−p2
a (x− la+ a/2)− β2n+1−p1−p2

a (x− la− a/2)
)

=
1

ap1+p2−1

∑
l

ζ
(p1−1,p2)
l

×
(
β2n+1−p1−p2(x/a− l + 1/2)− β2n+1−p1−p2(x− l − 1/2)

)
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This yields

γp1,p2(k) = ηp1,p2(ka)

=
1

ap1+p2−1

∑
l

ζ
(p1−1,p2)
l

×
(
β2n+1−p1−p2(k − l + 1/2)− β2n+1−p1−p2(k − l − 1/2)

)
=

1
ap1+p2−1

ζ
(p1−1,p2)
k ∗ d2n+1−p1−p2(k),

where dn(x) = βn(x+ 1/2)− βn(x− 1/2). In z-domain it reads

Γp1,p2(z) = ζ̂(p1−1,p2)(z)D2n+1−p1−p2(z),

where

Dn(z) =
∑
k

dn(k)z−k.

In summary, the filter Γp1,p2(z) is given by

Γp1,p2(z) =

{ (
1
a

)p1+p2−1
ζ̂(p1,p2)(z)B2n+1−p1−p2(z), if p1 + p2 is even, and(

1
a

)p1+p2−1
ζ̂(p1−1,p2)(z)D2n+1−p1−p2(z), otherwise,

(5.68)

where

ζ̂(p1,p2)(z) =
(
z1/2 − z−1/2

)p1 (
z−1/2 − z1/2

)p2
,

Bn(z) =
∑
k

βn(k)z−k,

Dn(z) =
∑
k

(βn(k + 1/2)− βn(k − 1/2))z−k.

The filter, Γp1,p2(z), have some symmetry properties. In (5.68), all the

terms in the right hand side are symmetric except β′2n+1−p1−p2(z), which is

anti-symmetric. Hence we get

Γp1,p2(z
−1) = (−1)p1+p2Γp1,p2(z) (5.69)

On the other hand, (5.59) and (5.60) imply

Γp2,p1(z) = Γp1,p2(z
−1) (5.70)

This these two relations together yield

Γp2,p1(z) = (−1)p1+p2Γp1,p2(z) (5.71)
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The next step is to use (5.68) to get explicit expressions for each of the

terms in R(v) and RE(v). We first consider D1(u) . Using (5.54), (5.13) can

be written as

D1(u) = B(u, u, 1, 0, 1, 0) +B(u, u, 0, 1, 0, 1).

Substituting (5.62) in the above equation yields

D1(u) =
〈
µ1,0,1,0(k, l) ∗ cuk,l, cuk,l

〉
+
〈
µ0,1,0,1(k, l) ∗ cuk,l, cuk,l

〉
=

〈
(µ1,0,1,0(k, l) + µ0,1,0,1(k, l)) ∗ cuk,l, cuk,l

〉
(5.72)

The constituent filters in z-domain read

M1,0,1,0(z1, z2) = Γ1,1(z1)Γ0,0(z2)

M0,1,0,1(z1, z2) = Γ0,0(z1)Γ1,1(z2)

Using (5.68), the filters Γ1,1(z) and Γ0,0(z) are expressed as

Γ0,0(z) = B2n+1(z)

Γ1,1(z) = (z + 2 + z−1)B2n−1(z)

Substituting these expressions in (5.72) yields (5.15). In a similar way, we

can establish (5.16).

Next, we intend prove (5.26). We first expand
∫

(Div v(x))2 dx using

(5.23) and then substitute (5.54) for each resulting term. We get∫
(Div v(x))2 dx = B(u, u, 1, 0, 1, 0) +B(v, v, 0, 1, 0, 1) + 2B(u, v, 1, 0, 0, 1)

Using (5.62), this yields∫
(Div v(x))2 dx =

〈
r11(k, l) ∗ cuk,l, cuk,l

〉
+
〈
r12(k, l) ∗ cvk,l, cvk,l

〉
+
〈
r13(k, l) ∗ cuk,l, cvk,l

〉
where

r11(k, l) = µ1,0,1,0(k, l)

r12(k, l) = µ0,1,0,1(k, l)

r13(k, l) = µ1,0,0,1(k, l)
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Using (5.63) and (5.68) results

R11(z1, z2) = Γ11(z1)Γ00(z2)

= (z1 + 2 + z−1
1 )B2n−1(z1)B2n+1(z2)

R12(z1, z2) = Γ00(z1)Γ11(z2)

= B2n+1(z1)(z2 + 2 + z−1
2 )B2n−1(z2)

R13(z1, z2) = Γ10(z1)Γ01(z2)

= Γ10(z1)Γ10(z−1
2 ) (using (5.70))

= B′2n+1(z1)B′2n+1(z−1
2 )

which proves (5.26). We obtain (5.27) in a similar way.

Next, to establish (5.28), we first expand it as follow:∫
‖∇ (Div v(x))‖2 dx = B(u, u, 2, 0, 2, 0) +B(v, v, 0, 2, 0, 2) +B(u, u, 1, 1, 1, 1)

+ B(v, v, 1, 1, 1, 1) +B(u, v, 2, 0, 1, 1) +B(u, v, 1, 1, 0, 2)

Using (5.62) yields∫
‖∇ (Div v(x))‖2 dx =

〈
r21(k, l) ∗ cuk,l, cuk,l

〉
+
〈
r22(k, l) ∗ cvk,l, cvk,l

〉
+
〈
r23(k, l) ∗ cuk,l, cvk,l

〉
where

R21(z1, z2) = M2,0,2,0(z1, z2) +M1,1,1,1(z1, z2)

= Γ22(z1)Γ00(z2) + Γ11(z1)Γ11(z2) (5.73)

R22(z1, z2) = M0,2,0,2(z1, z2) +M1,1,1,1(z1, z2)

= Γ00(z1)Γ22(z2) + Γ11(z1)Γ11(z2) (5.74)

R23(z1, z2) = M2,0,1,1(z1, z2) +M1,1,0,2(z1, z2)

= Γ21(z1)Γ01(z2) + Γ10(z1)Γ12(z2)

Now, using (5.71), we get

Γ21(z1)Γ01(z2) = (−Γ12(z1))(−Γ10(z2)) = Γ12(z1)Γ10(z2).

Hence, R23(z1, z2) becomes

R23(z1, z2) = Γ12(z1)Γ10(z2) + Γ10(z1)Γ12(z2) (5.75)
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Applying the formula (5.68) in each of the terms in equations (5.73), (5.74),

and (5.75), we finally get

R21(z1, z2) =
1
a2

[
(z1 + 2 + z−1

1 )2B2n−3(z1)B2n+1(z2)

+(z1 + 2 + z−1
1 )B2n−1(z1)(z2 + 2 + z−1

2 )B2n−1(z2)
]

R22(z1, z2) =
1
a2

[
B2n+1(z1)(z2 + 2 + z−1

2 )2B2n−3(z2)

+(z1 + 2 + z−1
1 )B2n−1(z1)(z2 + 2 + z−1

2 )B2n−1(z2)
]

R23(z1, z2) =
1
a2

[
(z1 + 2 + z−1

1 )D2n−2(z1)D2n+1(z−1
2 )

+D2n+1(z1)(z2 + 2 + z−1
2 )D2n−2(z−1

2 )
]

This proves (5.28). (5.29) is established in a similar way.

Interscale Relation

Let v(j)(x) = [u(j)(x) v(j)(x)]T and v(j+1)(x) = [u(j+1)(x) v(j+1)(x)]T be

the velocity fields at scales j and j + 1 that are expressed as

u(j)(x, y) =
(Ng−1)/2j∑

k

(Ng−1)/2j∑
l

c
u,(j)
k,l β(x/2j − k)β(y/2j − l),

v(j)(x, y) =
(Ng−1)/2j∑

k

(Ng−1)/2j∑
l

c
v,(j)
k,l β(x/2j − k)β(y/2j − l),

u(j+1)(x, y) =
(Ng−1)/2j+1∑

k

(Ng−1)/2j+1∑
l

c
u,(j+1)
k,l β(x/2j+1 − k)β(y/2j+1 − l),

v(j+1)(x, y) =
(Ng−1)/2j+1∑

k

(Ng−1)/2j+1∑
l

c
v,(j+1)
k,l β(x/2j+1 − k)β(y/2j+1 − l).

Let

c(j) = [· · · cu,(j)k,l · · · cv,(j)k,l · · · ]T , and

c(j+1) = [· · · cu,(j+1)
k,l · · · cv,(j+1)

k,l · · · ]T .

The cost functionals for the scales j and j + 1 are given by (equation (5.47))

Jspline

(
c(j)

)
= cT(j)A(j)c(j) − 2cT(j)b(j) + mTm, and (5.76)

Jspline

(
c(j+1)

)
= cT(j+1)A(j+1)c(j+1) − 2cT(j+1)b(j+1) + mTm (5.77)

Let {c̃u,(j)k,l } and {c̃v,(j)k,l } be the sequences obtained by up-sampling and fil-

tering the sequences {cu,(j+1)
k,l } and {cv,(j+1)

k,l } respectively by the B-spline
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two-scale filter; i.e., c̃(j) = U(j)c(j+1) where

c̃(j) = [· · · c̃u,(j)k,l · · · c̃v,(j)k,l · · · ]T , and

U(j) is as defined before. Then, the velocity field ṽ(j)(x) = [ũ(j)(x) ṽ(j)(x)]T

should be equal to v(j+1)(x), where

ũ(j)(x, y) =
(Ng−1)/2j∑

k

(Ng−1)/2j∑
l

c̃
u,(j)
k,l β(x/2j − k)β(y/2j − l)

ṽ(j)(x, y) =
(Ng−1)/2j∑

k

(Ng−1)/2j∑
l

c̃
v,(j)
k,l β(x/2j − k)β(y/2j − l)

Its cost functional is given by

Jspline

(
c̃(j)

)
= c̃T(j)A(j)c̃(j) − 2c̃T(j)b(j) + mTm (5.78)

Substituting c̃(j) = U(j)c(j+1) we get

Jspline

(
c̃(j)

)
= cT(j+1)U

T
(j)A(j)U(j)c(j+1) − 2cT(j+1)U

T
(j)b(j) + mTm (5.79)

Since ṽ(j)(x) = v(j+1)(x), Jspline

(
c̃(j)

)
= Jspline

(
c(j+1)

)
. Hence the minima

of the equations (5.77) and (5.79) should be the same. In other words, the

solutions of the following equations should be equal:

A(j+1)c(j+1) = b(j+1)

UT
(j)A(j)U(j)c(j+1) = UT

(j)b(j)

This in turn implies that

A(j+1) = UT
(j)A(j)U(j)

b(j+1) = UT
(j)b(j)
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We must measure what is measurable and make

measurable what cannot be measured.

— Galileo Galilei

Chapter 6

Some Future Extensions

There are few possible extensions that broaden the scope of the proposed

framework; these are the focus of this chapter.

6.1 Generalizing Invariances

There are generalizations of the imposed invariance principles that could

possibly yield a larger family of regularization functionals. We present them

in the vector field context only, since, whenever applicable, our arguments

can be carried over to the scalar problem in a straightforward manner.

6.1.1 Rotational Invariance

First we consider a generalization of the rotational invariance for vector func-

tions. Let f and fΩ be original and rotated functions, respectively. Recall

that they are related by

fΩ(x) = Ωf(ΩTx).

The original rotational invariance for the regularization functional is

J(f) = J(fΩ).

The basic idea behind this equality is that, since both functions represent the

same physical vector field, their energy, whatsoever, should be the same, and
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hence J should measure them equally. This also ensures an invariant recon-

struction for both interpolation and approximation problems. However, this

is not a necessary condition for invariant reconstruction. It can be replaced

by the following more general condition:

J(f) = c(Ω)J(fΩ),

where c is a non-negative functional. This new invariance ensures the in-

variance reconstruction, provided that, in the case of approximation, the

regularization factor is adjusted appropriately. The correction factor can be

obtained from the function c. One needs to verify whether this generalization

leads to a more general family of regularization functionals or not, if indeed

it does, this will provide a more general family of vector splines.

6.1.2 Affine Invariance

In our original definition of the scale-invariance, a scaled version of the func-

tion f(x) was f(ax), which is also denoted by fa. The invariance was defined

by

J(f) = c(a)J(fa).

Now, we can extend the notion of scaling of a function to the multiplication of

its argument by a symmetric matrix (affine transformation). In other words,

we can define a transformed version of a functions as follows:

fA(x) = f(Ax).

Let A = ΘDΘT be the eigen decomposition of A. fA is obtained by scaling

f along a set of n orthogonal directions with different scale factors, where the

former is given by the columns of Θ, and the later is given by the diagonal

elements of D; i.e., the eigen values of A. Now the generalized scale invariance

(or affine invariance) can be defined as

J(f) = c(A)J(fA).

This generalization should result in a larger family of regularization function-

als.
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6.2 Non-Local Measurement Models

In our work, we considered only point measurements. However, the theory

is equally applicable to any linear measurement model. In this section, we

present some possible extensions to the models that involve integrals. We use

the approximation formulation to explain the extended variational problems;

these arguments are obviously applicable for variational interpolation as well.

6.2.1 Scalar Problem

A general scalar problem can be expressed as the following minimization:

f (opt) = argmin
f

N∑
i=1

(〈ri, f〉 −mi)
2 + λJ(f),

where (ri)i∈[1:N ] are the general measurement operators representing

weighted integrals (or scalar products) and (mi)i∈[1:N ] are the measurements.

Tomographic imaging is a well-known example that involves integral mea-

sures. The system measures the so-called Radon transform of an image, which

is defined as

f̌(t, τττ) =
∫
f(x)δ(τττTx− t)dx, (6.1)

where τττ is an unit vector. For a given (t, τττ), f̌(t, τττ) is equal to the integral of

f(x) over the hyperplane that is orthogonal to τττ , and that is at position t from

the origin. Note that τττ has n− 1 parameters; and hence, if one includes the

variable t, f̌ is a function in Rn. This transform is invertible. The so-called

filtered back projection method is used to invert this transform numerically

[77]. Note that in 2D, the samples of the Radon transform correspond to line

integrals, whereas in 3D, they correspond to planar integrals.

A typical tomographic data set contains a discrete set of sample of f̌ ,

which can be represented as (ti, τττ i,mi)i∈[1:N ], where mi = f̌(ti, τττ i) + ni =〈
δ(τττTi x− ti), f(x)

〉
+ ni with ni being some noise. The corresponding ap-

proximation problem reads

f (opt) = argmin
f

N∑
i=1

(〈
δ(τττTi x− ti), f(x)

〉
−mi

)2
+ λJ(f).

This problem has been solved in [78] for the 2D case, where the authors

demonstrate that the variational reconstruction yields much better quality
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when compared to the back projection method. This problem has not yet

been solved for 3D.

6.2.2 Vector Problem

The vector field approximation problem with non-local measurements can be

expressed as

f (opt) = argmin
f

N∑
i=1

(〈ri, f〉 −mi)
2 + λJ(f),

where (ri)i∈[1:N ] are now vector measurement operators.

An example that involves integral measures of vector functions is the

extension of the conventional tomography for vector fields, which is known

as the vector tomography [79, 80, 81], and which has been developed for flow

field recovery. A vector tomographic system measures the so-called probe

transform of the vector field, which is an extension of the conventional Radon

transform. It is defined by

fp(t, τττ) =
∫

pT (t, τττ)f(x)δ(τττTx− t)dx, (6.2)

where p is the so-called probe field. Note that, similar to the scalar case,

f̌(t, τττ) is equal to the integral of f(x) over the hyperplane represented by

(t, τττ), but now the quantity that is integrated is the projection of the vector

field along the direction specified by p(t, τττ).

Some numerical methods similar to back projection have been developed

to recover the flow field from discrete samples of one or more probe transforms

[79, 80, 81]. They recover the flow field either partly or fully depending on

the transform used.

Similar to the scalar case, one can expect that variational reconstruction

should yield much better results in this vector problem as well. The data set

originating from the discrete samples of one or more probe transforms can

be represented as (ti, τττ i,pi,mi)i∈[1:N ], where

mi =
∫

pTi f(x)δ(τττTi x− ti)dx + ni.

The approximation problem now reads

f (opt) = argmin
f

N∑
i=1

(〈
piδ(τττTi x− ti), f(x)

〉
−mi

)2
+ λJ(f).
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In the remainder of this section, we will have a closer look at some specific

measurement schemes available for 2D and 3D flow fields.

2D Vector Fields

Recall that, in 2D, these measurements are line integrals. In most of the

methods known so far, the quantity that is integrated is the component of

the vector along the line of integration. In other words, the probe field is of

the following form:

p(t, τττ) = τ̂ττ , (6.3)

where τ̂ττ is the unit vector that is orthogonal to τττ . Such integrals can be

measured in a variety of ways. Examples include measurement schemes that

are based on acoustic time-of-flight [82, 83], optical phase shift [84], and the

Doppler effect [85, 86]. The first two are transmission measurements, whereas

the third is performed on the back scattered signal. It is primarily performed

using an ultrasound beam. It is known as continuous wave Doppler mea-

surement, which is an extension of pulsed wave Doppler scheme discussed in

Chapter 1. Here, each scan line acquisition is performed by a pair of trans-

ducers, where one transmits a continuous wave while the other one receives

the backscattered wave. With the assumption that the time taken for the

ultrasound beam to travel the penetration depth is negligible with respect to

the rate of change of motion, the total spectral spread in the received wave

measures the required integral.

The 2D probe transform with the above specific choice of probe field given

in (6.3) is also known as Doppler Radon transform. The main drawback of the

Doppler Radon transform is that, its null space is made-up of all irrotational

vector fields [85, 79]. Hence only the solenoidal component of a vector field

can be recovered from the Doppler Radon (DR) data, even if one combines

multiple acquisitions. However, in the context of recovering a full vector field,

they can be still usefull in conjunction with pulsed wave Doppler data (PWD)

for improving the reconstruction accuracy. This possibility of improvement

originates from the fact that DR data may contain some information that

is complementary to the PWD data in the following sense: the PWD data

may be inconsistent with the underlying imaging model in the regions where

the axial velocity is greater than certain maximum value [5], whereas the DR

data do not suffer from any such limitations.
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3D Vector Fields

The generalized vector measurement model (6.2) represent a planar integral

in 3D. Interestingly, probe transforms for 3D can be measured with almost

any arbitrary probe fields using MRI [81]. The author in this paper presents

some recommended choices of probe fields, and gives formulas for recovering

different component of flow field (solenoidal or irrotational) from specific

probe transforms.

Note that the line integrals with probe field given in (6.3) can be obviously

measured on 3D flow fields as well. However, since they do not have any

equivalence with 3D Radon transforms, these type of measurements have not

yet been considered for 3D flow field recovery. They may be used efficiently

in the proposed variational setting. For example, they can be combined with

PWD data as mentioned above for the 2D problem. To this end, one needs

to write down the measurement equation for line integrals in 3D. Let τ̂ττ be the

unit vector representing the line direction, and let s be a point on the line.

Then, the line integral with the probe field given by (6.3) can be written as

fL(τ̂ττ , s) =
∫
τ̂ττT f(x)δ(ΓT (x− s))dx, (6.4)

where Γ is a matrix such that [τ̂ττ Γ] forms an orthogonal matrix.
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Epilogue

The focus of this thesis has been on the design and application of varia-

tional methods for reconstructing scalar and vector images from non-uniform

measurements. The motivation for adopting a variational strategy was to

make the reconstruction problem well-posed when the sample locations are

arbitrarily distributed.

The main aspects of the variational reconstruction problem are: (i) the

measurement model; (ii) choice of the regularization functional; (iii) and

the minimization space. The first is specified by the physical problem at

hand, whereas the other two are under the control of the user; obviously, the

latter two affect the performance of the method. In particular, the choice of

regularization determines the quality of the reconstruction.

As far as the measurements are concerned, we considered the conventional

local sampling model (dirac delta) in the scalar case, and the directional

local model (dirac delta multiplied by a unit vector) in the vector case. A

scalar problem with a more general measurement model that corresponds to

tomographic projection has been addressed in [78]. We also proposed some

future extensions of the measurement model for vector fields that correspond

to some Doppler Radon transform or more general Probe transforms [79, 80,

81]. A variational reconstruction method that is tailored to these models may

be a promising alternative to conventional filtered back projection algorithms

that are currently used in tomography.

To address the second aspect, we adopted an axiomatic approach. We

defined two generally desirable properties; namely, rotational-invariance and

scale-invariance. Such invariant regularization functionals are desirable for

they make the reconstruction invariant with respect to scaling and rotations

of the input data, provided of course that the reconstruction space is in-
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variant as well. While there exist a family of functionals satisfying these

invariance properties for scalar functions [30], such a characterization for

vector functions was not known until now. We extended these notions of in-

variance and characterized the corresponding complete family of functionals.

Interestingly, this family specifically involves the divergence and rotational

field components. It also includes all previously known functionals for vector

splines. We demonstrated experimentally how the completeness of the fam-

ily allows us to tune the functional according to the problem at hand, which

results in a better reconstruction performance.

Concerning the final ingredient, which is the minimization space, one

choses a specific space instead of considering “all functions” for which the cost

is finite, even though the later is more logical. The reason is rather technical.

Such an a priori constraint is imposed in order to make the minimization

problem well-defined for the given regularization functional. In particular,

the restriction facilitates proving the existence and uniqueness of the solution.

An appropriate Sobolev space is typically used for the scalar problem [30],

while Beppo-Levi product spaces are used for the vector problem [49, 50, 51].

Nevertheless, in all of these methods, these theoretical restrictions are very

mild; in other words the minimization space can be supposed to be large

enough to include any physical function. In particular, they are rotational-

and scale invariant by construction. In our work on the vector problem, we

defined the minimization space as the space of functions satisfying a specific

property that relates divergence and rotational sub-functionals. We were less

specific about the minimization space, since we did not attempt to prove

the existence and uniqueness of the solution. In stead, the existence and

uniqueness has to be verified a posteriori.

For computational purposes, we proposed to do the minimization within a

given shift-invariant space (e.g. cubic splines) that can approximate any func-

tion as close as desired by appropriately choosing the step size. We provided

the explicit construction of the linear system of equation that specifies the

required solution for both scalar and vector problem. The notable advantages

of this new approach over the previous one are the following: (i) it offers a

simple way to trade complexity against accuracy and vice versa. (ii) it yields

a system that is numerically well-conditioned; (iii) it allows multiresolution;

(iv) resampling is inexpensive, which amounts to a simple digital filtering
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[55]. We chose B-spline shift-invariant space since it gives the best trade-off

between the complexity and the reconstruction quality [59]. This approach is

preferable to the conventional approach when the number of measurements

is large.

It should be noted that shift-invariant spaces are not rigorously rotational-

and scale-invariant. This means that they cannot provide a solution that

is invariant exactly; i.e., a scaled and rotated data set does not yield an

exact scaled and rotated reconstructed output, even if we use an invariant

regularization functional. However, if the later is used, the discrepancy with

the theoretical solution can be made negligible by choosing a sufficiently small

step size. This means that the use of an invariant functional is still justified

and that it should have beneficial effect on the solution.
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